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Abstract
Despite the efforts devoted to increase the dependabil-

ity of highly-reliable distributed fieldbus systems by means
of simplex stars and replicated stars/buses, literature lacks
of appropriate analyses that quantify the system reliabil-
ity these topologies yield. In previous work, we proposed
models to adequately quantify the system reliability ben-
efits of simplex buses and simplex/replicated stars. How-
ever, a model for replicated buses is an open issue that
needs to be addressed, as they normally include less com-
ponents than stars and, thus, can be more reliable and
cost-effective. To fill this gap, this paper presents a model
that makes it possible to appropriately quantify the relia-
bility that a highly-reliable distributed system can achieve
when using a replicated bus.

1. Introduction

During the last few years different network topologies
have been proposed to improve the dependability of field-
buses targeted to critical control applications. Special ef-
fort has been made to offer the possibility of using ei-
ther replicated buses or simplex / replicated stars in field-
bus communications [9]. Certainly, simplex stars provide
better error containment than simplex buses and, in ad-
dition, replicated topologies further provide tolerance to
hardware faults. However, these topologies include more
hardware components than simplex buses and, thus, they
have a negative impact on dependability. In this sense note
that surprisingly, despite the efforts made to enhance field-
buses by means of these topologies, literature lacks of ap-
propriate analyses that quantify the degree in which they
actually improve system dependability in general and re-
liability in particular (as reported in [5]).

This has leaded us to devote our efforts to modeling and
quantifying the system reliability achievable by fieldbuses
that rely on different communication topologies. Specif-
ically, in previous work [5, 4] we proposed models for
quantifying the reliability of systems based on the Con-
troller Area Network (CAN) [1] when they use a simplex
bus, a simplex star and a replicated star. We are interested
in CAN because it is one of the most mature, low-cost
and widespread fieldbus technologies, and its application
is also expected to grow in domains where criticality is an
issue [8]. In this sense also note that the stars our mod-
els focus on are CANcentrate [5] and ReCANcentrate [4],
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since they are the CAN star topologies that provide the
best error-containment and fault-tolerance so far.

The results obtained with these models [5, 4] showed
that simplex and replicated stars can improve the sys-
tem reliability when compared with a simplex bus. More-
over, these models are parameterized so that they allow to
carry out sensitivity analyses for assessing how different
dependability-related features of the system and the net-
work topology influence reliability.

Despite these models are an important step towards
elucidating the system reliability that can be achieved with
topologies other than simplex buses, the literature still
lacks of appropriate models for the other mentioned topol-
ogy of interest, i.e. the replicated bus. In fact, to our best
knowledge, the only work that quantifies the reliability of
the replicated bus in the context of fieldbuses is [2]. How-
ever, as many other dependability models of communica-
tion networks, this work abstracts away details that can
strongly influence dependability, e.g. the coverage of the
fault-tolerance mechanisms.

Therefore, the objective of the present paper is to pro-
vide a model that allows to appropriately quantifying the
reliability that can be achieved by means of a replicated
bus topology in the context of highly-reliable distributed
systems. In this sense, this model must be built up in
such a way that its results can be compared with the ones
that can be obtained by means of our previous models.
Moreover, the model must be parameterized so that it can
be used to carry out sensitivity analyses as well. Finally
note that, as in our former models, we focus on perma-
nent hardware faults. Software and transient faults are out
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of scope, as they are usually addressed using techniques
other than specific network topologies.

The rest of the document is organized as follows. First
it explains the basics of the replicated bus architecture that
has been chosen for the model. Second, it describes the
modelling strategy, highlighting the similarities between it
and the strategy followed in our former models, and focus-
ing on the modelling issues that are specific to the repli-
cated bus. Third, it presents the results of some sensitivity
analyses that demonstrate the feasibility of the model. Fi-
nally, it draws the conclusions and points out future work.

2. Replicated bus basics
The first step to appropriately model the reliability ben-

efits of a replicated bus is to specify a replicated-bus ar-
chitecture that manages the redundant buses in the eas-
iest way, i.e. by increasing as less as possible the hard-
ware/software complexity when compared with a simplex
bus, while benefiting as much as possible from the fault-
tolerance potential of the bus redundancy.

Among the different replicated bus architectures that
have been proposed for CAN so far [13], we believe
that the most suitable is the CANEly’s one [10]. Fig. 1
sketches the structure of a CANEly node, which basically
includes a microcontroller, a CAN controller CAN Ctrl,
two transceivers (Txrx A and Txrx B) and additional logic.
CANEly manages the bus redundancy in a simple way by
taking advantage of the dominant/recessive transmission
and the in-bit response properties of CAN [1], i.e. a dom-
inant bit 0 prevails over a recessive bit 1 and nodes quasi-
simultaneously observe every single bit on the channel.
Specifically, for transmitting, the node sends the same bit
stream (ctrlTx) to all buses; whereas for receiving (ctrlRx),
it simply couples bit by bit (in an AND gate) the streams
it observes at each one of them (Bus A Contri and Bus B
Contri). This makes it possible for each node to trans-
parently communicate through the buses as if they were
a single logical channel and, thus, eliminates the need of
increasing even more the nodes hardware/software com-
plexity to deal with the more complex management of sev-
eral different channels.

To tolerate a permanently faulty bus, each node needs
to isolate that bus and rule it out for communicating. In or-
der to diagnose when a bus is faulty, each CANEly node
includes a Media Selection Unit (MSU) that monitors the
resultant coupled signal, Bc, and the contribution received
from each bus. The MSU diagnoses a given bus as being
permanently faulty when it detects that the contribution
of the bus is either stuck-at (recessive or dominant) [10],
or frequently disagrees with the contributions of the other
buses and corrupts the frame observed at the coupled sig-
nal. When so, the MSU isolates the bus (masks its contri-
bution) from the AND gate by driving a logical 1 (Iso A
or Iso B) into the corresponding OR gate.

After this brief introduction about CANely, it is even
more easy to see why it is appropriate to model a repli-
cated bus based on its architecture. The reason is that

CANely presents a lot of similarities with respect to the
replicated star we have modeled, i.e. ReCANcentrate.
First, both topologies use a similar AND-based strategy to
couple different media and create a single communication
domain. Second, both of them isolate faults by masking
permanently faulty bus/port contributions by means of OR
gates. Finally, they provide tolerance not only to faults af-
fecting the cables and connectors, but also the transceivers
each node uses to connect to the media.

3. Modelling rationale
In order to compare the replicated bus with the sim-

plex bus and the simplex/replicated stars, we modelled the
replicated bus using the same modelling strategy we pro-
posed for CAN, CANcentrate and ReCANcentrate [5, 4].
However, we had to extend this strategy to cope with addi-
tional modelling difficulties posed by some bus replicated
issues. Next, the most relevant aspects of the modelling
strategy are summarized, highlighting the modelling prob-
lems that are specific to the replicated bus, as well as the
way in which we have solved them.

3.1 Reliability metric
The reliability is one of the dependability attributes of

main concern in critical systems, and it is defined as the
probability with which a system continuously provides its
service during a given interval of time [12].

To properly reflect the contribution of the underlying
communication infrastructure to the reliability of a dis-
tributed control system, it is necessary to use a metric that
takes into account both, the probability with which the
nodes operate, and the probability with which they com-
municate among them.

Moreover, to quantify the reliability of a highly-
reliable distributed system, the metric must also consider
the system’s ability to continue providing its service de-
spite the loss or disconnection of nodes. For instance, a
system constituted by several node replicas can correctly
operate while tolerating the failure or the disconnection of
up to k out of N nodes. Thus, in order to quantify in our
models the reliability of those systems, which we refer to
as fault-tolerant-accepting (FTA) systems, we introduced
in [3] a metric called FTARk. This metric is defined in
terms of k as the probability with which at least N − k of
the N nodes of a system can correctly operate and com-
municate among them throughout a given interval of time.

3.2 Modelling assumptions
The assumptions our models rely on are chosen to

reach the major equanimity as possible between the dif-
ferent topologies; but paying special attention to not favor
the stars in the comparison, as CANcentrate and ReCAN-
centrate were proposed in the context of our work. In any
case, most assumptions are parameterized to make it pos-
sible to analyze the sensitivity with respect to them.

In our models the system is considered to be com-
posed of the following componentes: microcontrollers,



CAN controllers, transceivers, memory ICs, oscillators,
PCBs, segments of cable, connectors, network termina-
tions, and ASICs (in the case of the hubs and the MSU).
Each component is supposed to independently fail in a
permanent manner, and faults are considered as not being
near-coincident in time. The Time To Failure (TTF) distri-
bution of each component is considered to be exponential
and Non-Defective, with mean 1/λ, where λ is the failure
rate expressed in hour−1. The failure rates are calculated
using the MIL-HDBK-217F prediction standard [6].

Components can fail, from the channel point of
view, by transmitting stuck-at-recessive (STR), stuck-at-
dominant (STD) or flipping (FLIP) bits [5]. To not disfa-
vor the replicated bus, we assume that the MSU can fail
by either stopping its error-containment activities, or by
permanently isolating all bus contributions (which leads
the node to simply shutdown). Since there is not a real
consensus on the components’ failure mode proportions,
we consider these proportions as equiprobable; except-
ing the microcontroller, which can only cause a stuck-at-
recessive; and the CAN controller, which exhibits a stuck-
at-recessive and a stuck-at-dominant/bit-flipping failure
with a proportion of 66.6% and 16.6% respectively [3].

For the networks’ layout, we assume the length of each
star link to be half the total CAN bus length. This is pes-
simistic for the stars, since to cover the same area as a bus
does it can be used a star with a diameter lower than the
total bus length. In order to minimize the number of cables
and connectors that attach the nodes to the bus line [5], it is
supposed a daisy chain configuration for each bus replica.

The major part of the coverages we model refer to
the probability with which the error-containment/fault-
tolerance mechanisms of the communication subsystem
detect and isolate faults included in our fault model, given
that these faults occurs. Broadly speaking, the models in-
clude coverages that characterize the ability of the CAN
controller to isolate faults happening at the media, itself
or the rest of its node; the ability of a hub to isolate faults
at its ports; the capacity of a node of ReCANcentrate for
communicating using only one star when a fault prevents
it from communicating through the other one; and the ca-
pacity of an MSU for isolating a faulty bus replica. Basi-
cally, we assume that these mechanisms present a cover-
age of 100% and 95% for stuck-at-recessive and stuck-at-
dominant/bit-flipping faults respectively [5].

3.3 Model structure
We built the models using the Stochastic Activity Net-

work (SAN) formalism, which is an extension to Stochas-
tic Petri Nets [11]. Since components’ TTFs are expo-
nentially distributed, all our models are transformed into
a set of Continuous Time Markov Chains (CTMCs) that
are analytically solved.

As for the other models, we modelled the replicated bus
as a hierarchical composition of different SANs that share
specific places by means of the Join SAN’s primitive [11]
(see Fig. 2). We classify the set of SANs of a given model

Figure 2. Replicated bus model

into three groups depending on the aspect they represent,
namely (1) the occurrence of faults; (2) the way in which
errors are propagated/contained and faults are treated by
means of the fault-tolerance mechanisms, i.e. the Cover-
age Process [4]; and (3) the evaluation of whether or not
the system still delivers its service once the coverage pro-
cess finishes.

3.3.1 Fault occurrences
As concerns the occurrence of faults, note that the gran-
ularity with which a system isolates faulty components
to prevent the propagation of errors is limited. Normally
when a component fails, the errors it generates are con-
tained by isolating a region of the system that does not
only include that component, but also other ones. This
means that it is not necessary to model the failure of each
individual component, but of the region that is isolated
when that component fails. Therefore, in order to reduce
the state space of the model, we do not represent the fail-
ure of single components but of each one of these regions,
which we call Error-Containment Regions (ECRs).

Although all our models consider the same kind
of components, they are split in different ECRs. This
is because each network topology has different error-
containment mechanisms and, hence, components are
group into different types of ECRs. In ReCANcentrate the
types of ECRs and the most relevant components included
in each one of them are [4]: (1) the Node Kernel, which
includes the microcontroller; (2) the Node Connection,
which comprises all entities a node needs to connected to a
given hub, i.e. one CAN Controller, transceivers, cables,
etc.; (3) the Hub Interconnection, which has all compo-
nents used to interconnect both hubs by a given sublink;
and (4) the Hub Kernel, which includes the ASICs that im-
plement the coupling and error-containment mechanisms
of the hub.

The replicated bus is divided into similar types of
ECRs. However, the error-containment mechanisms of
the replicated bus are not centralized at the hubs, but
placed in each one of the nodes (see Fig. 1). Thus, the
main characteristic of the ECRs of the replicated bus is



Figure 3. At ECR failure submodel

that almost all of them are located within each node. More
specifically, each node includes a Node Kernel (as in Re-
CANcentrate); a Controller (Ctrl), which represents the
CAN controller; a Media Selection Module (MSM), which
basically embraces the MSU and the AND/OR gates the
node uses for coupling the media; and two Txrx, each of
which roughly corresponds to a given transceiver. It is also
noteworthy that the replicated bus does not include Node
Connections, Hub Interconnections nor Hub Kernels. In-
stead, it includes two Bus ECRs, so that each one of them
includes the cables and connectors of a given bus replica.

As just said, since it is unnecessary to represent the fail-
ure of each individual component, we reduced the state
space of the models by modelling the failure of just the
ECRs. Moreover, the models do not even represent each
individual ECR either. Instead, the models include one
SAN for each type of ECR (see for instance the model of
ReCANcentrate [4]). In other words, the models include a
set of SANs, each of which represents all the ECRs of a
given type, e.g. all the Node Kernels. As concerns the in-
ternal structure of these SANs, each one of them basically
includes a place whose marking represents the number of
surviving ECRs of a given type, a timed activity that mod-
els when any surviving ECR of that type fails, and a set
of instantaneous activities that decide what is the failure
mode the new faulty ECR exhibits [4].

We followed the same strategy for modelling fault oc-
currences in the replicated bus. The only difference is that,
in order to make the replicated bus model more compact,
these SANs are implemented together into a single SAN
called At ECR failure (Fig. 3). As can be seen, there is
one place for almost each type of ECR, namely okNodeK-
ernels, okCtrls, okMSMs, okTxrxA and okTxrxB. Note that
the two last places correspond to the transceivers con-
nected to the bus replicas called Bus A and Bus B re-
spectively (see Fig. 1). Also, just for convenience, there
is a place dedicated to each one of the bus replicas, ok-
BusA and okBusB. The marking of each one of these two
last places indicates whether or not the corresponding bus
replica is faulty.

The timed activity to which each one of the places men-
tioned in the former paragraph is connected models both,
the time that elapses until any ECR of the corresponding

type fails, and the type of errors the fault generates. For
instance, the timed activity of okCtrls models the time that
elapses until any surviving Controller fails and, then, it de-
cides what is the type of errors the faulty Controller gener-
ates. Note that in order to model the time that elapses until
a new ECR of a given type fails, the corresponding activ-
ity takes into account both the TTF of the components that
constitute that kind of ECR and the number of these ECRs
that have not failed so far. Similarly, it calculates the pro-
portion with which a faulty ECR exhibits different failure
modes by considering the failure mode proportions of the
ECR constituent components. The details of how this is
done are explained in [4].

Finally, note that when one of these activities fires and
decides what is the kind of errors the faulty ECR gener-
ates, it sets a token in a place that represent that failure
mode. For example, when a Controller fails the corre-
sponding activity sets a token in either Ctrl Failure Str
or Ctrl Failure StdFlip, indicating that the Controller
that has failed exhibits a stuck-at-recessive or a stuck-at-
dominant/bit-flipping respectively. Once a token is set in
any of the places of At ECR failure that represents a fail-
ure mode, a series of SANs are activated in order to model
how the errors are propagated/contained and the faults are
treated, i.e. as said before, what we call the Coverage Pro-
cess (CP). The behavior of these SANs is explained later
on in Section 3.3.3.

3.3.2 Node’s operational states

As just said, when a new fault occurs, a series of SANs are
activated to model the Coverage Process (CP). In princi-
ple, to correctly carry out that process it is necessary to
know what is the state of each ECR and its location with
respect to the other ones. Just as an example, let us imag-
ine a Txrx ECR that fails in a bit-flipping manner. If the
bus replica (the Bus ECR) it is connected to is already
stuck-at-recessive, then the flipping bits transmitted by the
Txrx cannot propagate through that replica. Otherwise, if
that bus replica is not faulty, then the flipping bits will
propagate through it and it is necessary to further analyze
whether or not each node connected to the bus replica con-
tains them. Moreover, in order to correctly analyze how
the flipping bits propagate from the Txrx to the internals
of its own node, the first step would be to determine if
the MSM of that node is already faulty. If so, it would be
necessary to determine whether that MSM has failed by
isolating the Txrx or by stopping its error-containment ac-
tions. If the MSM is not faulty, then it will be needed to
evaluate if it succeeds in isolating the Txrx. In any case, if
the MSM does not isolate the errors, then it will be eval-
uated whether or not the Controller (Ctrl) does it, and so
on and so forth.

Nevertheless, at this point, it is worth to recall that
in order to reduce the state space we model the number
of surviving ECRs, but not the state of each individual
ECR. Thus, it is necessary to include within the model



additional data related to the state and the location of the
ECRs. This data should be as less as possible, but it must
suffice the CP.

For instance, for ReCANcentrate we found out that it
is enough to include information about two aspects: (1)
whether or not each hub is faulty, and (2) whether or not
each node can operate and communicate through each one
of the hubs, i.e. what is the Node Operational State (NOS)
of each node [4]. Since the model of ReCANcentrate al-
ready has places that keep the state of each hub, it does
not include extra places that model the first aspect. Con-
versely, it does need to include extra places to keep what
is the NOS of each node. In this sense it is worth noting
that again, in order to reduce the state space, we do not
add places to model the NOS of each individual node, but
a set of places such that the marking of each one of them
represents the number of nodes being in a given NOS.

[4] thoroughly explains why knowing the state of the
hubs and the number of nodes in each NOS is enough for
carrying out the CP in ReCANcentrate. Basically, when
an ECR fails it is decided what is the NOS of the node that
is firstly affected by the ECR failure. The probability of
choosing a given NOS is calculated by dividing the favor-
able possibilities by the total number of them. The same
strategy is used to decide what is the NOS of each one of
the nodes that is subsequently affected by the propagation
of errors as the CP progresses.

Likewise, for carrying out the CP in the replicated bus,
it is also necessary to know whether each bus replica is
faulty or not, as well as how many nodes are in a given
NOS. Moreover, as in ReCANcentrate, it is only neces-
sary to add extra places for representing the number of
nodes in each possible NOS. Nevertheless, the definition
of the NOS is much more complex in the replicated bus.
Certainly, like in ReCANcentrate, each NOS must be de-
fined in such a way that it reflects whether or not the
node operates and can still transmit and/or receive through
each one of the bus replicas. However, the fault-tolerance
mechanisms of the replicated bus are not centralized at
any hub, but located in each one of the nodes. Therefore,
in the replicated bus each NOS must be defined so that it
additionally reflects what are the error-containment capa-
bilities of the node depending on the state of the nodes’s
internal ECRs. The example outlined at the beginning of
this section illustrates this necessity.

An important consequence of this need is that, con-
versely to ReCANcentrate, the amount of possible NOSs
in the replicated bus is huge. This poses two major dif-
ficulties. First, it is needed to exhaustively identify what
are all the possible NOSs. For that purpose, we gener-
ated a tree that explores all the combinations of the possi-
ble states of the ECRs of a node. We obtained a number
of NOSs of the order of some hundreds. Second, once
all NOSs are identified, it is necessary to analyze if it is
possible to reduce their number in order to prevent the
explosion of the state space. Fortunately, we found out
that many NOSs are equivalent from the point of view of

the node’s capacity for both communicating and contain-
ing errors. Thus, after exhaustively examining the tree of
NOSs we reduced their number down to 53.

3.3.3 Coverage process

The major part of the SANs of our models are devoted
to represent the Coverage Process (CP). They are located
at the left and right sides of Fig. 2. Each one of these
SANs (CP SANs) models the result of the actions carried
out by one or more error-containment or fault-tolerance
mechanism of the system, e.g. the ability of each MSU to
contain a faulty bus, the capacity of a CAN controller to
do so when the MSU does not succeed, etc.

Fig. 4 sketches the steps that compose the CP. The CP
starts once a fault occurs in an ECR and the correspond-
ing SAN sets a token in one of the places that indicates
the failure mode of the ECR. As already explained in Sec-
tion 3.3.1, in the replicated bus this is done by the SAN
At ECR failure (Fig. 3). When this occurs, it is activated
the CP SAN that corresponds to both the type of ECR
that fails and its failure mode, e.g. At Ctrl Failure StdFlip
(left side of Fig. 2) is activated if the ECR that fails is a
Controller (Ctrl) and it exhibits a stuck-at-dominant/bit-
flipping failure.

As specified in the first square of Fig. 4, the CP SAN
that becomes active determines what are the NOSs af-
fected by the fault; or in other words, what are the nodes
that, due to their NOS, are affected by the fault. Specif-
ically, if the fault happens in any of the ECRs that are
defined within the node, then only one node is directly
affected by the errors the fault generates and, thus, the
CP SAN only needs to determine what is the NOS of
that node. Conversely, if the fault happens in any of the
Bus ECRs, then multiple nodes will be affected by the
errors the bus propagates. Thus, the corresponding CP
SAN, e.g. At BusA Failure BitFlip, has to determine what
is the NOS of each one of these nodes.

In any case, for choosing a given NOS the CP SAN
follows the strategy sketched in Section 3.3.2, in which
the NOS is selected with a probability that is calculated
by dividing the favorable possibilities by the total num-
ber of them. For instance, if the ECR that fails is located
within a node, then the NOSs that are candidates to be
chosen by the CP SAN are those in which the ECR is not
faulty. Let NOScanditates be the set of candidate NOSs, and
let NOScanditates i be one of these NOSs. Then, the probabil-
ity with which the CP SAN selects NOScanditates i as the NOS
of the node where the ECR has failed is calculated just by
dividing the number of nodes in NOScanditates i by the number
of total nodes in NOScanditates.

Once the CP SAN elucidates what is/are the affected
NOS/s and how many nodes are in that NOS/s, it evaluates
if each one of these nodes isolates the errors. The deci-
sion of whether or not a node contains the errors depends
on its NOS, i.e. it is based on the coverage of the error-
containment mechanisms that a node being in that NOS
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Figure 4. Coverage Process (CP)

can use. For instance, a node being in a NOS in which
the MSM has failed by stopping its error-containment ac-
tivities will not be able to isolate the errors generated by
one of its transceivers, whereas a node in a NOS where
the MSM is non-faulty will isolate the errors with a given
probability of success. Note that as a result of this eval-
uation the CP changes the marking of the NOSs’ places
accordingly. The next step of the CP after this evaluation
is to check if the errors have been contained. If so, the
CP finishes. Otherwise, if any node does not contain the
errors, then it will pollute the bus replicas it can transmit
to. The CP finishes if both bus replicas were non-faulty
and due to this situation both are polluted with errors.
Similarly, the CP finishes if the errors affect the only bus
replica that was non-faulty. Finally, if both bus replicas
were non-faulty and the errors only pollute one of them, it
is necessary to evaluate if the errors that propagate through
that replica are contained by each one of the nodes con-
nected to it. For doing so, the CP is reinitialized as if that
bus replica would have failed (see Fig. 4).

It is important to note that the CP process of the repli-
cated bus is more complicated than the one of ReCAN-
centrate [4]. Each node of the bus is a potential point from
which errors can propagate to any of the bus replicas and,
then, to the other nodes. Hence, the number of ways in
which errors can propagate through the system is greater
in the replicated bus. Moreover, since each node has more
error-containment mechanisms (and hence the number of
NOS is greater) in the replicated bus, it is also more diffi-
cult to analyze what are the nodes that are affected by the
errors, and what are their NOSs.

3.3.4 System evaluation
Every time the CP finishes, it is necessary to determine
whether or not the whole system is still operational or
fails. Normally, this decision is taken by a SAN sub-
model we refer to as the System Evaluator Submodel
(SES). In the case of the replicated bus this SAN is called
At Evaluation, see the bottom of Fig. 2.

The SES analyzes the marking of the places that rep-
resent the number of nodes being in the different NOSs;
calculates how many nodes can still operate and commu-

nicate among them; and then elucidates if the system is
operational. The number of nodes that must operate and
communicate among them in order to consider that the
system is operational is parameterizable in all our models,
making it possible to measure different degrees of relia-
bility, i.e. FTARk for different values of k.

Additionally, in order to reduce the computation time
of the model, some CP SANs are provided with the
capacity of determining when, due to a certain con-
dition, the system is faulty. For instance, as said be-
fore, At Ctrl Failure StdFlip is activated when a Con-
troller ECR fails in a stuck-at-dominant or bit-flipping
manner. If this SAN determines that the NOS of the node
that is affected by the fault is such that the node was com-
municating through both bus replicas, then it directly di-
agnoses that the system fails as both buses will be polluted
with the dominant/flipping bits.

In any case, when the SES or any CP SAN detects that
the system is faulty, it writes a token at a place called Sys-
tem Failure. This place is shared among all submodels, so
that all them stop evolving when observe that token. This
allows reducing the size of the state space of the underly-
ing CTMC. Moreover, in order to reduce the state space
further, the replicated bus model includes a SAN called
At Simplification (bottom of Fig. 2). When a token is set
at System Failure this SAN immediately clears the mark-
ing of all the places of the whole model (except of Sys-
tem Failure), thereby ensuring that the CTMC represents
the failure of the system by means of just one state.

Finally, the presence of the token in System Failure is
used to easily quantify the reliability. Specifically, we de-
fine a rate reward variable [11] as 1.0−System Failure→
Mark(), so that its value at a particular point in time is the
system reliability itself.

4. Reliability analyses
Next we describe some results that show the capacity

of the model proposed in this paper for characterizing the
reliability benefits that a replicated bus topology can bring
to a highly-reliable distributed system. Since the results of
any dependability model cannot be used per se, we com-
pare the system reliability obtained when using the repli-
cated bus with the one that would be achieved when using
a simplex CAN bus and a ReCANcentrate star. Moreover,
in order to show the potential of the model to carry out
sensitivity analyses, the reliability of the replicated bus
and these two other topologies is analyzed with respect
to two dependability-related features. Each one of these
analyses takes as a starting point a case of reference [3],
in which all models’ parameters were set to favor buses
over stars, and then varies the value of the parameters that
characterize the dependability-related feature under study.
Table 1 shows some values of the case of reference.

We assume that faults affecting the hardware of a node
replica can lead it to exhibit an Authentification detectable
(non-malicious) Byzantine failure. Given this failure se-
mantic and in order to consider a cost-effective highly-



Table 1. Some models parameters
Parameter Default value Meaning

stdFlipCov 0.95 STD/FLIP error-containment coverage
of the CAN controller, MSU and hub

connectFR 2.07774 · 10−8 Connector failure rate
wireFR 10−7 Wire failure rate per kilometer
txrxFR 6.73258 · 10−7 Transceiver failure rate
ctrlFR 1.25537 · 10−6 CAN controller failure rate
microFR 3.25312 · 10−6 Node’s microcontroller failure rate
hubElecFR 1.275596 · 10−6 Hub electronics failure rate for 3 nodes

reliable system, we assume a system of 3 node replicas,
which is the minimum number of replicas needed to toler-
ate the failure of one of them (no matter which one).

Finally, note that since the system is considered to tol-
erate the failure/disconnection of up to 1 node, the metric
used to measure the reliability is the FTAR1. Moreover,
in order to make results as visually clear as possible, we
do not plot the evolution of the FTAR1 in time, but how
these values affect the Mission Time (MT). The MT is the
maximum amount of time during which a system exhibits
a reliability equal to or greater than a certain threshold [7].
In particular, the analyses presented here use a reliability
(FTAR1) threshold of 0.99999. Note that since the MT
has a direct relationship with the achievable system reli-
ability, for the sake of clarity results will be discussed in
terms of the MT only.

4.1 Reliability vs cabling failure rate
As said in Section 1, replicated topologies include ex-

tra hardware when compared with simplex ones. Thus,
one important aspect that must be analyzed is if the bet-
ter fault-tolerance capabilities of a replicated bus and a
replicated star compensate their extra hardware in terms
of reliability. This is specially, important when compar-
ing the replicated star with the simplex and replicated bus,
as the replicated star is the one that provides the better
error-containment and fault-tolerance, but also the most
quantity of hardware, e.g. wires, connectors, transceivers,
CAN controllers and the hubs.

Particularly, this section compares the sensitivity of the
three mentioned topologies with respect to the failure rate
of the wires and connectors, i.e. the cabling. In this sense,
to keep the relative weight of wires and connectors as in
the case of reference, the failure rate of the connectors
is always considered one order of magnitude lower than
that of the wires. Specifically, note from Table 1 that in
the case of reference the failure rates are 2.07774 · 10−8

hour−1 per connector and 10−7 hour−1 per km of wire.
For the sake of clarity, the x-axis legend of Fig. 5 refers

to the order of magnitude of the wire failure rate only. The
figure considers these failure rates ranging from 10−1 to
0 hour−1, so that they are arranged in descendent order in
the x-axis. The failure rate of 0 hour−1 corresponds to the
ideal case in which the cabling cannot fail.

Fig. 5 shows that the replicated CAN bus and ReCAN-
centrate lead to a higher MT than CAN for almost any

Figure 5. MT vs Cabling failure rate

failure rate of the cabling, which demonstrates that the
better error-containment and fault-tolerance of both repli-
cated topologies largely compensate their extra cabling. In
fact, only when the quality of the cabling becomes unreal-
istically pessimistic, the system reliability that is achieved
with the replicated topologies is similar to the one that can
be achieved with a simplex bus.

Another important result is that the replicated star is
much better than the replicated bus when the cabling fail-
ure rate is equal or greater than 10−6, which is one or-
der of magnitude higher (lower quality) than in the case
of reference. However, the replicated bus shows to be
more resilient than the replicated star to the decrease of
the cabling quality. In fact, the replicated bus becomes
better than the star as the cabling failure rate comes closer
to a too high (non-realistic) failure rate of 10−5 or 10−3

hour−1.
Finally, results show that, in practice, it is not worth to

improve the reliability of the cabling in any of the topolo-
gies beyond the case of reference, as the system MT can-
not be improved much further when doing so.

4.2 Reliability vs transceiver failure rate
Next we analyze the influence on the reliability of the

transceiver, as its number is larger in the replicated topolo-
gies; specially in ReCANcentrate, which doubles and qua-
druplicates the number of transceivers of the replicated
and the simplex CAN bus respectively [3]. Also note that
conversely to wires and connectors, a transceiver is an
electronic component, thus it is much more easy to im-
prove its reliability by investing in its quality.

Fig. 6 depicts how the transceiver reliability affects
the system MT achieved with each one of the topologies.
Specifically, the x-axis shows the order of magnitude of
the transceiver failure rate, whose value in the case of ref-
erence is of 6.73258 · 10−7 hour−1 (see Table 1).

Results are very similar to the ones obtained for the
cabling, yet there are substantial differences. First, the
system MT can be boosted by investing in the quality of
the transceivers when using ReCANcentate or the CAN



Figure 6. MT vs Transceiver failure rate

bus, but not when the underlying topology is the replicated
CAN bus. In fact, the MT benefits of the replicated bus
when compared with the simplex one become less evident
when the transceiver quality is improved beyond the case
of reference. The other important difference with respect
to the former analysis is that if we compare the robustness
of the topologies to both the cabling and the transceiver,
the replicated bus becomes even more robust than the oth-
ers in the second case. For instance, note that it is enough
that the order of magnitude of the transceiver failure rate
increases in less than one unit, i.e. from 10−7 to near 10−6

hour−1, to make the replicated bus much better than the
star in relative terms; in the former analysis the replicated
bus becomes better than the star only if the order of the
cabling failure rate decreases in more than one unit.

5. Conclusions and future work
Although replicated buses have been traditionally used

to improve reliability of fieldbus-based systems, no study
appropriately quantifies the reliability this topology can
actually yield. To fill this gap, this paper proposes a model
that makes it possible to adequately quantify the reliabil-
ity achievable by highly-reliable CAN-based systems that
rely on a replicated bus topology.

The paper explains how to model such systems with
SANs following the same strategy we proposed to model
field-bus systems that rely on simplex buses and sim-
plex/replicated stars. We reveal that, surprisingly, to
model a replicated bus poses additional difficulties. These
are due to the fact that, unlike in stars, the major part of
the replicated bus error-containment mechanisms are im-
plemented in each one of the nodes.

The paper uses the model proposed here, and the ones
we proposed formerly, to carry out some sensitivity anal-
yses that compare the reliability attainable by a replicated
CAN bus with the one what would be achieved by a sim-
plex CAN bus and a replicated CAN star. Results demon-
strate the suitability of the model to study the reliability
benefits of replicated bus topologies.

We plan to use the models we have proposed so far
to carry out more sensitivity analyses that bring light into
which is the most suitable topology for improving reli-
ability in fieldbuses. In this sense, note that the models
we proposed so far can be adapted to consider fieldbus
technologies other than CAN. Also, this work is currently
being extended to tackle the issue of temporary faults, as
well as the negative impact that external events such as
collisions have on the benefits of the different topologies.
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