
Visual Odometry Parameters Optimization for Autonomous Underwater Vehicles

Pep Lluı́s Negre Carrasco, Gabriel Oliver-Codina
Systems, Robotics and Vision Group,

University of the Balearic Islands
Cra Valldemossa km 7.5 (07122),

Palma de Mallorca, Balearic Islands
pl.negre , goliver @uib.es

Abstract — Visual odometry algorithms are used in a wide range of appli-
cations to provide reliable estimates of the movement of the camera frame.
Combined with inertial measurement units and other low-cost sensors, they
can be used as input of high-level algorithms like Kalman filters or SLAM
to estimate the global vehicle pose. However, visual odometers are often
complex algorithm pipelines with large parameter sets involved in every pro-
cess stage. In this paper we focus on optimizing the parameters of a visual
odometer that has proved to work in underwater environments. We present
the results of an exhaustive optimization process to reduce the errors in ro-
tation and translation comparing vision-based pose estimates with ground
truth in real underwater environments.
Keywords—Visual Odometry, Underwater Vehicles, Stereo Images, Motion
Estimation

I. INTRODUCTION

Although there are many visual odometers in the literature, we fo-
cus our work on visual odometry systems that use stereo cameras
in order to obtain precise 6 DOF camera poses. The common algo-
rithm pipeline [1] for stereo visual odometers is based in the follow-
ing steps: first, keypoints (landmarks) are identified in each camera
frame and feature descriptors for these points are extracted. Then,
the depth for every landmark is estimated using stereo, structure
from motion or a separate depth camera. Subsequently, features are
matched across time frames and the rigid-body transformation that
best aligns the features between frames is estimated. The result of
this process is an estimation of camera motion between frames and
therefore it is necessary to integrate this data over time to obtain the
vehicle’s absolute position and orientation.

The previous work [2], developed by members of our group,
compares two publicly available visual odometers (libviso2 [3] and
fovis [4]) for use in autonomous underwater vehicles (AUVs). In [2]
it is also described the main features of both odometers and its per-
formance is compared from the results carried out using two AUVs
in real sea environments.

However, each visual odometer has different algorithm stages
with its own parameters that must be configured for every appli-
cation. The present work compares the main parameters of libviso2
and fovis in order to find equivalences and highlight the most im-
portant ones. Then, the effect of each parameter on the final odom-
etry performance is studied. Finally, the work investigates possible
correlations between the parameters in order to find more effective
ways to configure these visual odometers.

II. VISUAL ODOMETRY PARAMETERS

A visual odometry algorithm is a complex program with a pipeline
containing the processes of feature detection, filtering, matching,
and motion estimation. Each stage has its own parameter set that
must be configured properly. The visual odometers under study (lib-
viso2 and fovis) share equivalent process stages and therefore they
have parameters with the same meaning. It is important to compare
each parameter of both odometers and extract those that are equiva-
lent.

Table 1 enumerates the parameters for libviso2 and fovis and il-
lustrates which of them have the same meaning for both odometers,
despite have different names. Furthermore, the table shows the main
parameters that are unique for each algorithm, since they refer to a
particular stage of the odometer.

libviso2 and fovis have the same basic odometry pipeline, but
they differ in the underlying methods, such as the keypoint detector
(Harris corners [5, 6] for libviso2 and FAST [4, 7] for fovis), the
feature matching (a RANSAC-based method [8, 9] for libviso2 and
a graph-based consistency algorithm [10] for fovis). On the other
hand, some processes like feature bucketing are exactly the same
for both odometers.

The total number of configurable parameters is 16 for libviso2
and 20 for fovis. An overall optimization with 10 possible values
for each parameter would result in an intractable amount of combi-
nations. Thus, this work is focused on identifying key parameters
(common in the algorithms under consideration) and studying their
influence on the final odometry performance. In the following we
give a brief overview of common parameters, contextualized by al-
gorithm stage.

A. Keypoint detection

The features used by libviso2 are simple blob and corner detector
masks which provide a large amount of interest points. To reduce
the amount of features, libviso2 applies a peak threshold technique
based on finding local maximums. This technique is controlled by
two main parameters: nms-n defines the quadratic region (window),
centered around the pixel under consideration, used to compute the
local maximum search. nms-tau defines the interest point peakiness
threshold for which the pixel will be considered a keypoint or not.
fovis uses FAST features, which are defined by the feature-window-
size and the fast-threshold to decide if a feature has to be taken as
keypoint or not.

B. Feature bucketing

The bucketing technique consists on divide the image into a grid
and, for each rectangle, choose the best n features. libviso2 and fovis
implement this technique and have the same configuration parame-
ters: bucket-width is the width of every bucket in the grid. bucket-
height is the height of every bucket in the grid. max-features (lib-
viso2) and max-keypoints-per-bucket (fovis) is the maximum num-
ber of features per bucket.

C. Stereo feature matching

In order to compute 6-DOF motion information, the 3D coordinates
of the features in the left/right image pair are calculated through tri-
angulation. libviso2 and fovis use 2 parameters to control this stage:
match-disp-tolerance (libviso2) and stereo-max-dist-epipolar-line
(fovis) defines the maximum v-disparity tolerance. Ideally, this
value would be 0, but it is adjusted to 2 or 3 in order to take
into account possible errors in stereo calibration. On the other

1



libviso2 fovis Description
nms-n feature-window-

size
This parameter is used in the keypoint stage to define the quadratic region centered
around the pixel under consideration (the window). In the case of N=3, a window of
7x7 is used to compute the local maximum search.

nms-tau fast-threshold For libviso2 this parameter is used in the keypoint state to define the threshold for a
point to be considered as keypoint. For fovis this is the threshold for the FAST feature
detector.

match-radius target-pixels-per-
feature

For libviso2 has the same meaning as match-binsize but it is used to find matches be-
tween current and previous frames. For fovis, this is the reference value for the con-
troller of the adaptive feature thresholding.

match-disp-
tolerance

stereo-max-dist-
epipolar-line

Defines the maximum v-disparity tolerance between matches of stereo pairs.

outlier-disp-
tolerance

stereo-max-
disparity

Has the same meaning than match-disp-tolerance but in the u-axis.

outlier-flow-
tolerance

feature-search-
window

This parameter defines the x/y-disparity for matches between current and reference
frame.

refinement use-subpixel-
refinement

Specifies whether or not to refine feature matches to subpixel resolution.

max-features max-keypoints-per-
bucket

Maximal number of features per bucket. The algorithm divides the images into a grid
and define a maximum number of features per bucket.

bucket-width bucket-width Width of bucket (in pixels).
bucket-height bucket-height Height of bucket (in pixels).
inlier-threshold inlier-max-

reprojection-error
Fundamental matrix inlier threshold. This parameter is used to eliminate mismatched
points in the reprojection process.

match-binsize This parameter defines the window for keypoint searching between stereo pairs.
multi-stage If disabled, the algorithm searches matchings between current and previous left images.

If it is enabled, the algorithm searches matchings between current left, current right,
previous right and previous left images.

half-resolution If enabled reduces the image by half to speed it up.
ransac-iters Number of RANSAC iterations for the minimization of the reprojection errors.
motion-threshold If feature flow is less than this parameter, libviso2 algorithm replaces the reference

images.
max-pyramid-level The maximum Gaussian pyramid level to process the images (Pyramid level 1 corre-

sponds to the original image).
min-pyramid-level The minimum Gaussian pyramid level.
fast-threshold-
adaptive-gain

The threshold for the FAST detector is adaptively chosen. This parameter is the propor-
tional factor of the controller.

use-adaptive-
threshold

True: to use the adaptive threshold defined by the parameter fast-threshold-adaptive-
gain.

ref-frame-change-
threshold

If the number of inlier features is lower than this parameter, the reference frame is
updated with the current images.

use-image-
normalization

If is set to TRUE, the fovis algorithm normalizes the image before pulling out the feature
descriptors.

clique-inlier-
threshold

Threshold used in the clique algorithm to discard bad matches.

min-features-for-
estimate

Minimum number of features in the inlier set for the motion estimate to be considered
valid.

max-mean-
reprojection-error

Maximum mean reprojection error over the inlier feature matches for the motion esti-
mate to be considered valid.

Table 1: Comparison of the libviso2 and fovis parameters.

hand, outlier-disp-tolerance (libviso2) and stereo-max-disparity (fo-
vis) defines the maximum u-disparity tolerance. This value depends
on the desired minimum distance from objects to be measured to
camera.

D. Feature matching across time frames

The matching process across time frames uses current and refer-
ence images from left and right cameras to estimate the motion.
The odometers compute feature matchings between these images in
order to classify a match as a valid matching. To discard possible

outliers between current and reference frames, the algorithms use
the parameter outlier-flow-tolerance (libviso2) and feature-search-
window (fovis) which defines the maximum x/y-disparity, in pixels,
between features over the images loop.

III. PARAMETER OPTIMIZATION

From the common parameters for libviso2 and fovis detailed in the
previous stage, an optimization process with the following param-
eter set was launched (for simplicity, hereafter, we will use the pa-
rameter names of libviso2. Please refer to Table 1 to find the equiv-

2



alences for fovis):

• nms-n

• nms-tau

• bucket-width

• bucket-height

• max-features

• outlier-flow-tolerance

Note that parameters of the stereo feature matching stage are not
relevant for the aim of this study since the v-disparity is well defined
to 2-3 for calibrated cameras and the u-disparity depends on the
work environment of the odometer and can be computed with:

dmax =
b · f
Zmin

(1)

Where dmax is the maximum disparity, b is the baseline, f is the
focal length and Zmin is the minimum distance from the camera to
the objects to be considered.

A. Brute-force optimization

In order to have an overall overview of the effect of all parameters
on the odometry performance, a brute-force optimization has been
executed over the parameters described above. This optimization
takes advantage of the use of ROS (Robotic Operating System) and
the wrappers for this midleware created by our grup1 and presented
in [2].

The brute-force optimization algorithm iterates over the follow-
ing steps for every parameter set:

1. Set the current parameter set.

2. Launch the odometry using a real underwater dataset.

3. Process the odometry output.

4. Save parameter set and odometry results.

We created an open source code2 (based on Python) to launch the
optimization algorithm and post-process the results.

To be consistent with the work presented previously in this mat-
ter in [11], we will follow the same odometry evaluation method.
This method is based on subdividing the paths into small parts and
compare velocities for each piece to the matching one in the ground
truth. Following this technique, the translational and rotational er-
rors will be taken as measures of performance of the visual odome-
ter.

IV. RESULTS

Figure 1 shows a comparison of the influence of each parameter
on the translational and rotational errors using the Spearman corre-
lation coefficient [12]. A value close to 100% means that the pa-
rameter has a big influence on the error, while a value close to 0%
means there is not influence of this parameter to the odometer per-
formance. By examining such graphic it is clear that max-features
has the largest impact on both the translational and rotational error.
On the other hand, the bucketing size parameters (bucket-width and
bucket-height) have a low impact on the traslation error, but a con-
siderable impact on the rotational error. Refering to the parameters
of keypoint detection stage (nms-n and nms-tau), they have a very
low impact on the final odometry result. Finally, the outlier-flow-
tolerance parameter has not a significant impact in the algorithms
performance.

1See http://www.ros.org/wiki/viso2_ros and http://www.

ros.org/wiki/fovis_ros
2See https://github.com/srv/odometry_optimization

Fig. 1: Influence of each parameter on the translational and rotational errors.

Fig. 2: Correlation between runtime and nms-n (Spearman coefficient of -0.72).

Another important measure of performance is the odometry run-
time for every image frame. An exhaustive study using correlation
techniques has been carried out to find possible relations between
parameters and the algorithm runtime.

Figures 2 and 3 illustrate largest correlations found between run-
time and parameters. Specifically, it is demostrated that larger win-
dow size (nms-n) for the keypoint detection decreases the runtime
(Figure 2). This is because one feature is extracted for each win-
dow, therefore larger window size means lower number of features
i.e. overall runtime decreases. Furthermore, Figure 3 shows that a
larger maximum number of features per bucket (max-features) in-
creases the runtime. In summary, it can be concluded that a larger
number of features per image has a negative effect on the algorithm
runtime.

Table 2 summarizes, qualitatively, the impact of the parameters
on the translational and rotational errors and runtime.

Parameter Tras. Error Rot. Error Runtime
nms-n - - 3

nms-tau - - -
bucket-width - 3 -
bucket-height - 3 -
max-features 3 3 3

outlier-flow-tolerance - - -

Table 2: Summary of the influence of the parameters on the odometry performance.

3



Fig. 3: Correlation between runtime and max-features (Spearman coefficient of 0.43).

V. CONCLUSION

In the previous work [2] it has been shown that visual odometers
can be used in underwater environments in order to obtain reliable
6-DOF motion estimations. The work detailed in this paper goes
a step further and performs a deep study of the parameters of two
publicly available odometers (libviso2 and fovis). It is focused on
determine which parameters are the most important in terms of its
effect on the final odometry result.

It has been shown that some parameters (such as those involved
in the stereo feature matching stage) have an exact configuration
that depends on the environment of the experiment to be performed
and the hardware used. On the other hand, some odometry parame-
ters have no influence on the performance, such as those related to
keypoint detection stage, therefore may be left the default values.

However, some parameters have a direct impact on the odometry
errors or on the execution time and must be set carefully.

REFERENCES
[1] H. Moravec, Obstacle Avoidance and Navigation in the Real World by a Seeing

Robot Rover. PhD thesis, Stanford University, 1980.

[2] S. Wirth, P. L. Negre, and G. Oliver, “Visual odometry for autonomous underwa-
ter vehicles,” in OCEANS 2013 IEEE International Conference, IEEE, 2013.

[3] A. Geiger and J. Ziegler, “Stereoscan: Dense 3d reconstruction in real-time,” in
IEEE Intelligent Vehicles Symposium, jun 2011.

[4] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox, and
N. Roy, “Visual odometry and mapping for autonomous flight using an rgb-d
camera,” in International Symposium on Robotics Research (ISRR), (Flagstaff,
Arizona, USA), pp. 1–16, Aug. 2011.

[5] C. Harris and M. Stephens, “A combined corner and edge detector,” in In Proc.
of Fourth Alvey Vision Conference, pp. 147–151, 1988.

[6] D. Nistér, O. Naroditsky, and J. Bergen, “Visual odometry for ground vehicle
applications,” Journal of Field Robotics, vol. 23, no. 1, pp. 3–20, 2006.

[7] E. Rosten and T. Drummond, “Machine learning for high-speed corner detection,”
in European Conference on Computer Vision, vol. 1, pp. 430–443, 2006.

[8] D. Nistér, O. Naroditsky, and J. Bergen, “Visual odometry,” in Computer Vision
and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Com-
puter Society Conference on, vol. 1, pp. I–652, IEEE, 2004.

[9] A. E. Johnson, S. B. Goldberg, Y. Cheng, and L. H. Matthies, “Robust and effi-
cient stereo feature tracking for visual odometry,” in Robotics and Automation,
2008. ICRA 2008. IEEE International Conference on, pp. 39–46, IEEE, 2008.

[10] A. Howard, “Real-time stereo visual odometry for autonomous ground vehicles,”
in Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International
Conference on, pp. 3946–3952, IEEE, 2008.

[11] A. Geiger, “The kitti vision benchmark suite - a project of karlsruhe institute of
technology and toyota technological institute at chicago @ONLINE,” Mar. 2013.

[12] A. Lehman, JMP for Basic Univariate and Multivariate Statistics: A Step-by-step
Guide. SAS Institute, 2005.

4


