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Abstract: We present a new vision-based localization system applied to an autonomous

underwater vehicle (AUV) with limited sensing and computation capabilities. The traditional

EKF-SLAM approaches are usually expensive in terms of execution time; the approach

presented in this paper strengthens this method by adopting a trajectory-based schema that

reduces the computational requirements. The pose of the vehicle is estimated using an

extended Kalman filter (EKF), which predicts the vehicle motion by means of a visual

odometer and corrects these predictions using the data associations (loop closures) between

the current frame and the previous ones. One of the most important steps in this procedure

is the image registration method, as it reinforces the data association and, thus, makes it

possible to close loops reliably. Since the use of standard EKFs entail linearization errors

that can distort the vehicle pose estimations, the approach has also been tested using an

iterated Kalman filter (IEKF). Experiments have been conducted using a real underwater

vehicle in controlled scenarios and in shallow sea waters, showing an excellent performance

with very small errors, both in the vehicle pose and in the overall trajectory estimates.
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1. Introduction

1.1. Problem Statement

Thanks to recent technological advances, the sub-aquatic world is more accessible for exploration,

scientific research and industrial activity. At present, remotely-operated vehicles (ROVs) are commonly

used in a variety of applications, such as surveying, scientific sampling, rescue operations or industrial

infrastructure inspection and maintenance.

Trying to overcome some of the intrinsic limitations of ROVs, such as their limited operative range

or the need for a support vessel, autonomous underwater vehicles (AUVs) are progressively being

introduced, especially in highly repetitive, long or hazardous missions. Because they are untethered and

self-powered, AUVs offer a significant independence from support ships and weather conditions, thus

reducing notably the operational costs and the complexity of human and material resources, compared

to operations conducted with ROVs.

Localization, which consists of determining and keeping track of the robot location in the

environment, becomes a crucial issue in AUVs. The mission success depends, to a great extent, on the

precision of the estimated vehicle pose. Errors in orientation generate important drifts on the computed

robot trajectory, thus hindering the accomplishment of the programmed mission.

There are several ways to estimate the robot motion in underwater vehicles, for instance: (1) using

inertial sensors, such as gyroscopes and accelerometers; (2) using odometry, computed via cameras or

acoustic sensors, such as sonars or Doppler velocity log (DVL); and (3) combining inertial sensors and

odometers, fusing all of the sensorial data by means of navigation filters, such as the extended Kalman

filter (EKF) or particle filters, to smooth trajectories and errors ([1–3]).

Nevertheless, all of these measurements are, to a greater or lesser extent, prone to drift, it being

necessary to adjust periodically the pose of the vehicle to reduce, as far as possible, the accumulated error.

To this end, the so-called simultaneous localization and mapping (SLAM) [4] techniques constitute the

most common and successful approach to perform precise localization. The principal aim of SLAM is the

reduction of errors present in odometry by localizing the robot with respect to landmarks or significant

points of the environment. This localization process is reinforced by recognizing regions previously

visited by the robot in a process known as loop closing. Landmarks are incorporated into an incremental

map, and their location is refined simultaneously with the vehicle pose.

The process of sensing underwater environments becomes particularly complex. When light

propagates in water, it interacts with molecules and dissolved particulate matter. As a consequence,

the light traveling distance underwater is dramatically reduced when compared to air. Contrarily, sound

propagates faster, and it is able to travel larger distances in water than in air. Consequently, acoustic

sensors have been traditionally considered the best choice for underwater vehicles [5–8]. However,

acoustic sensors have low spatial and temporal resolutions compared to optical sensors. This means

that, in general, they capture less details and scan at lower frequencies than modern cameras with high

resolutions and fast frame rates. Thus, although the quality of optical images in sub-aquatic environments

is strongly limited by the water and by the illumination conditions, optical cameras offer advantages

over acoustic sensors in several scenarios [9]. Visual platforms are not really appropriate in the water
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column, where it can be difficult to see the seabed or other reference points. However, for surveying or

intervention applications, where the vehicle has to navigate relatively close to the sea bottom or it has to

locate itself near the object to be manipulated, the use of cameras can be a suitable option. This paper is

focused, precisely, on this kind of application.

Lately, researchers have been focusing their efforts on the enhancement of visual localization

techniques to be applicable in sub-aquatic environments and to be operative online, in missions

conducted by real underwater vehicles.

1.2. Related Work

Visual localization in natural sub-aquatic scenarios has several difficulties not present in land: the light

attenuation, flickering, scattering and the special nature of underwater environments with no man-made

structured frameworks are some of the most important. Under these conditions, it is particularly difficulty

to define, find and track reliable features or natural landmarks that can be used to match scenes visualized

from different viewpoints and time instants.

The key of a successful underwater visual SLAM lies in the data association procedure (also

known as image registration) to detect loop closings. This data association has to be robust under

different viewpoints and illumination conditions. The image registration is in charge of recognizing

scenes visualized by the robot from different viewpoints, in frames that have certain overlapping or

even differences in illumination conditions, and to compute the camera relative displacement between

both views.

The literature is scarce in efficient visual SLAM solutions especially addressed to underwater and

tested in field robotic systems. Most of these solutions particularize the approach commonly known as

EKF-SLAM [4], correcting the dead-reckoning data with the results of an image registration process

in an EKF context. These systems normally incorporate newly-observed visual landmarks in a state

vector that contains also the vehicle pose and velocity. One of the positive issues of this approach is

the continuous correction of the vehicle and all of the landmark poses contained in the filter at every

iteration, which involves a simultaneous refinement of the vehicle trajectory and of the whole map.

For example, in [10], this approach is used for an AUV to inspect a ship hull. In this study, the 3D

landmarks corresponding to points in the hull are computed from stereo images and included in the EKF

state vector. Furthermore, [11] uses a similar approach to improve the DVL pose estimates by means of

stereo imagery. In this case, images are pre-processed to enhance their contrast and brightness and, thus,

facilitate the landmark detection process.

However, the computational complexity of updating the covariance matrix in EKF-based solutions

is O(n2), n being the number of landmarks in the state vector. Because of that, including all of the

observed visual landmarks in the state vector leads to an excessive computational cost quickly and makes

the method useless in mid- and large-scale environments.

In addition to the computational cost problem, another concern for researchers has been how to make

their approaches robust to linearization errors, which are inherent to EKF-based methods. For example,

in [12], a submapping EKF-SLAM is adopted and tested on an AUV with highly convincing results.
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Trying to overcome these problems, some authors take advantage of the structure of the SLAM

problem and use the extended information filter (EIF) [13], which is said to be the dual of the EKF,

alleviating some of the aforementioned problems.

Other authors adopted different approaches, such as delayed state filtering (DSF). For example, [14]

predicts the robot poses by means of dead reckoning and subsequently incorporates them into the state

vector. The detection of image overlapping provides pose constraints, which are used to correct the

robot trajectory stored in the state vector. In this case, since the visual landmarks are not included in

the filter state vector, the computational cost is drastically reduced. Nonetheless, the image registration

is still costly. Recent studies in real-time visual SLAM, such as [15], address this problem by carefully

selecting informative images in terms of the used visual SLAM map and using a bag-of-words measure

to help in the keyframe selection.

Other authors have approached the underwater visual SLAM [16] problem from the

graph-optimization [17] or bundle-adjustment point of view. Using these methods, the successive

odometric poses of the vehicle and, in some cases, the position of landmarks constitute the subsequent

nodes of a graph linked by edges, which usually represent the distance from node to node. When a loop

is closed, the complete graph is optimized, which means a complete graph adjustment, entailing nodes

(their labels) and distances between them. This approach eludes the linearization errors, but graphs

grow hugely with the amount of landmarks incorporated into the map, thus increasing the computational

resources needed.

This paper describes our proposal for EKF-based visual localization, which is mainly addressed to

mid-scale surveying underwater missions in shallow waters or in environments with a limited space for

maneuvering (for instance, monitoring nuclear storage ponds [18]), using low-cost mini or micro-AUVs

with limited computational resources. The proposed approach integrates the data provided by different

sensors in an efficient manner to elude the aforementioned problems and to provide accurate pose

estimates in real time.

Overall, the advantages of this system can be summarized as follows:

• A trajectory-based schema [8,19] is adopted in order to abate EKF linearization errors. Relative

AUV displacements are stored in the filter state, similarly to on-line mosaicking [20], but contrarily

to other DSF approaches that store absolute robot poses. Using a chain of relative motions instead

of the absolute poses makes the trajectory-based approach able to explicitly correct the whole

portion of the trajectory connecting a pair of registered images instead of only correcting its

end-points, as happens with other DSF methods.

• The proposed trajectory-based schema has the additional advantage of leading to smaller

linearization errors than other delayed-state approaches. In most delayed-state approaches, each

item in the state vector represents an AUV pose with respect to a global reference frame.

Contrarily, in the trajectory-based approach, each item in the state vector represents the AUV

pose with respect to the previous robot pose. Thus, covariances in trajectory-based approaches

are likely to be significantly smaller than those of delayed-state approaches. Therefore, the

trajectory-based approach leads to smaller linearization errors, because the EKF linearization error

is tightly related to the covariances: the larger the covariances involved, the larger the linearization

error. Furthermore, as the trajectory-based approach holds the covariance for each relative
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motion, computing the covariance from one point to another introduces less linearization error

than doing the same process using global poses, because this last situation involves an inversion

transformation and, again, larger covariances. Computing such a covariance is mandatory every

time a loop is closed, and thus, loop closings benefit from our proposal.

• Assuming that the distance from the vehicle to the sea bottom is known by other means, the visual

data association process is reduced to a 2.5D problem. The computational cost and complexity is

significantly reduced with respect a pure 3D approach, since the dimensionality of the problem is

smaller and no stereo matching is required. Although the time reduction may not be important on

a desktop computer, it is crucial when dealing with AUVs with limited computing resources and

shared with other processes that have real-time constraints.

• The process of image registration is, on the one hand, reinforced by using a RANSAC-based

algorithm and, on the other, accelerated by applying it only between images that satisfy a certain

geometric criteria.

The whole proposal has been tested with AUVs in real underwater environments and also

under simulation.

The paper is structured as follows: Section 2 explains the data association and image registration

procedure used to detect loop closings. Section 3 details the design and the structure of the EKF used to

perform the visual SLAM. Section 4 shows extensive experimentation that validates our approach, and

finally, Section 5 concludes the paper and outlines some forthcoming work.

2. Image Registration

In applications, such as SLAM, or in topological navigation, data association refers to the registration

of current sensory input to previously-gathered data. This process permits identifying parts of the

environment already visited by the robot. Registering successfully such pieces of information is essential

to perform loop closures, which impose strong pose constraints that increase accuracy in the incremental

localization process.

When using visual sensors, data association is tightly related to image registration, which consists of

comparing images taken at different instants from different viewpoints and determining if they overlap.

If so, the image registration procedure estimates the motion of the camera between the points at which

the images where taken, so that they can be represented with respect to a common coordinate frame.

In the context of visual localization, these motion estimates provide pose constraints that can be used to

improve the AUV pose estimates.

In the context of this study, image registration is always performed between two images. One of them

is the most recently gathered, whilst the other is one that was previously gathered and stored.

Common approaches to image registration are based on feature extraction and matching. Generally

speaking, if two images overlap, the features in the overlapping region should have similar descriptors,

and thus, the feature correspondences could be used to estimate the relative motion between the

images. However, when dealing with underwater imagery, some problems arise that are not present

in its terrestrial counterparts.
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For example, due to the light absorption, the underwater image contrast is significantly reduced,

leading to poorly descriptive features. In order to achieve reliable and robust feature-based image

registration, additional processes are necessary. Our proposal to deal with the aforementioned problems

is summarized in Figure 1 and outlined next.

Figure 1. Summary of the proposed image registration process.

Firstly, the two images under comparison are enhanced with a Butterworth high pass filter. Image

regions with low intensity variations, which are mainly due to uneven illumination, vanish, whilst regions

with high intensity variations, which are likely to correspond to actual objects, remain.

As an example, Figure 2a,c shows the underwater images gathered by our robot, whilst Figure 2b,d

shows the same images after applying the aforementioned filter. As can be observed, image regions with

high intensity changes are enhanced and mainly correspond to actual objects in the scene.

(a) (b)

(c) (d)

Figure 2. Image processing prior to the image registration. (a,c) Original images;

(b,d) filtered images.

Secondly, visual features are searched in the enhanced images. Since changes in orientation, scale and

illumination between the two images are expected, scale-invariant feature transform (SIFT) [21] features

were used due to their robustness in front of these changes.
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At this point, the coordinates of the image features are expressed in pixels. In order to express them

in meters, so that they can be properly fused with other sensors’ data, the vehicle altitude has to be taken

into account. By means of the vehicle altitude and the camera intrinsic parameters and assuming the

camera points nadir to a fairly flat sea bottom area, this conversion is straightforward. The result of this

conversion is that the 2D features found in the images are projected as 2D points to the locally-flat sea

floor. In general underwater surveying missions, the camera orientation assumption is easily affordable,

as the vehicle tends to be stabilized in roll and pitch. As for the flat floor assumption, some experiments

involving both flat and non-flat terrains will be conducted to see how these influence the results.

Finally, features of both images under comparison are matched using the SIFT matcher. At this point,

the obtained correspondences could be used to compute the 2D motion between the two feature sets.

However, the problems due to directly using feature matching are magnified in these kind of scenarios

with which we deal. As an example, Figure 3a shows two images of the same environment where the

second one is shifted vertically with respect to the first one. It can be observed that, although most

of the SIFT feature matchings, shown as yellow lines, seem to properly capture the motion, some of

them do not. If the relative motion between the images is computed using this information, the wrong

correspondences would introduce some error in the estimate. Figure 3b shows another example in which

the two images correspond to completely different areas that do not overlap. However, SIFT wrongly

finds some correspondences. In both cases, the wrong correspondences are said to be outliers, whilst the

correct ones constitute the inliers.

(a) (b)

Figure 3. Feature matching using underwater images. Yellow lines represent

correspondences between features. (a) Overlapping images; (b) non-overlapping images.

In order to find the relative motion between the images that takes into account the inliers and

discards the outliers, our proposal is to use random sample consensus (RANSAC) [22]. Thanks to this

RANSAC-based approach, our method is able to determine if two images actually overlap and, only in

case they do, to provide a 2D motion estimate between them.

Although the RANSAC-based algorithm here proposed is mostly coincident with the general

RANSAC approach, it is shown in Algorithm 1 for the sake of completeness. The symbol⊕ denotes the

compounding operator, as described in [23].

The algorithm relies on the so-called find_motion function, which takes a set of feature matchings C

and their coordinates in the first (Fref ) and in the second image (Fcur) as inputs. This function provides

the 2D roto-translation X that better explains the overlap between the images by searching the values of

x, y and θ that minimize the sum of squared distances between the matchings in C. More specifically,

the roto-translation X and the associated error ε are computed as follows:
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X = argmin
rt

f(rt) (1)

ε = f(X) (2)

being:

f(rt) =
∑

∀(i,j)∈C

||pi − rt⊕ qj ||
2 (3)

where pi and qj are feature coordinates in Fref and Fcur, respectively, and rt is the roto-translation that

transforms qj into pi.

Algorithm 1: RANSAC image registration. If the images can be registered, the output

Xbest = (x, y, θ) is the 2D motion between the two registered feature sets previously projected

to the sea floor.
Input:

Fref : Features {p1, p2, · · · , pm} in the first image projected to the sea floor

Fcur: Features {q1, q2, · · · , qn} in the second image projected to the sea floor

M : Matchings M = {(i, j)|visual_matching(pi, qj)}

nIter: Number of iterations to perform

N : Number of matchings to be randomly selected

α: Maximum allowable error per matching

β: Min. number of selected matches to consider a model

Output:

Xbest: The estimated 2D roto-translation

εbest: The error of the estimated roto-translation

found: Boolean stating if reliable matching found

Algorithm:

begin

k ←0 ; εbest ←∞ ; found← false;

while k < nIter do

C ← random selection of N items from M ;

(X, ε)← find_motion(Fref , Fcur, C);

foreach (i, j) ∈ (M − C) do

if ‖pi −X ⊕ qj‖ < α then

C ← C ∪ {(i, j)};

if |C| > β then

(X, ε)← find_motion(Fref , Fcur, C);

if ε < εbest then

εbest ← ε ; Xbest ← X ; found← true;

k ← k + 1;
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As an example, Figure 4 shows the feature correspondences after applying our proposal to the images

previously shown in Figure 3a. It can be seen how the wrong correspondences have been rejected and

only those explaining the true motion remain. Our proposal has also been applied to the images in

Figure 3b, determining correctly that they do no overlap.

Figure 4. RANSAC underwater image registration using 2D features.

The most time-consuming parts of this process are RANSAC and the feature detection. Further

sections will discuss how to reduce the number of RANSAC executions. As for the feature detection,

it is important to emphasize that they have to be computed only once per image. That is, although the

image registration is performed between two images, only the features corresponding to the most recently

gathered images have to be computed, as the features corresponding to previously gathered ones have

already been extracted in previous time steps.

3. Visual Localization

Our proposal to estimate the AUV pose is to combine the dead reckoning estimates with the pose

constraints provided by the image registration. Registering each of the gathered images with the current

one is an extremely time-consuming task, as cameras usually provide tenths of frames per second.

To avoid this problem, in this paper, only one every N frames is registered. Henceforth, N will be

referred to as keyframe separation, and each of the registered images will be referred to as keyframes.

A trajectory-based EKF-SLAM schema is used to fuse the above-mentioned sources of information.

Being based on EKF, the localization process is performed in three steps: prediction, state augmentation

and update. The dead reckoning information and the relevant information of each keyframe are used in

the prediction and state augmentation steps. Finally, the pose constraints due to image registration are

used in the update step.

The key aspects of the trajectory-based schema, particularized in an EKF implementation, can be

summarized as:

• The state vector consists entirely of delayed vehicle states corresponding to each keyframe,

contrary to classical approaches, where landmarks are stored in the state vector. This variant

offers an important reduction in computational complexity, similar to the DSF approach.

• Instead of storing the absolute robot poses in the state vector, as is commonly done in DFS, the

trajectory-based approach stores relative motions between consecutively gathered keyframes.

• Pose samples are refined by incorporating the constraints imposed by the image registration.

The state vector Xk is defined as follows:

Xk = [(x0
1)

T (x1
2)

T ...(xk−1
k )T ]T (4)
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where each xi−1
i (2 ≤ i ≤ k) denotes a roto-translation from keyframe Fi−1 to keyframe Fi and x0

1

represents the initial robot pose relative to a world fixed coordinate frame. It can be assumed, without

loss of generality, that x0
1 = [0, 0, 0]T .

The relative pose xi
j between two arbitrary keyframes can be computed from the state vector

as follows:

xi
j =







j−1
⊕

k=i

xk
k+1 j > i

i−j
⊕

k=1

(⊖xi−k
i−k+1) j < i

[0, 0, 0]T j = i

(5)

where⊖ denotes the standard inversion operator [23]. In particular, the pose of a keyframe j with respect

to the world fixed coordinate frame can be computed as x0
j . Furthermore, the current robot pose can be

computed by composing the last keyframe pose estimate and the dead reckoning information.

3.1. Prediction and State Augmentation

Every time a new node k is available, both prediction and state augmentation are executed. Assuming

a static environment, the state vector does not change during the prediction, and thus, nothing has to be

done. As for the state augmentation, the relative motion between keyframe k − 1 and keyframe k is

included in the state vector as follows:

X−

k = [(X+
k−1)

T (xk−1
k )T ]T (6)

where xk−1
k comes from dead reckoning. The term X+

k−1 denotes the updated state vector corresponding

to the previous keyframe. As has been said, the state vector does not change during the prediction step.

Relevant keyframe information, other than the associated relative motion, is stored externally to the

state vector. In particular, as suggested in Section 2, the keyframe SIFT features and descriptors are

stored externally to the state vector.

3.2. The Update Step

During the update step, the pose constraints, given by the overlaps detected after registering candidate

images with each current frame, are used to correct the predicted state vector.

3.2.1. Image Overlapping

In order to detect loop closings, every time a new keyframe is gathered, it could be compared with all

of the previous ones using the image registration algorithm proposed in Section 2. However, performing

such an exhaustive test at every filter iteration can be extremely time consuming.

Our goal is to execute the proposed RANSAC-based image registration only with images that are

likely to overlap. In this way, the execution time will be significantly reduced, and in addition, the

overall localization accuracy will be improved. Different approaches can be found in the literature
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concerning this issue [24]. For example, [25] takes into account only highly informative loop closures

and non-redundant poses.

Given that one of the goals of this study is to provide SLAM capabilities to small AUVs with reduced

computational resources, our priority at this point is the execution speed. That is, the process to decide

whether two images overlap sufficiently to execute the time consuming image registration has to be fast.

The proposal in this paper is to adopt a purely geometric approach.

As using geometry to detect loop closures assumes good pose estimates, the geometric criteria may

lead to wrong guesses about which images register. This means that some images that do not overlap

are selected as candidates (false positives) and that images that do overlap are not selected as candidates

(false negatives).

False positives can only be responsible for an increase in the computation time, as the RANSAC

rejects them during the registration. However, false negatives have the effect of losing the opportunity to

improve the pose estimate, thus leading to over-confident estimates [25].

Nevertheless, taking into account the kind of scenarios to which our approach is addressed, neither

false positives nor false negatives actually jeopardize the localization process; on the one hand, because

their effects will only be appreciable when closing loops after accumulating significant pose error. This

is not likely to happen, as small loop closures involving some consecutively gathered images happen

very frequently, strongly reducing the odometric error. On the other hand, it has to be taken into

account that our proposal targets low-cost AUVs with reduced computational capabilities moving in

small-to-mid-scale scenarios. Taking into account both considerations (frequent small loop closures

and small-to-mid-scale scenarios), odometric error is not likely to grow enough to produce significant

amounts of false positives or negatives. Moreover, even in these cases, the pose estimate is not going

to be compromised by false positives due to the robust RANSAC rejection criteria. Of course, if our

approach is to be used in large-scale environments, other candidate selection criteria should be used.

The used geometric criteria are described next. The camera field of view can be modeled as a cone.

Under this assumption, the region of the sea bottom observed by the camera is a circle, whose radius

depends on the lens field of view and the height at which the image is taken. The field of view being

constant, the observed region basically depends on the camera’s height when the image is obtained.

Accordingly, it can be decided whether two images overlap or not using the height information and the

position at which they were gathered. This idea is illustrated in Figure 5.

It is immediate that the diameter of the observed region is as follows:

wk = 2 · Ak · tan(
α

2
) (k = i, j) (7)

Accordingly, two images gathered at times ti and tj may overlap if the following condition is satisfied:

||pi − pj|| ≤
wi

2
+

wj

2
= (Ai + Aj) · tan

(α

2

)

(8)

where pi and pj denote the camera position at times ti and tj , respectively, and can be obtained from the

state vector.

However, these criteria tell us that two images may overlap if their corresponding vision cones

overlap. In real applications, it is desirable to require a larger intersection region. Otherwise, some of

the image pairs selected by these criteria would be rejected later by RANSAC, unnecessarily spending
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computational resources. Our proposal is to include a scaling factor to Equation (8), so that two images

may overlap if the following condition is met:

||pi − pj|| ≤ dmax(i, j) = R · (Ai + Aj) · tan
(α

2

)

(9)

where R, which is the scaling factor, should have values between zero and one to increase the required

intersection area. Using R = 1 means that all possible candidates are considered from the geometrical

point of view, but also that false positives are possible. False positives will not affect the quality of

the pose estimates, but only increase the computation time, as they will be rejected by RANSAC.

Furthermore, even using R = 1, some overlapping images may not be considered as candidates. That

is, some false negatives may appear, because the geometric criteria are affected by the errors in the pose

estimates. Nonetheless, as stated previously, the expected number of false negatives is small, and so,

their effect is almost neglectable, as evidenced by the experimental results. The value of R can be tuned

experimentally, as will be shown in Section 4.

Figure 5. Simple camera model to determine whether two images overlap or not. Given two

images gathered at times ti and tj and heights Ai and Aj using a camera with an angle of

vision of α degrees, the observed regions have a diameter of wi and wj , respectively. The

term d denotes the distance between the image acquisition points.

Overall, when a new keyframe k is gathered, it is compared with any preceding one if satisfying

Equation (9). Evaluating this condition is extremely fast, thus leading to a huge reduction in computation

time thanks to the proper choice of image couples to which the RANSAC-based motion estimation

is applied.

Moreover, if the robot is moving at a constant height An, then dmax is constant, and Equation (9) can

be reformulated as:

||pi − pj|| ≤ df = R · dmax(i, j) = R · 2 · An · tan
(α

2

)

(10)

Common AUV applications, where robots have to survey an area for mapping, object detection or

intervention, are usually performed at a constant height. Moreover, if these missions are performed in

calm waters, AUV controllers are able to maintain a constant height with low error. In these cases, this

approach, only involving a single threshold df , can be used.
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To conclude, if altitude information is available, the function dmax(i, j) in Equation (9) can be used to

determine a possible overlap between the two images gathered at poses i and j. If no altitude information

is available, but the vehicle navigates mostly at a constant height, then the constant threshold df defined

in Equation (10) is the best choice. In both cases, the pairs of images selected using this method are

those that are registered by means of the aforementioned, RANSAC-based approach.

3.2.2. Data Associations as a Measurement Vector

Data association is in charge of comparing images, determining if they overlap and, if they do,

computing the roto-translation that better explains the overlap. In the context of this paper, this

information is used to build the measurement vector Zk:

Zk = [(zC1
k )T , (zC2

k )T , · · · , (zCn
k )T ]T (11)

where C1, C2, · · · , Cn denote the keyframes that match the most recent one. The term zCi
k represents

the motion from keyframe Ci to that most recently gathered according to the image registration described

in Section 2.

The observation function hi outputs an estimation of zCi
k according to the state vector X−

k . As the

state vector stores relative motions between keyframes, this can be computed as follows:

hi(X
−

k ) = xCi
Ci+1 ⊕ xCi+1

Ci+2 ⊕ ...⊕ xk−1
k (12)

Figure 6 illustrates the idea of a measurement zCi
k and the associated observation function hi. The

observation matrix Hi is as follows:

Hi =
∂hi

∂Xk

∣
∣
∣
∣
X−

k

=

[

∂hi

∂x0
1

∣
∣
∣
∣
X−

k

∂hi

∂x1
2

∣
∣
∣
∣
X−

k

...
∂hi

∂xk−1
k

∣
∣
∣
∣
X−

k

]

(13)

It is straightforward to see that:

Hi =








000

000

000
︸︷︷︸

×Ci

∂hi

∂xCi
Ci+1

∣
∣
∣
∣
X−

k

∂hi

∂xCi+1
Ci+2

∣
∣
∣
∣
∣
X−

k

...
∂hi

∂xk−1
k

∣
∣
∣
∣
X−

k








(14)

As can be observed, all of the terms in Hi related to the sequence of movements in the measured

loop closing will be non-zero. Because of that, contrary to DSF methods [26], the trajectory-based

approach leads to non-sparse observation matrices, and thus, it may not scale well for large environments.

However, it has to be taken into account that the point at which the environment can be considered large

(i.e., when the non-sparsity becomes noticeable) depends on the keyframe separation. Furthermore, the

trajectory-based approach reduces the EKF linearization errors, not only with respect to classical EKF

methods, but also with respect to traditional DSF-based approaches. The reasons for this reduction have

been summarized in Section 1.2. As a matter of fact, the trajectory-based approach surpassed traditional

and DSF-based methods in significantly large environments [8] using noisy acoustic sensors. For these

reasons, regardless of the non-sparsity of Hi, the trajectory-based approach is one of the best choices for

low- and mid-scale surveying missions, like the ones with which this research deals.
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Figure 6. Illustration of a measurement (thick red arrow) and the corresponding observation

function (dashed blue arrows)

Using the analysis from [27], Equation (14) can be computed as follows:

∂hi

∂x
j−1
j

∣
∣
∣
∣
∣
X−

k

= J1⊕{gj,⊖gj ⊕ hi}|X−

k

· J2⊕{gj ⊕ (⊖xj), xj}|X−

k

(15)

where J1⊕ and J2⊕ are the Jacobians of the composition of transformations [23] and:

gj = xCi
Ci+1 ⊕ xCi+1

Ci+2 ⊕ ...⊕ x
j−1
j (16)

At this point, the full observation function h and the full observation matrix H , considering all of the

matched keyframes, are as follows:

h(X−

k ) =








h1

h2

...

hn








H =








H1

H2

...

Hn








(17)

In brief, the observation function estimates the relative position between two overlapping frames

composing all of the intermediate displacements stored in the state vector, while the measurement

vector stores the relative position between the same overlapped frames directly obtained from the image

registration algorithm. The difference between both values, which is the so-called filter innovation, is

the measure used by the Kalman filter to improve the trajectory.

As was mentioned previously, for each pair of registered images, the whole portion of the trajectory

that connects them is explicitly corrected, contrary to traditional DSF methods that only explicitly correct

the endpoints. For example, all of the robot displacements depicted as dashed blue arrows in Figure 6

will be corrected by the single measurement zCi

k .

At this point, the standard EKF update equations can be used, which basically depend on the

observation function and the measurement vector.

In order to reduce the linearization errors, an iterated EKF (IEKF) [28,29] can be used instead of

a classic EKF. Roughly speaking, the IEKF consists of iterating an EKF and relinearizing the system

at each iteration, until convergence is achieved. When the IEKF converges, the state vector in the last

iteration constitutes the updated state X+
k .

Section 4 shows and analyzes the results obtained by an implementation of this SLAM approach using

an EKF and an IEKF.
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4. Experimental Results

In order to show the validity of our proposal, some image sequences were recorded in diverse

conditions using a simulated and a real robot. Later, our algorithms were run off-line on these recordings.

4.1. Experiments in a Simulated Environment

The underwater robot simulator, UWSim [30], was used for the simulated experiments. The

environment where the simulated robot was deployed consisted of a mosaic of a real subsea

environment. Pictures shown in Figure 3 are examples of the imagery gathered by the simulated

underwater camera.

The simulated mission consisted of performing a sweeping task. During the mission execution, images

obtained from a monocular bottom-looking camera were gathered. The robot pose was also recorded, but

solely used as the ground truth. Altitude was constant in these simulations. The visual odometry was

computed in 2D through the homography that transforms image features inter-frames.

The tests were performed with two different keyframe separations, 5 and 10, and using an IEKF

instead of an EKF, to minimize linearization errors. With the particular configuration used in these tests,

running the algorithm with a separation of five frames means an overlap of 55% of the image between

consecutive keyframes in the straight parts of the trajectory. A separation of 10 frames leads to an overlap

close to a 10%.

In order to test the robustness of our approach in front of the drift accumulated in the visual odometry

estimations, we added synthetic noise to the odometry data. Five noise levels were tested for each

keyframe separation. The noise used was additive zero mean Gaussian, and the covariance ranges from a

[Σx,Σy,Σθ] = [0, 0, 0] (Noise Level 1) to [Σx,Σy,Σθ] = [4× 10−5, 4× 10−5, 5× 10−4] (Noise Level 5).

The random noise was added to each visual odometry estimate. For each configuration (5 or 10 frames of

separation between keyframes) and noise level, 100 trials were performed in order to obtain significant

statistical results. The resulting SLAM trajectories were finally compared to the ground truth in order

to quantitatively measure their error. The error of a SLAM trajectory is computed as the mean distance

between each of the SLAM estimates and the corresponding ground truth pose.

The results obtained when using a keyframe separation of five are shown in Figure 7a, and those

obtained using a keyframe separation of 10 are depicted in Figure 7b. It can be observed that the SLAM

error is significantly below the error in dead reckoning. It is clear that the differences due to the keyframe

separation and the noise level are very small. Thus, these experiments suggest that our proposal leads

to pose estimates whose quality is nearly unrelated to the dead reckoning noise and to the keyframe

separation, as long as the overlap between consecutive keyframes is sufficient.

As for the small differences in error when comparing n = 5 and n = 10, the reason for the overlapping

being so different is as follows. The most important pose corrections appear when closing the large

loops due to the sweeping trajectory. Of course, if n = 5 is used, more candidates are available to

perform the loop closure. However, most of these candidates do not provide extra information. That is,

due to the proposed registration method, a few candidates are enough to properly close loops. This is

consistent with [25], where the authors reduce the computation time by avoiding non-informative poses.

In our case, by using n = 10, we avoid a significant number of non-informative image registrations.
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Furthermore, it is remarkable that the error covariances, which are shown as 2σ bounds in Figure 7,

are small and significantly lower than those of dead reckoning. That is, even if very different dead

reckoning trajectories are used, the SLAM results are very close to the ground truth.
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Figure 7. Errors in meters and 2σ bound. Noise levels represent the covariance of

the synthetic zero-mean Gaussian noise added to odometry, ranging from Noise Level 1

([Σx,Σy,Σθ] = [0, 0, 0]) to Noise Level 5 ([Σx,Σy,Σθ] = [4 × 10−5, 4 × 10−5, 5 × 10−4]).

(a) Using a keyframe separation of five; (b) using a keyframe separation of 10.

Figure 8a shows an example of the results obtained with Noise Level 2 and a keyframe separation

of 10. The figure shows the resulting SLAM trajectory, which is almost identical to the ground truth. This

is especially remarkable since the starting dead reckoning data, as can be seen, are strongly disturbed by

noise. Figure 8b depicts the data associations that have been performed during the SLAM operation.

−2 −1 0 1 2

0

1

2

m

GT DR SLAM

−2 −1 0 1 2

0

1

2

m

(a) (b)

Figure 8. Example of the results obtained with Noise Level 2 and keyframe separation 10.

GT and DR denote ground truth and dead reckoning. (a) Trajectories; (b) registered images.

4.2. Experiments in a Water Tank

4.2.1. Experimental Setup

Experiments in aquatic environments were conducted with the Fugu-C platform (Figure 9). Fugu-C is

a low-cost, mini-AUV, developed at the University of the Balearic Islands, which can be configured with

different sensors. For the specific experiments presented in this paper and to minimize the computation

requirements, the following reduced sensor set was used: a down-looking camera gathering monocular

video to obtain the (x, y) odometry, a custom-made altimeter to obtain the distance to the sea bottom (z)
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and a pressure sensor to correct the z drift. The computer on board was able to provide both odometric

data and height at 10 Hz. The visual odometry was computed by registering pairs of consecutive images

using the algorithm described in Section 2. It is important to emphasize that, although this image

registration is said to be computationally expensive when used in the SLAM update step, it is not used to

perform visual odometry, as it only has to register two images, contrary to the large number of potential

candidates when used for SLAM data association.

Figure 9. The Fugu-C.

All of the routes were programmed at a constant depth. The first experiments with the robot were

conducted in a pool 7 m long, 4 m wide and 1.5 m depth, whose bottom was covered with a printed

digital image of a real seabed. In order to obtain a ground truth in this environment, each gathered image

was registered to the whole printed digital image, which was previously known.

In this environment, three missions were executed. The first mission consisted of a single loop. The

second mission was a sweeping trajectory, and the third one was also a single loop. However, prior to

the execution of the third mission, several objects, such as amphoras and rock replicas, were deployed

inside the pool in order to simulate a realistic, non-flat sea floor. Figure 10 shows some examples of

the imagery gathered during the third mission. Figure 11a–c shows the ground truth and the visual

odometry corresponding to the first, second and third missions, respectively. It can be observed that,

although visual odometry properly approximates the overall trajectory, there is also a significant drift

error. In these figures, the drift leads to an overall rotated or scaled trajectory with respect to the ground

truth, and that is why the odometry end-points are also close to the ground truth end-points. This effect is

due to the quality of the visual odometer and the mission length. However, for larger missions or larger

odometric errors, this is not likely to happen, as will be shown in further experiments.

Figure 10. Examples of images obtained during the experiments.
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Figure 11. Ground truth and odometry corresponding to: (a) the first mission; (b) the second

mission; and (c) the third mission.

4.2.2. Tuning the Search Radius

As stated in Section 3.2.1, deciding which of the gathered images may overlap with the current one

is a crucial issue to save execution time. Although RANSAC would reject two non-overlapping images,

such a rejection process is time consuming. Thus, it is important to feed RANSAC only images that are

likely to overlap and to avoid unnecessary computation.

According to Equation (9), the selection of candidate overlapping images can be performed using a

search radius depending on the altitudes at which the images were gathered and a constant parameter R.

A simplified version of this criteria assuming constant altitude was also provided in Equation (10).

Tuning R ∈ (0, 1] is important to reduce the overall computational cost of the process. Using R = 1

should provide the maximum possible quality in the pose estimates, as long as the image registration

process successfully discards all wrong image pairings, which is an affordable assumption when using

RANSAC to register images. Lower values of R should lead to the same quality in the pose estimates

with lower computational effort. However, if a too low of a value is chosen for R, then some overlapping

image pairs will be discarded, and thus, the quality of the pose estimates would decrease. In any case,

the computational cost is far below the one obtained without preselecting candidate image pairs.

Accordingly, the optimum value for R, Ropt, is the lowest possible value that does not discard image

pairs that could be successfully registered by the proposed RANSAC approach. Thus, using R = Ropt

provides the same quality in the pose estimates as using R = 1.

We experimentally selected the Ropt as the one that produces the same pose estimate as using R = 1,

but with the lowest possible number of false positives. That is, several values of R ∈ (0, 1] have been

tested, and for each value, the output of each individual pose estimate has been compared with the output

obtained when using R = 1. Among those values that lead to the same estimate as R = 1, the one with

the lowest number of false positives has been selected. Deciding if a certain candidate is a false positive

or not is straightforward during this tuning process: a false positive is a candidate that is discarded when

executing RANSAC.

As a result of this experimental tuning, we found that the optimum values in our experimental setup

are Ropt = 0.24 for Mission 1, Ropt = 0.16 for Mission 2 and Ropt = 0.3 for Mission 3. Although

these values require a priori tuning, the authors would like to emphasize that our proposal is robust in
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front of values for R different from Ropt. For example, using R = 0.3 in all three missions would lead

to the same pose estimates in all of them and only would slightly increase the computation time in the

first two. Using R = 0.16 would lead to smaller execution times in Missions 2 and 3, with the negative

effect of false negatives in these missions, slightly reducing the quality of the pose estimates. Thus, the

experimental tuning provides a value that can be used in similar environments, and in case the maximum

quality in the pose estimates is required, R = 1 is the best choice.

Table 1 compares the execution time of the three missions using Ropt and R = 1. The time was

computed executing a MATLAB implementation on an Intel Centrino 2 at 2.4 GHz, with only one CPU

kernel used, and running Ubuntu 10.04. The separation between keyframes was 30 frames. It can be

observed how using Ropt strongly reduces the execution time in all cases.

Table 1. Execution time comparison using R = Ropt and R = 1.

Mission R = Ropt R = 1 Improvement

1 186.58 s 726.84 s 74.33%

2 416.35 s 2243.74 s 81.44%

3 143.54 s 479.57 s 70.07%

It should be noticed that, although the process has been tested using a non-optimized MATLAB

implementation executed on a regular computer, the execution time obtained for each mission, when

Ropt is used, is close (slightly above) to the real mission duration. For instance, the navigation time for

Mission 1 was 169 s, while the whole SLAM process took 186.58 s. Thus, obtaining an on-line version

is straightforward.

Next, the quality of the pose estimates is evaluated. We would like to emphasize that these results

do not depend on the value of Ropt, as, by definition, using R = Ropt leads to the same results as using R = 1.

4.2.3. Quantitative Evaluation

The missions already described in Section 4.2.1 were also used to carry out the quantitative analysis:

a loop, a sweeping trajectory and a loop over a non-flat terrain. Both ground truth and visual odometry

have been shown in Figure 11. In the three cases, a significant odometric error appears.

In order to provide a complete evaluation of the approach, the goal was to compare the quality of

every main component of which it is composed.

In our implementation, all of the following combinations were easily configurable and

interchangeable, allowing the achievement of the different results exposed later.

First, for each mission, our approach has been tested using IEKF and EKF in the update step. IEKF

iterated until convergence was achieved, but a maximum number of 10 iterations was imposed.

For each filter update method, the system has been tested using both the images as they are provided

by the camera and filtering them using a Butterworth high pass filter, as suggested in Section 2.

For each of these configurations, three different keyframe separations have been tested: 20 and 30 frames

to show the SLAM behavior in a realistic operation and 90 frames to push the system to its limits.
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In addition, for each filter update, image treatment and keyframe separation, the visual odometry was

corrupted with five different levels of additive zero mean Gaussian error. The covariance of this noise

ranged from [Σx,Σy,Σθ] = [0, 0, 0] in Noise Level 1 to [Σx,Σy,Σθ] = [4× 10−5, 4× 10−5, 4× 10−4] in

Noise Level 5. For each of these cases, 50 trials were executed. This leads to a total of 9000 trials.

The error of each SLAM estimate in every trial was computed by comparing it to the corresponding

ground truth pose. The error of each trial is defined as the mean error of the corresponding SLAM

estimates. This error was finally divided by the true trajectory length of the corresponding mission,

provided by the ground truth. In this way, we measure the meters of error per traveled meter. Thanks to

this, the errors obtained for each of the three missions can be compared and also joined in order to obtain

an overall measure of quality. Furthermore, if multiplied by 100, this error can be seen as a percentage

of error with respect to the trajectory length, and that is how the error is shown in the following figures.

The first relevant result is that, in all of the cases, the statistical differences between keyframe

separations of 20 and 30 are barely appreciable. This leads to a similar conclusion to the one obtained

under simulation: as long as sufficient overlap between consecutive images is provided, the quality of

our proposal is scarcely influenced by the keyframe separation.

The results comparing keyframe separations of 30 and 90 are shown in Figure 12. All of the

aforementioned test cases are shown. In all four cases, a significant improvement when using 30 frames

instead of 90 can be seen. Furthermore, as the noise level increases, the error when using a separation

of 30 frames barely increases, whilst using 90 frames leads to a clear error growth. Moreover,

the standard deviation of the error remains almost constant when using 30 frames between SLAM

executions, suggesting that even large differences between initial estimates, reflected by the large

odometric covariance, lead to SLAM results close to the ground truth. Thus, using 30 frames instead of

90 provides a significant improvement in the pose estimates. Accordingly, henceforth, the keyframe

separation used during this quantitative evaluation will be 30 frames. However, either using 30 or

90 frames, the SLAM estimates provide an important improvement with respect to the visual odometer.

Figure 12 also provides some insights regarding the other proposed SLAM components. Figure 12a,b

shows how the IEKF and the EKF updates provide similar results. The same can be observed comparing

Figure 12c,d. This suggests that, at least in these missions, the reduction of linearization errors thanks

to the use of IEKF is nearly unobservable. Additionally, when comparing the results corresponding to

filtered and non-filtered images, it becomes clear that image filtering actually leads to an appreciable

improvement in the accuracy of the pose estimation, particularly when using 30 frames.

Figure 13 compares explicitly the errors obtained using raw images and filtered images combined

with EKF and IEKF updates. It can be observed that filtering the images actually provides a significant

improvement in terms of error reduction with respect to the results obtained using raw images.

As can be observed in the example images shown in Figure 10, they are significantly influenced by

the uneven illumination produced by the AUV light source. The proposed image filtering is mainly

responsible for alleviating these effects and for enhancing the texture-rich regions. As a result of this,

only a few more features appear after filtering, but the resulting descriptors are more discriminative.

This increases the number of correct feature matchings and, thus, ameliorates the output of the

image registration.
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(a) (b)

(c) (d)

Figure 12. Mean and standard deviation of the errors corresponding to 30 and 90

keyframe separations for: (a) raw images and EKF update; (b) raw images and IEKF

update; (c) filtered images and EKF update; and (d) filtered images and IEKF update.

The standard deviation is depicted as 0.1σ to provide a clear representation. Noise

levels represent the covariance of the synthetic zero-mean Gaussian noise added to

odometry, ranging from Noise Level 1 ([Σx,Σy,Σθ] = [0, 0, 0]) to Noise Level 5

([Σx,Σy,Σθ] = [4 × 10−5, 4 × 10−5, 5 × 10−4]).

Using this filter in the presence of suspended particles in water may be problematic. In this case, the

particles themselves would be enhanced and considered as features. However, as most of the features

due to suspended particles would not be consistent with those corresponding to the sea floor, they would

be rejected by RANSAC. Anyway, they would, to a greater or lesser extent, have a negative effect on the

image registration. In these cases, other image filtering approaches should be considered. However, the

uneven illumination conditions are, in our case, more frequent than the existence of suspended particles.

Because of this, the described filtering approach is used in this study. The obtained experimental results

confirm the benefits of this choice.

Comparing Figures 13a,b confirms that the use of an IEKF barely changes the results. Furthermore,

the error standard deviation corresponding to tests conducted with filtered images are smaller than those

resulting from the use of non-filtered images.
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(a) (b)

Figure 13. Comparison between pose errors using raw images and filtered

images, combined with an (a) EKF and (b) iterated EKF (IEKF). The standard

deviation is depicted as 0.1σ to provide a clear representation. Noise levels

represent the covariance of the synthetic zero-mean Gaussian noise added to

odometry, ranging from Noise Level 1 ([Σx,Σy,Σθ] = [0, 0, 0]) to Noise Level 5

([Σx,Σy,Σθ] = [4 × 10−5, 4 × 10−5, 5 × 10−4]).

In summary, the option that combines important reductions in running time with smallest errors in the

pose estimates is using a keyframe separation of 30 frames, an EKF for the update step and a previous

image filtering to enhance image contrast.

Table 2 summarizes the results by comparing the initial guess provided by the visual odometer and

the SLAM output. The percentage of improvement is also shown.

Table 2. Comparison of errors in visual odometry and SLAM using a keyframe separation

of 30, EKF update and filtered images. Errors are expressed as the percentage of error with

respect to the trajectory length.

Noise Level 1 2 3 4 5

Visual odometry 2.3% 3.3% 3.7% 4.3% 4.9%

SLAM 0.8% 0.9% 1.0% 1.1% 1.3%

Improvement 62.8% 71.0% 72.1% 74.0% 74.0%

4.2.4. Qualitative Evaluation

Figures 14–16 show some representative examples of the SLAM operation under different conditions

for the three missions. In all cases, the EKF update and the filtered images were used.

Each figure shows, for its particular mission, the robot trajectory, obtained by composing the odometry

and the SLAM pose estimates of executions with 30 and 90 keyframes of separation, with Noise Levels 1,

3 and 5. All of the plots show the positive image registrations in blue and also incorporate the ground

truth to facilitate its comparison with the resulting path. The robot is included in the representation as a

triangle pointing towards the direction of motion.
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Figure 14. Example results corresponding to the first mission. The first row compares visual

odometry and ground truth. The next rows correspond to different keyframe separations.

The first, second and third columns are related to Noise Levels 1, 3 and 5, respectively.
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Figure 15. Example results corresponding to the second mission. The first row compares visual

odometry and ground truth. The next rows correspond to different keyframe separations.

The first, second and third columns are related to Noise Levels 1, 3 and 5, respectively.
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Figure 16. Example results corresponding to the third mission. The first row compares visual

odometry and ground truth. The next rows correspond to different keyframe separations. The

first, second and third columns are related to Noise Levels 1, 3 and 5, respectively.

It can be observed that, in the three missions, the final results are scarcely influenced by the initial

conditions (i.e., the noise level).

4.3. Subsea Experiments

A final experiment was conducted in real undersea conditions, in Port de Valldemossa (Mallorca,

Spain). Being a real environment, the floor was non-flat, fully covered by stones and algae, and the

robot, which navigated at an approximately constant depth, was influenced by small currents and waves.

Furthermore, some minor flickering and shadows appeared in some of the images. Figure 17 shows some

examples of the imagery gathered during this experiment. It is worth emphasizing that since the relief

of the ground was much lower than the height at which the robot was moving, the system still provided

highly plausible results.

Being in a natural environment, a continuous ground truth was unavailable. However, the desired

mission was to perform an approximately eight-shaped trajectory with the second loop larger than the

first one and ending at the same starting point. An artificial marker was placed on the seabed to assure

that the end point of the trajectory corresponded with the initial one.

Figure 18 shows the results obtained using a keyframe separation of 20, 30 and 60 frames. All of the

plots show the positive image registrations in blue, the trajectory computed from the visual odometry in

red and the SLAM trajectory in black. Notice how loop closings are found not only in the origin-end
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of the trajectory, but also along it. Again, the robot is represented as a triangle, with one of its vertices

pointing towards the direction of motion.

Figure 17. Some images gathered during the experiment in the sea, in Port de Valldemossa.

The image on the first row-first column corresponds to the start of the trajectory, and the

image on the third row-third column corresponds to the end. The trajectory was performed

at a constant depth.
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Figure 18. Visual odometry (dashed red line) and SLAM (continuous black like)

pose estimates in Port de Valldemossa using keyframe separations of: (a) 20 frames;

(b) 30 frames; and (c) 60 frames.

It can be observed how the visual odometry presents an important drift in this scenario. To the

contrary, the SLAM estimates are much closer to the real trajectory, and thanks to several loop closings

established during the mission execution, the trajectory is considerably correct, ending at the same point

where it started.
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5. Conclusions and Future Work

This paper proposes a practical approach to perform underwater visual localization, which improves

the traditional EKF-SLAM by reducing both the computational requirements and the linearization errors.

Moreover, the focus of this paper is the image registration, which is used in the SLAM data association

step, making it possible to close loops robustly. Thanks to that, as shown in the experiments, the presented

approach provides accurate pose estimates, both using a simulated robot and a real one, in controlled and

in real underwater scenarios.

Nonetheless, the presented approach makes two assumptions that limit the environments where the

robot can be deployed. On the one hand, it is assumed that the camera is always pointing downwards

nadir the sea floor. Although this may seem a hard requirement, the experiments with the real robot

suggest that the small oscillations in roll and pitch inherent to the robot motion are not significantly

influencing the results of our approach. However, avoiding this requirement is one of our future research

lines. The simplest way to solve this problem is to use the roll and pitch provided by the gyroscopes in

the IMU and to use this information to re-project the feature coordinates. On the other hand, the proposal

assumes a locally flat floor. Even so, some experiments included in this paper suggest that real oceanic

floors with limited relief are well tolerated by our method. However, upcoming work is currently focused

on using pure stereo data to overcome this restriction and to perform 3D SLAM with six DOF.

Finally, the execution time depends on the appropriate selection of Ropt. Although the obtained values

constitute good initial guesses for all of those missions that have to be executed under similar conditions,

improving this aspect is also a line of future research. Our proposal in this aspect is to make the search

radius automatically change on-line, depending on the RANSAC failures.
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