
Experimental Evaluation of Network Component
Crashes and Trigger Message Omissions in the

Flexible Time-Triggered Replicated Star for Ethernet

David Gessner, Alberto Ballesteros, Andreu Adrover, and Julián Proenza
DMI, Universitat de les Illes Balears, Spain

{david.gessner, a.ballesteros, julian.proenza}@uib.es

Abstract—A distributed embedded system (DES) is made up
of a set of computing nodes interconnected by a network. If
we want the DES to continue to operate even if a subset of
its network elements fail, the network must be fault-tolerant.
In particular, this requires that the architecture of the network
provides redundant paths between nodes and that any elements
critical for the operation of the network are replicated. In the
context of DES that must not only be highly reliable, but also
provide sufficient flexibility to adapt to unpredictable requirement
changes, the Flexible Time-Triggered Replicated Star for Ethernet
(FTTRS) has been proposed. One of the core features of FTTRS
is precisely its fault-tolerant network architecture. In this paper
we present a proof-of-concept prototype of FTTRS and a series of
fault-injection experiments. These experiments show that FTTRS
can tolerate the crash of any single network element, as well as
the crash of various combinations of multiple network elements.
A variety of omission failures affecting the most critical FTTRS
message (called the trigger message) are also tolerated.

I. INTRODUCTION

A distributed embedded system (DES) must be both highly
reliable and flexible if we want it to operate continuously in an
environment that imposes unpredictable requirement changes.
For this, it requires an underlying network that is reliable
and flexible as well. The goal of the Flexible Time-Triggered
Replicated Star for Ethernet (FTTRS) [1] is to provide such a
network for a project called Fault Tolerance for Flexible Time-
Triggered Ethernet-based systems (FT4FTT), which brings
high reliability and flexibility to all crucial parts of a DES.

FTTRS is based on a switched Ethernet implementa-
tion of the Flexible Time Triggered (FTT) communication
paradigm [2]. This paradigm follows the master/multi-slave
model in a way that allows the communication to adapt to
changing real-time requirements. FTTRS attempts to make
such communication highly reliable for switched Ethernet by
using fault tolerance. Its architecture is shown in Figure 1.
The main components are an arbitrary number of FTT slaves
connected to two interconnected custom Ethernet switches,
each of which embeds an FTT master. Links connecting slaves
to switches are called slave links and links interconnecting
switches are called interlinks.

As in all FTT implementations, in FTTRS the communica-
tion time is divided into rounds called elementary cycles (EC)
and in the beginning of each such EC a schedule is transmitted
that tells the slaves what synchronous (periodic) messages
should be transmitted. This schedule is calculated online
based on the current real-time requirements, e.g., deadlines

Fig. 1. FTTRS architecture.

and message transmission periods. These requirements may
change during the operation of the system, which is what gives
FTTRS, and in fact all FTT implementations, its flexibility. In
FTTRS specifically, the schedule is calculated by each master
(one in each switch) in a mutually consistent manner [3] and
then broadcast by both switches simultaneously to the slaves
in so-called trigger messages (TMs). To properly coordinate
the simultaneous transmission of the TMs, a semi-active repli-
cation scheme is used: one of the switches, called the leader,
is the reference that dictates the transmission instants, and the
other, called the follower, synchronizes with the former [4].
For the correct real-time behavior of the system, it is critical
that the schedule — and thus the TM — of each EC reaches
every slave node and that it does so in a timely manner, even in
the presence of transient faults in the communication channel.
For this reason, each TM is proactively retransmitted by each
switch multiple times at the beginning of the corresponding
EC. The number of proactive retransmissions is termed the TM
redundancy level and is given by a positive integer parameter
that we denote by the letter k.

Regarding the use of the spatially redundant network by
the slaves, each slave transmits each message through both its
slave links simultaneously. Moreover, each switch forwards all
slave messages to the other switch. As a result, in the absence
of faults, each slave receives the same messages through each
of its slave links.

This work-in-progress paper introduces a proof-of-concept
prototype of FTTRS to show the viability of the FTTRS
design. The prototype builds on previous ones that focused
on assessing EC synchronization and that did not comprise
the full FTTRS architecture: they either only had a single
switch [5], or no slaves [4]. We then describe a series of fault-
injection experiments that test that FTTRS can tolerate crash
and omission failures of any single network component (i.e.,

c©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprint-
ing/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. doi: 10.1109/WFCS.2015.7160583



Fig. 2. Prototype testbed.

link or switch), as well as the crash or omission failure of
various combinations of multiple network components. The
crash of slaves or incorrect computations by them are not
tested as they are out of the scope of FTTRS and are dealt
with at other levels of the complete FT4FTT design [6]. More
malicious failures are also not tested because the mechanisms
to deal with them have not yet been implemented. However,
such mechanisms do exist in the FTTRS design: in the design
slave failure semantics are restricted to incorrect computations
by means of port guardians [7] and the switches, with their
internal masters, are forced to exhibit crash failure semantics
by means of internal duplication and comparison [1].

The paper proceeds as follows. Section II describes the
FTTRS prototype, together with some fault injection and log-
ging facilities we added to properly conduct the experiments.
Section III introduces the experimental evaluation: it describes
the application running on the slaves during the experiments
and continues with a description of these experiments. Finally,
Section IV concludes the paper and points to future work.

II. THE FTTRS PROTOTYPE

Figure 2 shows the testbed setup. It consists of an FTTRS
prototype with two switches and three slaves, extended by a
series of Ethernet links connecting each of the switches and
slaves to an instrumentation station.

The switches, slaves, and the instrumentation station are
all implemented in commercial-of-the-shelf (COTS) personal
computers (PCs). Each switch is implemented in a regular
multi-core PC with a couple of Intel I350-T4 quad-port Eth-
ernet server adapters. In contrast, each slave is built using
hardware for embedded devices. Specifically, we acquired
various Jetway JBC373F38-525-B barebones, each with an
Intel Atom processor and four standard Ethernet network
interface cards (NIC). This configuration provides sufficient
ports to be interconnected as shown in Figure 2.

Figure 3 shows a block diagram of the internals of an
FTTRS switch. The components that implement the FTTRS
switch are the five Ethernet ports at the bottom of the figure
and the FTTRS switch module, shown at the top left corner,
which includes the FTTRS master and the FTTRS switching
module. The ports are part of the NIC of the PC implementing
the corresponding switch and the interface to these ports (i.e.,
the arrows shown immediately above them) is provided by the
Linux kernel running on that PC. The FTTRS switch module
is fully implemented in software and runs in the user space
of the operating system (OS). Its code is based on a software

Experiment
control 
module

Tap 3

Eth 1 Eth 2 Eth 3 Eth 4 Eth 5

to slave 1 to slave 2 to slave 3 to other 
switch

to other 
switch

Eth 0

to instrumentation 
PC

FTTRS switching 
module

FTTRS master

Fault inj. & 
logging

Tap 1 Tap 2

Fault inj. & 
logging

Fault inj. & 
logging

FTTRS switch module

Fault inj. & 
logging

Tap 4

Fault inj. & 
logging

Tap 5

Fig. 3. Internals of an FTTRS prototype switch.

FTTRS driver

Eth 0

Tap 1 Tap 2

logging

Eth 1 Eth 2

to instrumentation 
PC

to switch L to switch F

Slave App.
Experiment

control 
module

FTTRS slave module

logging

Fig. 4. Internals of an FTTRS prototype slave.

implementation of the HaRTES switch [8] [9]. The remaining
components are not strictly part of FTTRS, but are extensions
whose purpose is to facilitate the execution of the experiments.
These components are a fault injection and logging module
that we implemented in software for each of the links; several
OS-provided virtual Ethernet interfaces (labeled Tap in the
figure) that serve as an interface between the FTTRS switch
module and each fault injection and logging module; and an
experiment control module that allows to control the fault
injection modules and the FTTRS switch module, as well as
to retrieve any generated logs.

Figure 4 shows a block diagram of the internal structure
of a prototype slave. Just like a switch, a slave has FTTRS
specific components and additional components that make
it easier to execute the experiments. The FTTRS specific
components are the following. First, a software-implemented
FTTRS slave module, which includes the application to be
executed by the slave as well as an FTTRS driver that provides
to the application the primitives necessary for transmission and
reception of frames through the redundant FTTRS network.
Second, two Ethernet ports, one for each switch. Regarding
components that facilitate the execution of experiments, we
again have an experiment control module connected to the
instrumentation PC that allows to control the FTTRS slave
module, as well as two logging modules that we implemented



and placed between the physical Ethernet ports and the FTTRS
slave module with the help of two OS-provided virtual Ethernet
Tap interfaces. Fault injection is not performed at the slave
end, but only at the switch end. This does not restrict the set
of faults that we can inject according to our fault model: for
switch failures the switch end is the right place to inject the
fault, and for link failures and message omissions either end
of a link is adequate to inject faults.

III. EXPERIMENTAL EVALUATION OF THE PROTOTYPE

This section first describes the application that we executed
on our three prototype slaves and then the experiments we per-
formed to verify that the FTTRS prototype correctly handles
crash and omission failures occurring in switches and links.
The logging information gathered during each experiment was
stored and is available at [10].

A. The slave application

The application running on the slave nodes is a simplified
replicated control application. All slaves perform the same task
synchronously and then agree upon the result of the control.
The operation of each slave can be divided into three phases.
In the first phase each slave generates a value. This value might
have come from a sensor, but to keep things simple, we opted
for just using a simple counter. In the second phase this value is
exchanged among the three nodes. Finally, the nodes execute a
voting algorithm to reach a consensus on the value. The voting
is a simple majority vote. Each phase is executed in a different
EC, which means that the exchange of the counter values is
scheduled by the masters every three ECs.

Since in this paper our focus is on the network, we inject
faults into network components only (switches and links) and
test that, despite of this, each slave is able to provide the value
of its counter to the other two slaves. If so, we consider the
fault to have been correctly tolerated.

B. Testing the tolerance to switch crash failures

The first two experiments consisted in provoking the crash
of one of the switches. In the first experiment we made the
leader crash and in the second the follower. In both cases the
crash was only provoked after the initialization phase [4] that
synchronized the TM transmissions of the two switches.

By inspecting the logs captured in the slaves we observed
that, despite the crash of either switch, all slaves agreed upon
the number of elapsed ECs and each of them was always
able to share its counter value with the others. We therefore
conclude that the crash of either switch was correctly tolerated.

C. Testing the tolerance to permanent omissions in links

The goal of this fault injection campaign was to verify
that the FTTRS network architecture tolerates faults in slave
links and interlinks that manifest as the permanent omission of
any messages whose transmission is requested through them,
i.e., that it tolerates the crash of links. This was achieved by
having the fault injectors in the switches logically disconnect
the different links in all the possible combinations that can
be tolerated by the FTTRS network architecture — with the
exception of a crash of all interlinks, which can be tolerated by

TABLE I. PERMANENT MESSAGE OMISSIONS
IN LINKS (ONE LINK AT A TIME).

Target links Affected ECs

l1L 70–89
l1F 90–109
l2L 110–129
l2F 130–149
l3L 150–169
l3F 170–189
lLF1

190–209
lLF2

210–229

FTTRS, but not by the current preliminary prototype. For prac-
tical reasons these injected faults were actually not permanent,
but instead shortened to at least 10 ECs. This allowed us to
logically reconnect a link and try another combination of link
failures without having to reinitialize all slaves and switches.
Nevertheless, having injected faults that last longer than three
ECs can be considered equivalent to a permanent fault. This
is so because a fault of more than three ECs already prevents
the successful message exchange between slaves.

In our prototype with two switches and three slaves, there
are two links — one for each switch — per slave, giving a
total of six slave links. In addition, there are two interlinks
interconnecting the switches. We therefore have a total of 8
links and therefore 8 ways that a single link can suffer a
permanent fault. We tried all 8 combinations of disconnecting
one link at a time and disconnected each one of them for a
duration of at least 10 ECs, as shown in Table I. In the tables
lijn indicates the link number n between slave or switch i and
switch j — if there is only one link between i and j, then n
is omitted. All 8 fault scenarios were tolerated.

After this experiment we proceeded with another one
where we disconnected two links at a time. There are a
total of

(
8
2

)
= 28 combinations for doing this. Of these 28

combinations, 24 can be tolerated such that communication is
still possible among all three slaves. (The four combinations
that do not allow all three slaves to communicate is when both
links of the first slave fail, both links of the second slave fail,
both links of the third slave fail, and both interlinks fail.) We
tried these 24 combinations, as shown in Table II, and verified
that the faults were in fact tolerated.

Finally, there are total of
(
8
3

)
= 56 combinations in

which three slave links can crash at the same time. Of these,
24 still allow all slaves to communicate. We tried all these
combinations, as shown in Table III, again verifying that they
were all tolerated thanks to the redundant paths provided by
the network topology of FTTRS.

D. Injecting transient faults into trigger messages

Apart from the links and the switches with their embedded
masters, another critical element for the correct operation of
any FTT-based communication infrastructure are the TMs. As
we said in the introduction, in FTTRS each trigger message is
proactively retransmitted k times by each master in each EC.
Since TMs are also exchanged between the switches and then
forwarded to the slaves, each switch transmits its own TM k
times and the TM from the other switch another k times. This
means that in each EC 2k TMs are transmitted through each



TABLE II. PERMANENT MESSAGE OMISSIONS IN LINKS
(TWO LINKS AT A TIME).

Target links Affected ECs Target links Affected ECs

l1L, l2L 70–89 l2L, l3L 310–329
l1L, l2F 90–109 l2L, l3F 330–349
l1L, l3L 110–129 l2L, lLF1

350–369
l1L, l3F 130–149 l2L, lLF2 370–389
l1L, lLF1

150–169 l2F , l3L 390–409
l1L, lLF2

170–189 l2F , l3F 410–429
l1F , l2L 190–209 l2F , lLF1 430–449
l1F , l2F 210–229 l2F , lLF2

450–469
l1F , l3L 230–249 l3L, lLF1 470–489
l1F , l3F 250–269 l3L, lLF2

490–509
l1F , lLF1

270–289 l3F , lLF1
510–529

l1F , lLF2 290–309 l3F , lLF2 530–549

TABLE III. PERMANENT MESSAGE OMISSIONS IN LINKS (THREE
LINKS AT A TIME).

Target links Affected ECs Target links Affected ECs

l1L, l2L, l3L 70–89 l1F , l2F , l3L 310–329
l1L, l2L, l3F 90–109 l1F , l2F , l3F 330–349
l1L, l2L, lLF1

110–129 l1F , l2F , lLF1
350–369

l1L, l2L, lLF2
130–149 l1F , l2F , lLF2

370–389
l1L, l2F , l3L 150–169 l2L, l3L, lLF1

390–409
l1L, l2F , l3F 170–189 l2L, l3L, lLF2

410–429
l1L, l2F , lLF1 190–209 l2F , l3L, lLF1 430–449
l1L, l2F , lLF2

210–229 l2F , l3L, lLF2
450–469

l1F , l2L, l3L 230–249 l2L, l3F , lLF1
470–489

l1F , l2L, l3F 250–269 l2L, l3F , lLF2 490–509
l1F , l2L, lLF1

270–289 l2F , l3F , lLF1
510–529

l1F , l2L, lLF2 290–309 l2F , l3F , lLF2 530–549

slave link. As long as at least one of the 2k TMs reaches each
slave, all the slaves will agree on the number of elapsed ECs
and which messages have been scheduled for each of them.
As a result, the 2k TMs transmitted on a given link can be
corrupted (leading to an omission) in 22k−1 ways such that at
least one TM gets through. If we have s slaves with two links
each, then there are a total of (22k−1)2s possible scenarios of
corrupting TMs of a given EC in all links such that still one
TM gets through each slave link. If each slave has only one
link remaining, then there are a total of (22k − 1)s possible
scenarios. All of them should be tolerated by FTTRS.

In order for our experimentation to be feasible and take
a reasonable amount of time, we did two experiments. (1)
One experiment with k = 2, two switches, and two slaves
connected to both switches. In each EC we executed a different
fault injection out of the (24− 1)4 = 50625 possible ones. (2)
Another experiment with k = 3, three slaves, and two switches,
but with all slaves only connected to one of the switches. In
each EC of this second experiment we executed a different
fault injection out of the (26 − 1)3 = 250047 possible ones.

We verified that in both experiments all of the involved
slaves agreed upon the number of elapsed ECs and that they
correctly transmitted the messages scheduled for each EC. We
conclude from this that all injected faults were tolerated by the
FTTRS prototype.

IV. CONCLUSIONS AND FUTURE WORK

We presented a first proof-of-concept prototype of FTTRS
to show the viability of its design. Using this prototype,

we then performed a series of fault injection experiments
to verify that the prototype correctly tolerates the crash and
omission failures that according to the design it should tolerate.
Specifically, that it tolerates the crash of either switch, the crash
of any single link, the crash of two or three links that still result
in a connected network topology, and the omission of multiple
TMs per EC.

Future work includes implementing port guardians for the
FTTRS switches and testing that they allow the prototype to
prevent the propagation of errors caused by malicious behav-
iors of the nodes, such as impersonations and babbling idiots,
that can impact the whole network; implementing tolerance
to a crash of all interlinks and performing fault injection
experiments to verify this tolerance; implementing and testing
a prototype that integrates FTTRS with the other parts of
the FT4FTT architecture, such as the node replication and
voting mechanism; and perform further enhancements to the
prototype to improve its timing behavior — which in particular
includes reducing the jitter when frames are transmitted.

ACKNOWLEDGMENT

This work was supported by project DPI2011-22992 and
grant BES-2012-052040 (Spanish Ministerio de economı́a y
competividad), and by FEDER funding.

REFERENCES

[1] D. Gessner, J. Proenza, M. Barranco, and L. Almeida, “Towards a
flexible time-triggered replicated star for Ethernet,” in Proc. 18th IEEE
Conf. on Emerging Tech. & Factory Automation (ETFA), Cagliari, Italy,
Sep. 2013.

[2] P. Pedreiras and L. Almeida, “The Flexible Time-Triggered (FTT)
paradigm: an approach to QoS management in distributed real-time
systems,” in Proc. Int. Parallel and Distributed Processing Symposium.
IEEE Computer Society, 2001.

[3] D. Gessner, J. Proenza, and M. Barranco, “A Proposal for Master
Replica Control in the Flexible Time-Triggered Replicated Star for
Ethernet,” in Proc. 10th IEEE Int. Workshop on Factory Communication
Systems (WFCS), Toulouse, France, May 2014.

[4] A. Ballesteros, J. Proenza, D. Gessner, G. Rodriguez-Navas, and
T. Sauter, “Achieving Elementary Cycle Synchronization between Mas-
ters in the Flexible Time-Triggered Replicated Star for Ethernet,” in
Proc. 19th IEEE Int. Conf. on Emerging Tech. and Factory Automation
(ETFA), Barcelona, Spain, Sep. 2014.

[5] D. Gessner, I. Alvarez, A. Ballesteros, M. Barranco, and J. Proenza,
“Towards an Experimental Assessment of the Slave Elementary Cycle
Synchronization in the Flexible Time-Triggered Replicated Star for
Ethernet,” in Proc. 19th IEEE Int. Conf. on Emerging Tech. and Factory
Automation (ETFA), Barcelona, Spain, Sep. 2014.

[6] S. Derasevic, M. Barranco, and J. Proenza, “Appropriate consistent
replicated voting for increased reliability in a node replication scheme
over FTT,” in Proc. 19th IEEE Int. Conf. on Emerging Tech. and Factory
Automation (ETFA), Barcelona, Spain, Sep. 2014.

[7] A. Ballesteros, D. Gessner, J. Proenza, M. Barranco, and P. Pe-
dreiras, “Towards Preventing Error Propagation in a Real-Time Ethernet
Switch,” in Proc. 18th IEEE Int. Conf. on Emerging Tech. and Factory
Automation (ETFA), Cagliari, Italy, Sep. 2013.

[8] R. Santos, “Enhanced Ethernet switching technology for adaptive hard
real-time applications,” Ph.D. dissertation, Universidade de Aveiro,
2010.

[9] “Public repository of the flexible time-triggered communications.”
[Online]. Available: http://paginas.fe.up.pt/ ftt/sections/Repository

[10] “Log files for all the experiments.” [Online]. Available:
http://srv.uib.es/experimental-evaluation-of-fttrs/


