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Abstract. The correction of the vignetting effect in digital images is a
key pre-processing step in several computer vision applications. In this
paper, some corrections and improvements to the image vignetting cor-
rection algorithm based on the minimization of the log-intensity entropy
of the image are proposed. In particular, the new algorithm is able to
deal with images with a vignetting that is not in the center of the image
through the search of the optical center of the image. The experimen-
tal results show that this new version outperforms notably the original
algorithm both from the qualitative and the quantitative point of view.
The quantitative measures are obtained using an image database with
images to which artificial vignetting has been added.
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1 Introduction

Vignetting is an undesirable effect in digital images which needs to be corrected
as a pre-processing step in computer vision applications. This effect is based
on the radial fall off of brightness away from the optical center of the image.
Specially, those applications which rely on consistent intensity measurements of
a scene are highly affected by the existence of vignetting. For example, image
mosaicking, stereo matching and image segmentation, among many others, are
applications where the results are notably improved if some previous vignetting
correction algorithm is applied to the original image.

There are three types of vignetting according to their cause [1]: natural
vignetting, pixel vignetting and mechanical vignetting. Natural vignetting is
caused by light reaching different locations on the camera sensor at different
angles and is most significant with wide angle lenses. On the other hand, pixel
vignetting only affects digital cameras and is caused by angle-dependence of the
digital sensors. Mechanical vignetting is an abrupt vignetting which only appears
in the corners of the image and is caused by the occlusion by objects entering
the camera field of view. Most of the proposed vignetting correction algorithms
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are designed to correct the gradual and continuous natural and pixel vignettings
since the mechanical one can often be eliminated by using a longer focal length.

There exist basically two different approaches to correct vignetting. The first
one lies on the use of multiple images of the same scene at different angles
which need to be stitched into a single one, panoramic image. If vignetting af-
fects these images, when the border of an image is superposed on the center of
the neighbouring image, the differences of intensities are significant obtaining a
poor panoramic image. Some vignetting correction algorithms handle this prob-
lem (see [2,3]). However, there exists a second approach which is the vignetting
correction based on a single input image from a non-predetermined camera. This
problem setting leads to a research that is more useful in practice because it does
not require an explicit calibration step or an image sequence as input. Neverthe-
less, single-image vignetting correction is a challenging problem to solve since
the resulting algorithm needs to differentiate the global brightness variations
caused by vignetting from those caused by textures or lighting.

This second approach has only been recently studied and some single-image
vignetting correction methods have been proposed in the literature. First, Zheng
et al. in [4] proposed a method based on a segmentation of the image into regions
and a posterior fitting of vignetting functions to the image intensities within
these regions. After that, again Zheng et al. in [5] presented a new method that
uses the observed symmetry of radial gradient distributions in natural images.
Another method, which is designed for microscopy images, was proposed by
Leong et al. in [6]. There, the authors smooth the whole image with a Gaussian
kernel to eliminate image structure and retain only the low-frequency intensity
vignetting field. Other vignetting correction methods can be seen in [7,8,9,10].

In addition to the previous algorithms, in an unpublished article [11], a novel
method for single-image vignetting correction through the constrained minimiza-
tion of log-intensity entropy was proposed. The author applies the concept of
information minimization to vignetting correction and uses a constrained radial
polynomial vignetting function to correct the effect. The method proves to be
faster and more accurate than Zheng’s method based on the symmetry of radial
gradient distributions [5], which is often used as the comparison benchmark.
However, from our point of view, the method presents some mathematical inac-
curacies which cause some undesired results and jeopardize the validity of the
method. In spite of these technical problems, the underlying idea of the method
is interesting and therefore, in this article, we will propose a new version of this
algorithm fixing the technical problems of the original version. Furthermore, we
will also add an improvement based on the search of the optical center of the
image before applying the vignetting correction algorithm. In [11] as well as in
most of the vignetting correction methods, the optical center of the image is sup-
posed to be at the center of the image. However, in practice the optical center
may lie at a considerable distance from the image center [12] and in such cases,
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the actual image optical center needs to be determined for accurate removal of
vignetting effects.

The paper is organized as follows. First, in Section 2, the actual single-image
vignetting correction based on the minimization of the log-intensity entropy will
be recalled. In the next section, we will present the corrected and improved
version of the algorithm. In Section 4, some comparison experiments will be
carried out to check the performance of our proposal with respect to the original
algorithm and Zheng’s algorithm [5]. Finally, we end the paper with a section
devoted to conclusions and the future work we want to develop.

2 Log-Intensity Entropy Minimization Algorithm

As we have already commented in the introduction, T. Rohlfing proposed in [11]
a vignetting correction algorithm based on the constrained minimization of the
log-intensity entropy. The algorithm relies on a method developed in [13] where
the authors proved that the entropy of an image can be considered as an adequate
optimization criterion for the model-free correction of shading artifacts and for
microscopy image shading correction. The main hypothesis of that method is
that the homogeneous objects have homogeneous intensities which correspond
to a single peak and low entropy histogram. On the other hand, if there exists
some gradual change of the intensity, as the one caused by vignetting, the peak
of the histogram would not be as sharp as before and additional information
would be added with an increment of the entropy. Thus, in order to reduce and
correct this spatially varying intensity bias the minimization of the entropy be-
comes necessary.

At this point, for the sake of completeness and in order to fully understand
the corrections and improvements that will be made to this algorithm in Section
3, let us recall the main steps of the original version. We refer the reader to [11]
for further details. To correct vignetting from the image, Rohlfing’s algorithm
uses a sixth grade polynomial gain function g which depends on the distance
from the image center to the pixel being treated. Specifically,

ga,b,c(r) = 1 + ar2 + br4 + cr6

where

r =

√
(i− i)2 + (j − j)2√

i
2

+ j
2

,

(i, j) is whichever pixel from the image and (i, j) is the image center. Therefore
we have a function which depends on three real parameters a, b and c, verifying
that g(0) corresponds to the image center and g(1) corresponds to the image
corners. Once the gain function has been calculated it is multiplied by the original
function, obtaining in this way an image with reduced vignetting. Namely,

Final image(i, j) = Original image(i, j)ga,b,c(r).



4 Laura Lopez-Fuentes, Gabriel Oliver, Sebastia Massanet

Obviously, not all the values of the parameters a, b and c generate suitable
vignetting correction functions. The vignetting effect is increasing as we move
to the borders of the image and consequently, this function g must be strictly
increasing for all 0 < r < 1. In [11], the author determines that the function
g will be strictly increasing if, and only if, the parameters satisfy one of the
following conditions

C1 = (c ≥ 0 ∧ 4b2 − 12ac < 0),
C2 = (c ≥ 0 ∧ 4b2 − 12ac ≥ 0 ∧ q− ≤ 0 ∧ q+ ≤ 0),
C3 = (c ≥ 0 ∧ 4b2 − 12ac ≥ 0 ∧ q− ≥ 0 ∧ q+ ≥ 0),
C4 = (c < 0 ∧ q− ≤ 0 ∧ q+ ≥ 0),
C5 = (c < 0 ∧ q− ≥ 0 ∧ q+ ≤ 0),

where q+ and q− are defined as

q+ =
−2b+

√
4b2 − 12ac

6c
, q− =

−2b−
√

4b2 − 12ac

6c
. (1)

The criterion for the determination of the optimal values of a, b and c among
the ones which satisfy one of the above conditions was established as the min-
imization of the log-intensity entropy. Let us recall this concept. First, the lu-
minance values L = {0, . . . , 255} are mapped to N histogram bins i using the
function i : L→ R+ given by

i(L) = (N − 1)
log (1 + L)

log 256
.

Then the histogram bins nk are computed using the following formula:

nk =
∑
x,y:

bi(L(x,y))c=k

(1 + k − i(L(x, y))) +
∑
x,y:

di(L(x,y))e=k

(k − i(L(x, y))) (2)

At this point, to account for gaps in the image intensity distribution that can
appear when scaling quantized data, the histogram is smoothed using a Gaussian
kernel Gσ with standard deviation σ: n̂ = n ? Gσ. At this point, the discrete
entropy is computed as

H =
∑
k

p̂k log p̂k (3)

where p̂k =
n̂k∑
j n̂j

.

Finally, a hill climbing optimization algorithm is implemented to search in R3

among those triplets satisfying one of the conditions C1-C5 the optimal values
(a, b, c) which minimize the log-intensity entropy H. Starting from (0, 0, 0), each
one of the parameters is increased and diminished independently by δ > 0.
From these 6 triplets, we compute the entropy of the cases satisfying one of the
conditions and we update the optimal (a, b, c) to the one with the lowest entropy
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(a) Original image with vignetting
H = 2.0643

(b) Output of Rohlfing’s algorithm
H = 1.9127
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1

(c) Gain function g

Fig. 1: Undesired behaviour of the original algorithm based on the constrained
minimization of the log-intensity [11].

value. When none improves the entropy, δ is reduced by a factor 0 < k < 1 and
the process is repeated. If a new minimum value is achieved, δ is reset to its
initial value. Otherwise, we continue reducing δ until we reach a prefixed value
δ0.

3 A Corrected and Improved Algorithm

In this section, we will take a closer look to Rohlfing’s algorithm and we will
prove that it suffers from some mathematical inaccuracies that cause it to pro-
vide some undesired results with some images. As a matter of example, consider
the triplet a = b = 0 and c = −5 which generates the gain function g(r) = 1−5r6

which is clearly a strictly decreasing function as can be seen in Figure 1-(c). Note
that this function satisfies conditions C4 and C5 but although it may reduce the
entropy when it is applied to an image with high vignetting as in Figure 1-(a),
it increases in fact the vignetting, darkening the whole image.
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In addition to the previous problem, an exhaustive analysis of the conditions
C1-C5 allows to deduce that some cases have been omitted and some others are
not well-defined. Note that conditions C2 and C3 have non sense when c = 0
since q+ and q− cannot be defined. Therefore and with the aim to fully determine
all the cases leading to suitable gain functions, let us correct these mistakes.
Consider the gain function ga,b,c(r) = 1 + ar2 + br4 + cr6. To obtain a strictly
increasing function, the first derivative must satisfy

g′(r) = 2ar + 4br3 + 6cr5 > 0

for all 0 < r < 1. Since r > 0 and changing r2 = q we obtain the following
inequality

a+ 2bq + 3cq2 > 0

for all 0 < q < 1. Thus, the problem is reduced to study this general polynomial.
It can be easily checked that this inequality holds if, and only if, one of the
following nine conditions on the parameters holds:

[Horizontal positive line] C1 = (a > 0 ∧ b = c = 0),
[Increasing line with non-positive root] C2 = (a ≥ 0 ∧ b > 0 ∧ c = 0),
[Decreasing line with root ≥ 1] C3 = (c = 0 ∧ b < 0 ∧ −a ≤ 2b),
[Convex parab. without roots] C4 = (c > 0 ∧ b2 < 3ac),
[Convex parab., only one non-positive root] C5 = (c > 0 ∧ b2 = 3ac ∧ b ≥ 0),
[Convex parab., only one root ≥ 1] C6 = (c > 0 ∧ b2 = 3ac ∧ −b ≥ 3c),
[Convex parab., non-positive highest root] C7 = (c > 0 ∧ b2 > 3ac ∧ q+ ≤ 0),
[Convex parab., lowest root ≥ 1] C8 = (c > 0 ∧ b2 > 3ac ∧ q− ≥ 1),
[Concave parab., lowest root ≤ 0, C9 = (c < 0 ∧ b2 > 3ac ∧ q+ ≥ 1 ∧ q− ≤ 0),
highest root ≥ 1]

(4)
where q+ and q− are the roots of the polynomial given by Equations (1).

Once the conditions have been corrected, the algorithm does not obtain un-
desired results. However, as the original version of the algorithm, the method
supposes the optical center of the image to be at the center of the image. This
assumption leads to applying the gain function g from the center of the image
r = 0 to the borders r = 1. However, it was shown in [12] that the optical center
may not coincide with the center of the image and in fact, it could be quite
displaced. Thus, it would be necessary to look for the optical center in order
to compute the radial distance r of a pixel from the optical center rather than
from the center of the image. Several techniques have been proposed for optical
center estimation. Some estimate the optical center by locating the radial lens
distortion [14] or the vanishing point [15], among other strategies. In this article,
we will use a simple approach based on two steps. First, a low-pass Gaussian
filter is applied to the image in order to extract the luminance pattern of the
image. If the standard deviation of the Gaussian filter is very high, the objects
and the structures of the image are removed or smoothed and the obtained im-
age provides an estimation of the shading and luminance pattern of the original
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image. After that, we compute the center of mass CM of the image I using the
following formula:

CM =



∑
1≤i≤N
1≤j≤M

i · I(i, j)

∑
1≤i≤N
1≤j≤M

I(i, j)
,

∑
1≤i≤N
1≤j≤M

j · I(i, j)

∑
1≤i≤N
1≤j≤M

I(i, j)

 (5)

where I is a N ×M image. In Figure 2, we can see how this method is able to
detect the optical center of the image when it is not located at the center of the
image. Now, we can modify the computation of the radial distance r to account
for the optical center located in CM = (CM1, CM2) by

r =

√
(x− CM1)2 + (y − CM2)2

max
(v1,v2) vertex

√
(v1 − CM1)2 + (v2 − CM2)2

. (6)

Fig. 2: Computation of the center of mass as the optical center of the image.
Red: optical center; Blue: center of the image.

To sum up, in Algorithm 1, we have included for a quick view the pseudo-
code of the proposed algorithm, where the log-intensity entropy is computed
using Equation (3).

In Figure 3, we include a graphical example of how the minimization of the
log-intensity entropy helps to correct the vignetting present in an image. While
the presence of vignetting reduces the peak of the histogram, the algorithm is
able to correct it and get an image, quite similar to the original one.

To end this section, in Figure 4, we include a visual example of the interme-
diate images obtained by the algorithm including the values of the log-intensity
entropy and the triplet (a, b, c) used to correct it. Note that the image is pro-
gressively improved while the log-intensity entropy values decrease.
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Algorithm 1: Proposed vignetting correction algorithm.

Input: I image with vignetting
Output: F corrected image

1 Initial values (a, b, c) = (0, 0, 0), δ = 8, Hmin = log-entropy(I), F = I;
2 Compute CM using Equation (5) and r using Equation (6);
3 while δ > 1

256
do

4 v1 = (a+ δ, b, c), v2 = (a− δ, b, c), v3 = (a, b+ δ, c);
5 v4 = (a, b− δ, c), v5 = (a, b, c+ δ), v6 = (a, b, c− δ);
6 H = minvi satisfies C1∪...∪C9 log-entropy(I · ga,b,c(r));
7 if H < Hmin then Hmin = H, F = I · ga,b,c(r) for the corresponding vi;
8 δ = 8, (a, b, c) = vi found;
9 else

10 δ = δ
2
;

(a) Original image (b) Image with vi-
gnetting

(c) Corrected image

(d) Histogram original
image

(e) Histogram image with
vignetting

(f) Histogram corrected
image

Fig. 3: Correction of the histogram of the image with vignetting after applying
the proposed algorithm.
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(a) Original image (b) Image with vi-
gnetting

(c) Step 1 (d) Step 2

(e) Step 3 (f) Step 5 (g) Step 8 (h) Corrected image
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(j) Evolution of (a, b, c) values from
(0, 0, 0)→ (2.0625, 8.75, 0.0313)

Fig. 4: Intermediate obtained images using the proposed algorithm and the evo-
lution of the log-intensity entropy values and (a, b, c) triplets.

4 Experimental Results

In this section, we will check the performance of the vignetting correction algo-
rithm proposed in Section 3 with respect to:

1. Rohlfing’s algorithm [11], including the corrections on the conditions but
without the optical center search,

2. Zheng’s algorithm [5], which is often used as a benchmark algorithm in vi-
gnetting correction.

All the computations has been carried out using MATLAB R2014a. We have
used the implementation of the Zheng’s algorithm available in [16], made by the
same author and using the default parameter values.
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The comparison have been made both from the visual point of view of the
results and using objective quantitative performance measures. Nowadays, it is
well-established in the literature that the visual inspection of the images obtained
by several vignetting correction algorithms can not be the unique criterion with
the aim of proving the superiority of one method with respect to the others. This
is because each expert has different criteria and preferences and consequently,
the reviews given by two experts can differ substantially. For this reason, the
use of objective performance measures is growing in popularity to compare the
results obtained by different vignetting correction algorithms. However, in order
to be able to use some measures, we need an image database that includes for
each image with vignetting, the corresponding original image without vignetting.

4.1 Image database

The use of a quantitative measure to compare the output images of different
methods implies the availability of a reference image to which compare the re-
sults obtained by the different algorithms. This reference image is considered as
the perfect image that the algorithms should obtain. For vignetting correction
purposes, the reference image must be an image without vignetting. For this
reason, the addition of artificial vignetting to natural images with no visible vi-
gnetting is a reasonable way to obtain a suitable image database to use in this
comparison setting.

We have chosen the first 15 images of the dataset of the University of South
Florida1 ([17]). The image dataset contains indoor and outdoor scenes, and nat-
ural and man-made objects. Each of the images contains a single object approx-
imately centred in the image, appearing unoccluded and set against a natural
background for the object. Some images have highlights, reflections or low res-
olution and a visual inspection has been performed to check the absence of
vignetting. From these images, we have generated a new database adding ar-
tificial vignetting to these images using a simplified version of the Kang-Weiss
model (see [18]). Let A(r) be the off-axis illumination factor which is given by

A(r) =
1(

1 +

(
r

f

)2
)2

where f is the effective focal length of the camera and r is the radial distance
to the origin point where the factor is applied. Using this factor, the image with
vignetting V from an image I is obtained by V (i, j) = I(i, j) ·A(r). As the origin
point where the factor is applied, we have randomly chosen a point located in
the subimage from N

4 to 3N
4 of width and from M

4 to 3M
4 of height of the N ×M

image. Thus, the optical center of the image and the center of the image differ in

1 This image dataset can be downloaded from ftp://figment.csee.usf.edu/pub/

ROC/edge_comparison_dataset.tar.gz

ftp://figment.csee.usf.edu/pub/ROC/edge_comparison_dataset.tar.gz
ftp://figment.csee.usf.edu/pub/ROC/edge_comparison_dataset.tar.gz
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general. Different values of f = {200, 300, 400, 500, 1000} have been considered
for the 15 images, generating 75 vignetting images.

4.2 Objective measures

In addition to the visual comparison of the corrected images obtained by the
algorithms, the performance will be quantitatively measured by two widely used
performance objective measures, namely PSNR and SSIM. Let I1 and I2 be two
images of dimensions N ×M . In the following, we suppose that I1 is the original
vignetting-free image and I2 is the restored image for which some vignetting
correction algorithm has been applied. The peak signal-to-noise ratio (PSNR) is
defined by

PSNR(I2, I1) = 10 log10

(
R2

MSE(I2, I1)

)
(7)

where R is the maximum fluctuation in the input image and MSE is the mean-
squared error computed using the following expression:

MSE(I2, I1) =

∑
1≤i≤N
1≤j≤M

(I2(i, j)− I1(i, j))
2

N ×M
. (8)

On the other hand, the structural similarity index measure (SSIM) was in-
troduced in [19] under the assumption that human visual perception is highly
adapted for extracting structural information from a scene. The measure is de-
fined as follows:

SSIM(I2, I1) =
(2µ1µ2 + C1)

(µ2
1 + µ2

2 + C1)
· (2σ12 + C2)

(σ2
1 + σ2

2 + C2)
, (9)

where for k = 1, 2, µk and σ2
k are the mean and the variance of each image, σ12 is

the covariance between the two images, C1 = (0.01 ·255)2 and C2 = (0.03 ·255)2.
Larger values of PSNR and SSIM (0 ≤ SSIM ≤ 1) are indicators of better
capabilities for vignetting correction.

4.3 Comparison results

We have applied the three considered vignetting correction algorithms to each
vignetting image and we have obtained the values for the two considered objec-
tive measures comparing the output to the original free-vignetting image. The
results grouped according to the focal length f used to generate the image with
vignetting are shown in Tables 1 and 2. As it can be seen, the proposed method
outperforms the other methods severely, specially for low values of f which cor-
respond to high levels of vignetting. Note also that the proposed algorithm and
Rohlfing’s one improve always the images from the quantitative point of view, ob-
taining better values of the measures with respect to the images with vignetting.
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f
PSNR Results

Vignetting Zheng Rohlfing Proposed
Mean σ Mean σ Mean σ Mean σ

200 8.0352 2.1118 7.9633 2.0659 9.5656 2.8170 12.2968 3.1512

300 10.0883 2.2567 10.0994 2.1933 10.9610 2.6213 13.0706 3.2286

400 12.8669 2.3230 13.0135 2.2496 15.5541 3.2876 17.2203 4.0243

500 14.3902 2.7940 14.5138 2.8246 16.5148 3.9082 16.9943 3.3770

1000 23.4953 3.1797 22.5514 3.1464 24.6718 3.3896 25.2753 3.6489

Table 1: Mean and standard deviation of the PSNR values obtained by the
vignetting correction methods according to the value of f .

f
SSIM Results

Vignetting Zheng Rohlfing Proposed
Mean σ Mean σ Mean σ Mean σ

200 0.3736 0.0558 0.3479 0.0609 0.5108 0.1541 0.7034 0.1018

300 0.5693 0.0497 0.5621 0.0526 0.6252 0.0636 0.7350 0.0868

400 0.7305 0.0520 0.7352 0.0539 0.8019 0.0692 0.8499 0.0481

500 0.8034 0.0364 0.8072 0.0382 0.8437 0.0451 0.8628 0.0291

1000 0.9158 0.0184 0.9120 0.0170 0.9194 0.0171 0.9212 0.0175

Table 2: Mean and standard deviation of the SSIM values obtained by the vi-
gnetting correction methods according to the value of f .

In Figure 5, some results are displayed comparing the output of the differ-
ent algorithms. The proposed algorithm is able to reduce the vignetting even if
the original image is corrupted by high amounts of it. Note that Zheng’s algo-
rithm gives results which although reducing somewhat the amount of vignetting,
it changes completely the tone of the image, darkening it, specially for higher
amounts of vignetting. Another conclusion which emerges from the images in
the first two rows, in which vignetting is very off-centred, is the capability of
the step included in the proposed algorithm to detect the optical center of the
image. While the proposed algorithm applies the gaining function with origin
at the optical center, Rohlfing’s algorithm applies it at the center of the image
being unable to reduce the vignetting uniformly in the whole image.

5 Conclusions and Future Work

Single-image vignetting correction is a useful technique to avoid the need of the
calibration of the camera or the disposal of several images to correct vignetting.
In this paper, we have deeply analysed the vignetting correction algorithm based
on the minimization of the log-intensity entropy of the image, that was proposed
in [11]. We have proved that the algorithm had several mathematical inaccura-
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(a) Free
vignetting

(b) Vignetting (c) Zheng’s (d) Rohlfing (e) Proposed

Fig. 5: Comparison of the outputs of the different vignetting correction algo-
rithms for several images.

cies which caused to perform inappropriately in several images. Here, we have
corrected these mistakes and we have proposed a revised version of the algo-
rithm adding the improvement of the search of the optical center of the image
to handle adequately images with off-centred vignetting. The comparison results
ensure the potential of this algorithm from both the visual and the quantitative
point of view.

As a future work, we want to generalize our algorithm to deal with color
images and with images having more than one focus of vignetting. These last
images correspond to images obtained using several illumination focuses.
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