
Towards a Layered Architecture for the Flexible
Time-Triggered Replicated Star for Ethernet

David Gessner, Ignasi Furió, Julián Proenza
DMI, Universitat de les Illes Balears, Spain

davidges@gmail.com, {ignasi.furio,julian.proenza}@uib.es

Abstract—Distributed embedded systems (DES) have tradition-
ally been designed assuming that the requirements they need to
satisfy are known in advance. If this is not the case, and a DES
should operate autonomously without interruption, it needs to
be adaptive. For this, flexible approaches are necessary and this
applies in particular to the network of the DES. However, if the
probability of faults occurring is non-negligible, then flexibility
alone is not enough and fault tolerance is also necessary. The
Flexible Time-Triggered Replicated Star for Ethernet (FTTRS)
is a set of protocols and mechanisms together with a specific
network topology that builds on a switched-Ethernet imple-
mentation of the Flexible Time-Triggered (FTT) communication
paradigm by enhancing it to not only provide flexibility, but
also fault tolerance. This paper describes our efforts towards a
layered architecture for FTTRS to benefit from the well-known
advantages of these architectures, such as making the complexity
manageable and easier to communicate, and making the design
more future proof by allowing changes in one layer without
affecting other layers.

I. INTRODUCTION

A distributed embedded system (DES), like any embedded
system, is deployed in a physical environment with which it in-
teracts and which imposes requirements upon it. Traditionally
such requirements were assumed to be static or at least pre-
dictable. More recently these assumptions have been relaxed
and there is an interest in flexible solutions that allow a DES
to keep operating autonomously even if the requirements can
change in unpredictable ways. The Flexible Time Triggered
Replicated Star for Ethernet (FTTRS) [1] is one such solution
for the network of a DES. In contrast to other Ethernet-
based solutions, it has been designed with both flexibility and
high reliability in mind. More specifically, FTTRS aims at
providing the necessary flexibility to adapt to changing real-
time requirements, while providing high reliability by means
of fault tolerance. For this it adds fault tolerance to a switched
Ethernet implementation of the Flexible Time-Triggered (FTT)
communication paradigm [2].

The FTT paradigm follows a master/multi-slave commu-
nication model where a master schedules the transmission
of messages based on the current real-time requirements
and then broadcasts that schedule by means of a so-called
trigger message (TM). The slaves then comply by exchanging
messages according to this schedule before the next schedule
is broadcast. The time between the broadcast of one schedule
and the next is called an elementary cycle (EC) and it has a
fixed duration. Each EC thus begins with the broadcast of a

Slave A

Switch 1
(master 1)

Switch 2
(master 2)

Slave B

Slave C

Interlinks

slave
link

Figure 1. FTTRS architecture.

TM. The flexibility of FTT comes from the fact that slaves
can request changes to the current real-time requirements and
these changes, if the master allows it, dictate future schedules.

The architecture of FTTRS is shown in Figure 1. It com-
prises an arbitrary number of FTT slaves connected by means
of slave links to two custom Ethernet switches, each of which
embeds an FTT master and is connected to the other switch
by means of redundant interlinks. The network components
therefore form a topology without any single points of failure
and with a redundant path between any pair of slaves.

In FTTRS the schedule for each EC is calculated by the two
masters and this is done in a mutually consistent manner [7].
Moreover, each schedule is broadcast by both switches simul-
taneously in redundant TMs to maximize the probability that
at least one TM gets through to each slave even in the presence
of transient channel faults. Regarding the use of the spatially
redundant network by the slaves, each slave transmits each
message through both its slave links simultaneously. Moreover,
each switch forwards all slave messages to the other switch.
As a result, in the absence of faults, each slave receives the
same messages through each of its slave links.

FTTRS thus provides several services to an application.
First, it provides services that it inherits from FTT: it provides
a synchronization service that ensures that the applications
running on the slaves have a common time base with a
granularity of the EC length, it enables the exchange of mes-
sages with real-time requirements, and it allows an application
to request changes to these requirements. Second, FTTRS
provides services not provided by any other Ethernet-based
implementation of FTT: fault-tolerant communication that can
be used by an application in a transparent way and, if required,
a total-order multicast service [6].978-1-4673-7929-8/15/$31.00 c© 2015 IEEE

c©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprint-
ing/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. doi: http://dx.doi.org/10.1109/ETFA.2015.7301636

Entity i Entity j

SAP SAP

request confirm indication response

Layer N (service provider)

Layer N+1 (service user)

Figure 2. Layer interaction model.

Providing the above services requires several protocols and
mechanisms. For instance, the masters must transmit their
TMs synchronously and redundantly, the slaves must use the
received TMs to agree on the start of an EC, and the masters
must agree on the schedule they produce for each EC and
do so even if the real-time requirements have changed. This
results in a significant amount of complexity. We therefore
propose a layered architecture for FTTRS that follows the
abstract definitions and architecture described in the Open
Systems Interconnection Reference Model (OSI model) [3].

This has several advantages. It makes the complexity more
manageable by allowing us to focus on one set of features at
a time; it makes it easier to obtain a description of the FTTRS
architecture that is more amenable to formal verification, e.g.,
layers may be verified formally one by one; and it makes the
FTTRS design more future proof by allowing the modification
of certain features that are encapsulated in one layer, without
having to modify the other layers.

The paper is organized as follows. Section II introduces the
OSI layer interaction model. Section III proposes a layered
architecture for FTT to serve as a starting point for a layered
architecture of FTTRS. Section IV discusses the latter. Finally,
Section V concludes the paper.

II. OSI LAYER INTERACTION

The main goal of the OSI model is to provide a common
basis for the development of standards that allow the intercon-
nection of systems. This model divides the complex process
of establishing a communication between systems into several
simpler processes and organizes them in a layered architecture.

Figure 2 shows how a layered system is organized and
works. Each layer contains entities, which are abstract objects
that execute some logic and interact with other entities within
the same layer. A set of such interacting entities are called
peer entities (in the figure, Entity i and Entity j would be peer
entities). The way peer entities interact is defined by means
of protocols. How entities or protocols are implemented is
irrelevant from the specification point of view.

If interacting entities are within the same machine, they
can interact directly with each other. Otherwise, they can only
interact indirectly (dashed lines in Figure 2) using services that
are provided by the immediate lower layer. In this way layer
N +1 is called the service user of layer N , while layer N is
the service provider of layer N +1. The services provided by
layer N are supplied by means of protocols between layer N
peer entities, which use the services provided by layer N − 1,

and so on. Only peer entities at the bottom layer (layer 1)
interact through a physical link.

Service users and providers exchange information through
interfaces called service access points (SAPs). The reference
model uses service primitives to describe this information ex-
change. Like entities or protocols, primitives are also described
in an abstract way. The four most important types of primitives
are shown in Figure 2 and are

• Request: used when the service user requests a service
from the service provider.

• Confirm: used when a service provider acknowledges the
completion of an activity initiated by a request primitive.

• Indication: used by a service provider to indicate to a
service user that an event occurred as a consequence of
providing a service.

• Response: used by a service user to acknowledge the
reception of an indication.

Information exchanged between peer entities is transferred
in discrete units called Protocol Data Units (PDUs). Every
PDU is formed by metadata (i.e., a header or footer) fol-
lowed by some data (called payload). The metadata contains
information that can be understood by a peer entity, while
payloads have no meaning for the peer entity and must be
transferred up to the service user. A layer N + 1 PDU is
passed down to layer N , which considers it as a Service Data
Unit (SDU). The SDU is accompanied by Interface Control
Information (ICI), which is understood by a layer N entity. A
layer N + 1 SDU becomes the payload of a layer N PDU.
This procedure is known as encapsulation. When finally the
physical layer PDU is communicated over a physical link
and reaches the destination machine, the process is inverted
there (decapsulation): on every layer corresponding headers
and footers are processed, while each payload is extracted and
delivered to the immediate upper layer.

III. LAYERED ARCHITECTURE FOR FTT
The FTT paradigm has been implemented on Controller

Area Network (CAN), as well as shared and switched Ethernet.
FTT can thus be thought of as a layer that provides services
to higher-layer applications running on slaves, while it uses
services provided by a lower layer communication system.
Unfortunately, however, there does not exist any abstract
specification of the service interface between FTT and its
adjacent layers, so we analyzed FTT to obtain one.

Our initial model has three layers as shown in Figure 3. At
the top we have an application layer with application entities,
which may be implemented by processes or threads executing
within an operating system. These entities run on slave nodes
and communicate with other application peer entities running
on other nodes by using FTT services. The communication
provided by the FTT services follows a publisher/subscriber
model and satisfies real-time requirements that are specified
by (possibly changing) attributes such as deadlines, periods,
and minimum inter-arrival times. A logical connection with a
certain set of attributes that is established between one applica-
tion entity that acts as a publisher and multiple application peer

Node A Node B Node C

MAC SAP

MAC provider

FTT Slave

FTT SAP

App entity i
(publisher)

Application
layer

FTT
layer

MAC
layer

A B

MAC SAP

MAC provider

FTT Master

FTT switch or
master node

MA_DATA.req MA_DATA.ind

MAC SAP

MAC provider

FTT Slave

FTT SAP

App entity j
(subscriber)

C D

MAC SAP

MAC provider

FTT Slave

FTT SAP

App entity k
(subscriber)

E F
FStream

Figure 3. Example of layered behaviour for FTT.

entities that act as subscribers is called a flexible real-time pub-
lisher/subscriber stream (FStream). Such Fstreams are made
possible by the FTT layer using FTT SAPs. The interaction
between application layer and FTT layer that enables FStreams
is done by means of service primitives represented by arrows
labeled A–F in Figure 3. The FTT layer not only acts as the
service provider for the application layer, but also as a user
of services provided by the MAC (medium access control)
layer. The MAC layer and its corresponding physical layer
are formed by Ethernet NICs in slaves, an Ethernet NIC at the
master (if it is a node) or switching circuitry (if it is embedded
in an FTT-enhanced switch), and connection cables. Slaves and
master use primitives MA_DATA.req and MA_DATA.ind for
interaction with the lower MAC layer [4]. For implementations
over CAN similar identifications can be made.

Figure 3 also represents a particular example of the inter-
action between three slaves and an FTT master node (or FTT-
enhanced switch). The application entity in node A acts as
the publisher of an FStream, while the application entities in
nodes B and C act as subscribers. This interaction between
peer application entities through an FStream is provided by
the FTT layer by means of specific types of FTT SAPs: an
FStream publisher SAP in node A and FStream subscriber
SAPs in nodes B and C. In addition, there also exist FStream
management SAPs, which are used to create and maintain
publisher/subscriber FStream SAPs. Primitives for these SAPs
are used to attach application layer entities as publishers or
subscribers to previously created streams, for data transmission
and reception, etc. Details about all service primitives are out
of the scope of this document, but some examples could be

• Fadd_stream.req: used by an application entity to re-
quest the creation of an FStream with certain atributes
and identifier. This primitive is sent to the FStream
management SAP. Every successful stream creation also
creates a new SAP of type publisher or subscriber.

• Fupdate_stream.req: request which, if confirmed, pro-
vokes changes in attributes of a certain FStream.

• Fattach_rx.conf: confirmation of a previous Fat-
tach_rx.req. It confirms to an application entity that it has
been successfully attached to an FStream as a subscriber.

• Fsend.req: requests the transmission of data through a
certain FStream where the sender entity has been attached
as a publisher.

Source
MAC address

Destination
MAC address

Ethertype data CRC

header payload footer

Message
type Stream id. Fragment Data/Reqs

header payload

Ethernet
frame

FTT
message

Figure 4. Encapsulation of FTT messages into Ethernet.

The information exchange in the FTT layer is controlled by
the FTT master entity, which periodically transmits TMs to all
FTT slave entities. From the TM every FTT slave entity knows
for which FStreams data has been scheduled and thus which
FTT SAPs it needs to access to deliver or receive application
data. In Ethernet implementations, each FTT PDU, called FTT
message, is individually encapsulated inside an Ethernet frame
as can be seen in Figure 4. The FTT message format shown
is just an example, but all FTT messages start with a type
field from which all other header fields can be determined.
Some other fields that may be present are stream identifiers,
fragment identifiers (needed when data cannot be sent in a
single payload), or a sender identifier. The header is followed
by a payload formed with application data or requests.

Once ready, the FTT message is handed down the stack and
reaches the MAC provider, which encapsulates it into the data
field of an Ethernet frame. As Figure 4 shows, these frame
headers are formed by two MAC address fields which contain
NIC identifiers for source and destination interfaces. The
ethertype field identifies the kind of information transported
in the payload field, which always corresponds to FTT.

The main point of this three-layer model is to make the
FTT layer independent from the applications running on
slaves and the underlying physical communication system.
This independence will allow us to develop a more complex
model for FTTRS.

IV. LAYERED ARCHITECTURE FOR FTTRS

As we already said, FTTRS adds fault tolerance to FTT
through replication of masters, slaves, and links. A proposal
for managing this redundancy has been presented in [5]
and [7]. Moreover, total-order multicast can also be pro-
vided [6]. This section will explain how the proposed tech-
niques can be distributed into a layered architecture to isolate
FTT from all fault-tolerance mechanisms and services, as well
as services corresponding to providing total-order multicast.

A first diagram of the proposed layered architecture is
shown in Figure 5. It represents the stack of layers correspond-
ing to two slave nodes and two FTTRS switches. Although the
switches are replicated, a main objective of the proposed layer
architecture is to hide this replication from FTT slave entities
in the FTT layer and any other entities at higher layers. We
represent this by having FTT slave entities interact with a
single virtual FTT master entity that is actually comprised of
two FTT master entities. In this way it should be possible
to take the FTT layer described in the previous section and

App. App.

TOPS TOPS TOPS TOPS

FTT FTT FTT FTT

Reliability Reliability Reliability Reliability

Ethernet Ethernet Ethernet Ethernet

Virtual
TOPS Master

Virtual
FTT Master

Node A Node BSwitch 1 Switch 2

Figure 5. FTTRS layers architecture.

insert it unmodified in the slave nodes of the FTTRS layer
architecture. On the other hand, the layers below the FTT layer
are perfectly aware of the replication and one of their tasks
will be to hide the replication from upper layers.

As usual in layered architectures, the bottom layer repre-
sents the physical communication system, which in this case
consists of multiple independent Ethernet interfaces. Each
slave node has two interfaces, each one connected to one of
the replicated switches; while masters need two interfaces for
the interlinks, plus another one for every attached node. This
interconnection may result in multiple replicated frames when
a single FTT message is handed down by an FTT slave entity.
Since the original FTT slave entities do not expect any kind
of replication, a service that deals with it is necessary. This is
one of the main purposes of the Reliability layer.

Another important task of the reliability layer consists in
ensuring that all FTT entities agree when each EC starts and
ends, despite the fact that in FTTRS each TM is replicated and
broadcast redundantly by each switch to make the TM more
robust to transient link faults [5], [8]. For this, the nodes must
be prepared to not only handle the TM replication, but also to
handle the redundant reception due to replicated masters. So
another of the services provided by the reliability layer is the
replication of trigger messages that are handed down from the
FTT layer by FTT master entities. Moreover, within a slave
node, the reliability layer will have to collect all TM replicas
and pass only one copy up to the FTT layer.

An example of tasks that can be done in layers above the
FTT layer is the approach described in [6] to achieve total-
order multicast. This approach assumes a single switch with
an embedded FTT master, but thanks to our layered approach,
can be integrated with a replicated channel relatively easily.
The basic idea would work as follows. As shown in Figure 5,
a Total-Order Publish/Subscribe (TOPS) layer can optionally
be located between the application layer and the FTT layer. In
order for that layer to be transparent to the application layer,
the TOPS layer should mimic the interface of the FTT layer
by providing streams that behave from the application’s point
of view just like FStreams. The difference, however, would
be that these streams would ensure that the data exchange
between application entities satisfies total-order properties.
These new types of stream could be called total-order flexible

real-time publisher/subscriber streams (TOStreams).

V. CONCLUSIONS AND FUTURE WORK

The FTT paradigm has been implemented over different
communications systems, but until now there was no abstract
specification of the service interface between FTT and the
physical communication system over which it was imple-
mented. This paper proposes a first such abstract specification
in form of a layered architecture for FTT that comprises an
application layer, an FTT layer, and a MAC layer for the
underlying communication system. This architecture has then
allowed us to add fault tolerance and total-order multicast to
FTT by adding appropriate layers and “sandwiching” the FTT
layer between them. The result of this is the layer architecture
for FTTRS that was presented in this paper.

The presented layered architectures should serve as a good
basis for further enhancements to FTT. For instance, the reli-
ability layer might be modified to consider arbitrary network
topologies and a node redundancy layer could be put on top
of the FTT layer instead of the TOPS layer.

Future work includes further developing the details of the
interface between the different layers we presented, as well as
developing a formal specification (such as state machines) for
the entities of each of the layers.

ACKNOWLEDGEMENTS

This work was supported by project DPI2011-22992 and
grant BES-2012-052040 (Spanish Ministerio de economía y
competitividad), by FEDER funding, and by the Portuguese
government through FCT grant Serv-CPS PTDC/EEA-
AUT/122362/2010. We also like to thank Luis Almeida and
Paulo Pedreiras for their support during the early stages of this
work, and Ricardo Marau for his helpful explanations on the
inner workings of the FTT-SE code base.

REFERENCES

[1] D. Gessner, J. Proenza, M. Barranco, and L. Almeida. "Towards a
Flexible Time-Triggered Replicated Star for Ethernet." In 18th IEEE Int.
Conf. on Emerging Technologies & Factory Automation. Sept. 2013.

[2] P. Pedreiras and L. Almeida. "The Flexible Time-Triggered (FTT)
paradigm: an approach to QoS management in distributed real-time
systems." In Proc. Int. Parallel and Distributed Processing Symposium,
page 9. IEEE Comput. Soc, 2001.

[3] ITU-T Recommendation X.200, "Information Technology - Open Sys-
tems Interconnection - Basic Reference Model.", ITU-T, 1994.

[4] "IEEE Standard for Ethernet," IEEE Std. 802.3-2012, 2012.
[5] D. Gessner, J. Proenza, M. Barranco. "A Proposal for Managing the

Redundancy Provided by the Flexible Time-Triggered Replicated Star
for Ethernet." In Proc. of the 10th IEEE Int. Workshop on Factory
Communication Systems (WFCS 2014), 2014, Toulouse, France.

[6] G. Rodriguez-Navas, J. Proenza. "A Proposal for flexible, real-time and
consistent multicast in FTT/HaRTES Switched Ethernet." In 18th IEEE
Conf. on Emerging Technologies & Factory Automation (ETFA 2013),
2013, Cagliary, Italy.

[7] D. Gessner, J. Proenza, M. Barranco. "A Proposal for Master Replica
Control in the Flexible Time-Triggered Replicated Star for Ethernet."
In Proc. of the 10th IEEE Int. Workshop on Factory Communication
Systems (WFCS 2014), 2014, Toulouse, France.

[8] A. Ballesteros, J. Proenza, D. Gessner, G. Rodriguez-Navas and T.
Sauter. "Achieving Elementary Cycle Synchronization between Masters
in the Flexible Time-Triggered Replicated Star or Ethernet." In Proc. of
the 19th IEEE Int. Conference on Emerging Technologies and Factory
Automation (ETFA 2014), 2014, Barcelona, Spain.

