
c©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. doi: 10.1109/ETFA.2015.7301632.

First Experimental Evaluation of the Consistent
Replicated Voting in the Hard Real-time Ethernet

Switching architecture

Sinisa Derasevic, Maties Melià, Alberto Ballesteros, Manuel Barranco and Julián Proenza
Dept. Matemàtiques i Informàtica, Universitat de les Illes Balears, Spain

{sinishadj, maties.melia.galmes}@gmail.com, {a.ballesteros, manuel.barranco, julian.proenza}@uib.es

Abstract—Distributed Embedded Systems (DESs) typically
have dependability and real-time requirements. Moreover, when
they are deployed in dynamic environments, they must be flexible
enough to adapt to changes in the operation requirements. The
Fault Tolerance for Flexible Time-Triggered Ethernet (FT4FTT)
project aims at providing a Switched-Ethernet architecture, based
on the Flexible Time-Triggered communication paradigm (FTT),
that is flexible and highly reliable. In particular, FT4FTT provides
node fault-tolerance by means of active replication with majority
voting. In this sense, FT4FTT includes the Consistent Replicated
Voting (CRV) protocol to enforce replica determinism, even in
presence of faults, while maximizing the reliability that can be
achieved thanks to the node redundancy and the communication
subsystem itself. This papers presents a first implementation
of this protocol in a real prototype, and shows the on-going
experimental evaluation been carried out to asses its correctness.

I. INTRODUCTION

Distributed Embedded Systems (DESs) typically have
demanding dependability and strict real-time requirements.
Moreover, nowadays they are deployed in changing environ-
ments that impose a dynamic behaviour in the nodes and in the
communication subsystem. Therefore, DES must not only be
highly reliable, but also flexible enough to adapt to changes.

The Flexible Time-Triggered communication paradigm
(FTT) [1] is a promising communication paradigm for these
so-called adaptive DESs. FTT follows a master/multi-slave
polling mechanism in which a master triggers the transmission
of data messages in a set of slaves.

Communication is divided into fixed-duration time slots
called Elementary Cycles (ECs), each of which is in turn
divided into three windows. In the first one, i.e. the Trigger
Message Window (TMW), the master broadcasts the so-called
Trigger Message (TM). This message synchronizes all the
slaves, as it indicates the beginning of a new EC; and it
contains the EC-schedule, i.e., the messages that the slaves
must transmit in that EC. The following windows are the
Synchronous Window (SW) and the Asynchronous Window
(AW), in which slaves transmit periodic and aperiodic mes-
sages respectively, according to the EC-schedule. FTT provides
communication mechanisms for the master to change the
schedule on-line, upon scheduling update requests from the
slaves. These features make FTT specially well suited for
adaptive DES, since nodes can exchange real-time periodic
and aperiodic traffic in a flexible and adaptive manner.

Unfortunately FTT has scarce mechanisms to fulfill the
reliability requirements of the most demanding highly-reliable
DESs. To overcome this problem we are carrying out a project
called FT4FTT (Fault Tolerance for Flexible Time-Triggered
Ethernet). The main aim of FT4FTT is to provide Switched
Ethernet infrastructure base in the FTT paradigm that is both
flexible and highly reliable.

In particular one of the FT4FTT most important challenges
is to provide mechanisms to tolerate hardware and software
node faults. In the following, we will use the N-Version
Programming (NVP) [2] terminology to describe these mech-
anisms, even though we assume no design diversity. Node’s
hardware faults are tolerated by means of active replication,
i.e. critical nodes are replicated and each one of such replicas
executes the same code. As concerns node’s software faults,
they are tolerated by using a voting mechanism that compen-
sates the errors they generate. Specifically, replicas perform
partial executions of the software in parallel, called segments.
At the end of each segment each replica produces an output
called cc-vector. Next replicas exchange their cc-vectors and
vote on them to get a consensus cc-vector, which then they
use to compute the next segment.

For this voting mechanism to work properly it is funda-
mental to ensure that each replica votes with the same set of
cc-vectors. Otherwise the resulting consensus cc-vector will
not be identical in all the replicas. This problem of providing
each replica with the same input is called external replica
determinism [3], and it is well-known to be an important issue
of communication subsystems. In order to enforce external
replica determinism in FT4FTT, even in the presence of
permanent and transient node and network faults, we proposed
in [4] a Consistent Replicated Voting (CRV) protocol.

This papers presents both a first implementation of the
CRV protocol in a real prototype that aims at demonstrating
its feasibility, as well as an on-going experimental evaluation
to asses the CRV behaviour in presence of faults.

The paper proceeds as follows. Section II describes the
main aspects of the CRV protocol. Then, Section III explains
the most important aspects related to the implementation in
a real prototype. After that, Section IV presents the set of
experiments carried out and the results obtained from them.
Finally, Section V concludes the paper by highlighting the
contribution of this work and pointing out the future work.



II. BASICS OF THE CRV PROTOCOL

The Consistent Replicated Voting (CRV) protocol is di-
vided into the Cc-vector Exchange Protocol (CVEP) and the
Voting Set-Up Algorithm (VSUA). The former specifies the
way in which cc-vectors are transmitted to maximize the
number of cc-vectors that are consistently exchanged among
all replicas, when permanent or transient faults affecting the
replicas or the network do occur. As regards the VSUA, it
specifies what subset of replicas and what subset of cc-vectors
should be used for voting.

A. Cc-vector Exchange Protocol (CVEP)

The Cc-vector Exchange Protocol (CVEP) is a publisher-
subscriber retransmission protocol in which replicas exchange,
during an exchange round, the cc-vectors they have to vote
on. Each round consists of a number of k ≥ 1 ECs that
are used to retransmit cc-vectors as many times as needed
to provide a majority of replicas with at least one majority
set of consistently exchanged cc-vectors. For the replicas to
know which cc-vectors have been consistently exchanged, the
master builds up a matrix called the Message Status vector
(MS-vector) during the round. This matrix indicates, for each
cc-vector, both: whether or not its publisher has transmitted it,
as well as which subscribers have acknowledged its reception.

The CVEP is divided into 4 phases, as shown in Fig. 1:
the Schedule, the Broadcast, the Acknowledge and the Accept
phases. The first three phases are carried out in each EC of the
round, whereas the fourth one is only done after the end of the
last EC. The Schedule phase takes place during the TMW and
is reserved for the master to broadcast within the TM the list
of cc-vectors that the publishers have to transmit in that EC.
Next, in the Broadcast phase, each publisher transmits, within
the SW, the cc-vectors indicated by the TM. After the SW, in
the Acknowledge phase, each subscriber sends, in the AW, an
ACK for each message it has correctly received.

Fig. 1: Phases of an exchange round

After each EC, the master updates the MS-vector taking
into account the set of cc-vectors have been successfully
transmitted and acknowledged so far in the round. Moreover,
for the sake of efficiency, it uses the information of the
resulting MS-vector to schedule within the next EC only the
cc-vectors each publisher has to retransmit.

Finally, the Accept phase occurs in the TMW of the first EC
after the end of the last EC of the round. In the Accept point,
i.e., at the beginning of that TMW, the master both: decides the
final content of the MS-vector, and broadcasts it in the TM. In
the Delivery point each replica executes the VSUA algorithm,
on the basis of the content of the final MS-vector, to decide
which replicas should vote on which cc-vectors and, then, this
decision is delivered to the application.

B. Voting Set-Up Algorithm (VSUA)

As introduced previously, the Voting Set-Up Algorithm
(VSUA) is executed in each replica during the Accept phase,
and specifies the set of replicas and cc-vectors that will be used
in the Delivery point for voting. The most important aspect of
this algorithm is that it ensures both, that all replicas that can
communicate are going to vote, and that at least all the cc-
vectors sent by these replicas are going to be considered in
the voting. In this, sense the system works as long as there is
a majority of replicas that can communicate and that produce
correct cc-vectors; where majority means bX/2c + 1, where
X is the number of replicas.

The input of the VSUA is the MS-vector, which is con-
structed by the master and contains the list of cc-vectors
transmitted and acknowledged by each replica. As an example,
let’s assume the system with three replicas depicted in Fig. 2.
Replica 1 transmits its cc-vectors to replicas 2 and 3 through
message A, Replica 2 transmits its cc-vectors to replicas 1 and
3 through message B, and Replica 3 transmits its cc-vectors
to replicas 1 and 2 through message C. In this system, the
MS-vector is the matrix shown in Fig. 3.

Each row in this matrix informs about the cc-vectors
transmitted and acknowledged by a given replica. For instance,
the first row specifies if Replica 1 has transmitted message
A, and if it has received messages B and C. Specifically,
if cell [R1,A] is true, it means that the master has received
the cc-vector from Replica 1. In contrast, if cells [R1,B] and
[R1,C] are true, it means that the master has received the ACK
message from Replica 1 for messages B and C, respectively.

Fig. 2: Message exchange. Fig. 3: MS-vector.

Once the VSUA knows the set of cc-vectors transmit-
ted/received, it generates all the possible voting combinations
following the order next described. First, it fixes to the
maximum the number of cc-vectors with which each replica
votes. With this number of cc-vectors, VSUA generates all
the combinations modifying the number of replicas. If the
algorithm finds at least one combination in which a majority
of replicas have consistently exchanged the cc-vectors, it takes
the best one, i.e. the one that maximizes the number of replicas.
Otherwise, the number of cc-vectors is fixed to the maximum
minus one, and the generation of combinations is carried out
again. This procedure is repeated until a solution is found or
the number of cc-vectors does not represent a majority.

The VSUA finds the best solution, i.e. it maximizes the
number of both cc-vectors and replicas. Moreover, the VSUA
prioritizes the number of cc-vectors over the number of
replicas. This criteria makes it possible to tolerate in some
scenarios a number of faults greater than the one that can be
strictly tolerated with X replicas, e.g. with X = 3 it allows
tolerating not only a permanent fault affecting one replica, but
also additional transient faults [4].



III. IMPLEMENTATION OF THE CRV PROTOCOL

We implemented the CRV protocol on top of a switched-
Ethernet version of FTT, called Hard Real-Time Ethernet
Switching architecture (HaRTES). In HaRTES the slaves con-
nect to a custom switch which embeds the master. This yields
important advantages in terms of the management of the ape-
riodic traffic, the implementation of fault-tolerant mechanisms
and the delay of the master messages [5].

Next we describe how the regular implementation of
HaRTES [1] [5] has been extended to cope with the new
requirements. For simplicity, each exchange round takes one
EC (see Fig. 1). This means that if a fault corrupts a cc-vector
or an ACK, that cc-vector or ACK will be irreversibly lost.
Certainly this decision limits the reliability with which cc-
vectors and ACKs are exchanged and, ultimately, it does not
prevent unnecessarily node replicas attrition. However it eases
the implementation and the tests carried out to assess the fun-
damental features of the protocol, i.e. that non-faulty replicas
correctly vote on the same set of consistently exchanged cc-
vectors, and that the system provides its service as long as there
is a majority of non-faulty replicas that consistently exchange
a majority of cc-vectors.

In Fig. 4 we show the internals of one slave and the
HaRTES switch. The slave is composed by the FTT slave
which provides network services to the Application. The switch
embeds the FTT master and the Switching module, which
forwards messages from/to the master and the slaves. White
rectangles depict the components that were not modified with
respect to the prior version of HaRTES, white rectangles with a
dashed border depict components that were partially modified,
and grey rectangles depict the new components.

Fig. 4: Internals of one slave and the master.

During the Schedule phase, the TM constructor in the
master gets the EC-schedule from the Scheduler and inserts it
inside a TM. This TM is then passed to the Master dispatcher,
which broadcasts it to the slaves during the TMW.

In the Broadcast phase, the Slave dispatcher uses the EC-
schedule contained in the TM to determine the cc-vectors to
be transmitted in the current EC and retrieves them from the
application. After that, it transmits said messages within the
SW. Moreover, when a slave receives a cc-vector from another
slave, the cc-vector DB keeps it until the delivery point, i.e.
until it is decided whether or not to deliver it to the application.
Finally, also in this phase, the master also needs to receive the
cc-vectors to fill the diagonal of the MS-vector.

In the Acknowledge phase, the ACK msg constructor of
each slave builds an ACK message containing the list of re-
ceived and non-received cc-vectors. This behaviour is different
from the one described in Section II-A, in which each slave
transmits one ACK message per cc-vector. This simplification
eases the implementation and allows us to better diagnose the
origin of the errors, as we can distinguish when a replica did
not receive a message and when it was not able to transmit the
NACK. Moreover, this modification does not affect the results
of the evaluation since we can cover all the error scenarios
by injecting faults in the cc-vectors. In order to construct the
ACK message, the ACK msg constructor compares the list of
received cc-vectors, maintained in the cc-vectors DB, with the
list of cc-vectors that should have been received, contained in
the EC-schedule. Once created, the ACK message is delivered
to the Slave dispatcher, which transmits it inside the AW.

Note that, to completely acknowledge all the cc-vectors,
the slaves must have enough time to receive them before
constructing the ACK message. That is, it must be ensured that
all the slaves start the AW and, thus, the Acknowledge phase,
at the same time. However, FTT does not provide this intra-EC
synchronization, i.e., when a slave finishes the transmission of
its periodic messages (like a cc-vector), it immediately con-
siders the SW as finished and starts transmitting the aperiodic
ones. To solve this issue, we modified the Slave dispatcher in
all the slaves to make the size of the SW static. In this way,
if a slave finishes the transmission of its cc-vectors before the
end of the SW, it waits until the beginning of the AW to trigger
the construction of the ACK message.

Transmitted ACK messages are stored by the master in the
ACK msgs DB. Later on, in the Accept phase, the MS-vector
constructor consults this DB, builds up the MS-vector and
inserts it into the TM together with the EC-schedule. As in
the Schedule phase, the TM is transmitted, but now the MS-
vector is passed to the Delivery control. This component uses
the MS-vector to execute the VSUA and, then, delivers to the
application the appropriate cc-vectors from the Data msgs DB.

IV. EXPERIMENTAL EVALUATION OF THE
CRV PROTOCOL IN HARTES

The original paper of the CRV protocol [4] assessed the
correctness of the VSUA by implementing it in Java. Next we
present an extended evaluation performed over a real prototype
that implements not only the VSUA but also the CVEP.

A. The HaRTES prototype

The prototype in which we have carried out the experiments
is constructed in commercial-of-the-shelf (COTS) personal
computers (PCs), and it is composed of three slaves connected
among them through a custom switch. Note that the three
slaves perform the same task in parallel, i.e., they are replicas.

The switch is implemented in a regular multi-core PC
with two Intel 350-T4 quad-port Ethernet server adapters.
This configuration has several advantages, such as the amount
of ports, as well as the software and hardware flexibility.
In contrast, each of the slaves is implemented in a Jetway
JBC373F38-525-B barebones, i.e., a specific hardware for
network embedded devices that includes an Atom processor
and four standard Ethernet network interface cards (NICs).



From the point of view of the software, the switch and
the slaves run a regular GNU/Linux OS. On top of it, the
switch executes the Switching module and the FTT master (see
Fig. 4). Conversely, each slave executes an FTT slave, which
provides the FTT services to an Application. This application
is a simplified version of a replicated control application that
repeatedly executes a 3-phase scheme: sense, exchange sensor
values and vote on them [6]. In order to inject channel errors,
we modify the behaviour of some replica components during
the exchange phase.

B. Fault-tolerance tests

The test campaign we have carried out is devoted to
assessing the capacity of the CRV protocol to provide a
consistent majority voting in the presence of faults that prevent
replicas from communicating. For this, we injected faults that
forced replicas to not transmit or receive cc-vectors.

It should be noted that, since the communication round
takes just one EC, each injected fault is considered as a
permanent one. However, this is not a limitation for this
evaluation. Moreover, we do not force omissions of individual
ACKs, nor we inject omissions in the transmission/reception
of any ACK message (which would then force an omission of
all the ACKs therein included). This is because we indirectly
inject errors in individual ACKs by forcing an omission in the
transmission/reception of the corresponding cc-vectors.

In order to study the effects of faults in the transmission,
the Slave dispatcher component has been modified in all the
replicas. Specifically, we force the omission of some cc-vectors
before being transmitted. This fault injection was applied to
one, two and three replicas in all the combinations. The result
of this experiment is that, as expected, the protocol can tolerate
no more that one transmission error at a time.

Reception faults were injected by forcing the cc-vector DB
to not store cc-vectors, which in turn prevents the transmission
of the corresponding ACKs. This was done for all the combi-
nations of received cc-vectors in one, two and three replicas.

The results obtained from this experiment are shown in
Table I. Each row specifies the fault-tolerance capacity of
the CRV protocol, when injecting a given number of faults
(#faults) in a communication round. Specifically, the second
column (#scens) indicates the number of scenarios that were
generated by injecting the fault/s; whereas each one of the rest
specifies the proportion of these scenarios in which the VSUA
allowed the system to vote, using a given number of replicas
and cc-vectors (#replicas / #cc-vectors).

For instance, injecting 2 faults leads to 15 different sce-
narios. In the 20% of them the system could consistently
vote using 2 replicas and 3 cc-vectors and, also, 2 replicas
and 3 cc-vectors. Moreover, in the 60% of them the system
could consistently vote using 2 replicas and 2 cc-vectors. As
expected, the higher the number of faults, the lower the number
of replicas and cc-vectors that can be used to consistently
vote. However, results demonstrate that in some cases the CRV
protocol allows to consistently vote while tolerating up to 4
faults, which is higher than the number of faults that could
be strictly tolerated when using 3 node replicas. This happens
when two replicas vote with the same two messages: the one
they transmitted and one received from the other replica.

#replicas / #cc-vectors
#faults #scens 3/3 2/3 3/2 2/2 0/0

0 1 100% — — — —
1 6 — 100% — — —
2 15 — 20% 20% 60% —
3 20 — — — 90% 10%
4 15 — — — 20% 80%
5 6 — — — — 100%
6 1 — — — — 100%

TABLE I: Tolerance of errors in the reception.

V. CONCLUSIONS AND FUTURE WORK

We presented a first implementation of the the Consistent
Replicated Voting, a voting protocol for enforcing node replica
determinism in FTT-Ethernet networks. The presented real
prototype is intended to demonstrate the protocol feasibility
and to experimentally evaluate it. We tested some faults sce-
narios that allowed us to measure the fault-tolerance capacity
of the protocol in the presence of faults that prevent replicas
from receiving information from each other. In particular, we
showed that in some cases the protocol can tolerate a number
of receiving faults higher than the number of faults that could
be strictly tolerated when using 3 node replicas.

The next steps involve a evaluation with more replicas,
while taking into account faults in the transmission and in the
reception at the same time. Moreover, we will also measure
the efficiency of the implementation: delay introduced by the
additional logic and accuracy of the synchronization needed to
determine the beginning of the AW. Furthermore, it is also a
pending issue to implement the CRV in the final architecture
of FT4FTT in which the single point of failure that the switch
represents is replaced by two interconnected switches. Finally,
we are currently working in an OMNeT++ model to assess the
CRV protocol via simulation, and in the formal validation of
the CRV protocol by means of model checking.

ACKNOWLEDGMENTS

This work was supported by project DPI2011-22992 (Span-
ish Ministerio de economı́a y competividad), by FEDER fund-
ing, and by the Portuguese Government through the FCT in
the scope of project Serv-CPS-PTDC/EEA-AUT/122362/2010.
Sinisa Derasevic was supported by a scholarship of the EU-
ROWEB Project, which is funded by the Erasmus Mundus
Action II programme of the European Commission.

REFERENCES

[1] P. Pedreiras and A. Luis, “The flexible time-triggered (FTT) paradigm:
an approach to QoS management in distributed real-time systems,” Proc.
Int. Parallel and Distributed Processing Symp.

[2] A. Avizienis, “The N-Version Approach to Fault-Tolerant Software,”
IEEE Trans. on Soft. Engineering, no. 12, pp. 1491–1501, Dec.

[3] S. Poledna, Fault-Tolerant Real-Time Systems: The Problem of Replica
Determinism. Kluwer Academic Publishers.

[4] S. Derasevic, M. Barranco, and J. Proenza, “Appropriate consistent
replicated voting for increased reliability in a node replication scheme
over FTT,” in Proc. 19th IEEE Int. Conf. on Emerging Tech. and Factory
Automation (ETFA), Barcelona.

[5] R. Marau, P. Pedreiras, and L. Almeida, “Enhanced ethernet switching
for flexible hard real-time communication.”

[6] S. Derasevic, J. Proenza, and M. Barranco, “Using FTT-ethernet for the
coordinated dispatching of tasks and messages for node replication,” in
Proc. 19th IEEE Int. Conf. on Emerging Tech. and Factory Automation
(ETFA), Barcelona.


