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Abstract

This work details a new method for loop-closure detec-
tion based on using multiple orthogonal projections to
generate a global signature for each image of a video se-
quence. The new multi-projection function permits the
detection of images corresponding to the same scene, but
taken from different point of views. The signature gen-
eration process preserves enough information for robust
loop-closure detection, although it transforms each image
in a simple and compact representation. Thanks to these
characteristics, a real-time operation is possible, even for
long sequences with thousands of images. In addition, it
has proved to work on very different scenarios without the
need either to change the parameters or to perform an onf-
fline training stage, which makes it very independent on
the environment and camera configuration.

Results of an extensive set of experiments of the algo-
rithm on several datasets, both indoors and outdoors and
including underwater scenarios, are presented. Further-
more, an implementation, named HALOC, is available at
a public repository1 as a C++ library for its use under the
BSD license.

1 Introduction

In the context of autonomous mobile robotics, an accurate
estimation of the robot pose is essential to succeed in the
programed missions. This problem is known as localiza-
tion and it has been addressed from different perspectives,
ranging from simple dead reckoning to methods based on
complex representations of the environment. Tradition-
ally, localization approaches have relied on range sensors,

1See https://github.com/srv/libhaloc

like laser on terrestrial environments or sonar in under-
water media. Nevertheless, modern cameras offer higher
spatial and temporal resolutions, reduced size and con-
sumption at very competitive prices, thus their application
in robotics is extensively used nowadays.

Loop-closure detection is a crucial issue in visual self-
localization techniques, such as SLAM (Simultaneous Lo-
calization And Mapping) or topological mapping and lo-
calization approaches. This ability consists in detecting
when the robot is returning to a previously visited area.
Detected loop closings impose additional pose constraints
which are essential for the accurate correction of the robot
global pose. In vision-based systems, this loop-closure
detection is performed by registering images currently
grabbed, with other frames gathered previously. In long
trajectories, this procedure can be highly costly when the
query image is compared with all the previous ones. A
way to reduce effectively the time for the loop-closure
detection consists in running the image registration only
over a set of image candidates that are most likely to
overlap with the query. As the length of the image se-
quence grows, the candidate selection process time can
grow boundless, preventing the method to be applied on-
line on long trajectories [45]. Thus, it is essential to use a
fast and efficient technique to select the candidate images
from the grabbed sequence.

In this paper we introduce a fast method to accurately
retrieve candidate images for loop-closure detection. The
proposed algorithm uses a multi-projection function to
convert every image of a video sequence into a single sig-
nature by using original image features. Moreover, the
reduced size of this signature allows the execution of the
loop-closure detection in an online system, even for long
sequences.
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2 Related Work

Many visual SLAM approaches use advanced data associ-
ation techniques [5] to match visual features of the last ac-
quired image with those features stored in the map. This
type of techniques are slow and limit the features used
for loop-closure detection to those included in the map.
Moreover, many systems using this scheme are not de-
signed to work in real time when they are applied to long
trajectories [44]. Other techniques based on topological
maps are also contributing with highly accurate results.
Garcia-Fidalgo and Ortiz present in [13] an extensive col-
lection of methods and approaches to detect loop closures,
in the context of topological mapping. Some of these ap-
proaches rely on image-to-image voting methods which
implement a feature matching process over all the stored
images and usually have an expensive computation time
[20] [39]. The approach given in [12] extends the state of
the art of appearance-based topological mapping methods
and relies on the detection of loop closures by a process
of indexing invariant features.

Bag-of-words (BoW) methods are extensively used to
perform global localization and loop-closure detection in
an image classification scheme. In this context, images
are represented as vectors that account for the number of
occurrences of local image features taken from a dictio-
nary. This dictionary is performed by clustering similar
keypoints [7] [6]. Despite there are recent techniques for
building this vocabulary online [11] [1], most of the im-
plementations present on the literature need a previous
training stage to construct the dictionary which will be
used subsequently in the localization process. The cre-
ation of this dictionary is the major weakness of most
BoW approaches since it introduces the appearance as-
sumption of the environment and, therefore, the naviga-
tion using different cameras or in a totally different en-
vironment becomes inefficient. On the other hand, one of
the major advantage of BoW is the capacity to obtain a so-
lution for loop closing that is independent of the map size
in terms of computational time. In contrast, the literature
widely reports that most of the BoW-based approaches in-
troduce perceptual aliasing [1] [34]. Perceptual aliasing is
the problem of having locations that might be perceived as
the same but they should not (such as two visually equal
cars -same manufacturer, model and color- present in dif-
ferent street locations). This problem is a serious weak-

ness for a localization system that corrects its pose accord-
ing to the loop closures since the new computed positions
would be totally inconsistent. Other authors have incor-
porated the depth information (when working with RGB-
D cameras or laser) in the SIFT extracted descriptors to
enhance their distinctiveness properties. These enhanced
descriptors obtained by fusing color and depth informa-
tion are applied mostly in human gesture identification
and activity recognition and they have revealed promis-
ing results when combined with bag-of-words [42] [43]
[19].

Locality Sensitive Hashing (LSH) have been recently
used by Shahbazi and Zhang [34] to transform the im-
age descriptors into hash tables. Then, for every query
image, its descriptors are hashed and compared with the
existing ones into the tables by applying a distance ratio
[25]. Images with a larger number of matches are treated
as candidates for closing a loop. Shahbazi and Zhang also
demonstrate that their algorithm has an almost linear run-
ning time with a constant term that they affirm to be small.
Moreover, they compare the proposed algorithm with the
state of the art of BoW to carry out a quantitative com-
parison which demonstrates that BoW is faster but less
accurate than LSH (which is not fast enough to run on-
line at 5Hz). The most important contribution of [34] is
the use of a hash function directly over the image descrip-
tors instead of using image histograms [15] or textures
[21] to retrieve the candidates to close a loop. However,
the LSH algorithm used by [34] has a high computational
cost because a family of hash functions is applied on each
descriptor separately.

Other techniques for loop closing detection in local-
ization applications are based on image global descrip-
tors. These descriptors usually represent the image by
small vectors (i.e. 20 bytes in [18]), simplifying the im-
age matching process in terms of time and computational
resources. However, these simpler techniques sometimes
compromise seriously the success ratios. For example,
Liu and Siegwart proposed in [22] [23] a new unique
descriptor to characterize a whole image, based on the
average of the U-V color space values of the pixels en-
closed in different areas of the image, delimited by ver-
tical edges. This approach shows excellent results only
when imaging indoor environments with omnidirectional
cameras, and it uses color-based global descriptors, which
are always more sensitive in different scenes with sim-
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ilar colors. GIST [30] is another outstanding and well
known global descriptor based on a set of perceptual
and spatial structure of the scenes. The characterization
of images is based on the diverse spectral properties of
the scene (Energy Spectrum, Fourier Transforms, Win-
dowed Fourier Transforms, Discriminant Spectral Tem-
plates -DST-, Windowed Discriminant Spectral Template
-WDST-, etc.) combined properly and approximated as a
set of Gabor filters. Gabor-GIST global descriptors have
been used basically for scene categorization, and very oc-
casionally for loop closure detection. Liu and Zhang pre-
sented in [24] a new generic framework to detect loop
closings that incorporates reduced Gabor-GIST global de-
scriptors. This framework is integrated in a particle filter
to perform SLAM that exploits the temporal coherence in
image sequences. BRIEF-Gist [38] is a simple global de-
scriptor which consists in generating a BRIEF descriptor
[4] on a downsampled (e.g 60 × 60 pixels) version of the
original image. Another version of BRIEF-Gist concate-
nates, in a single binary vector, the BRIEF descriptor of
each of the m×m tiles in which the original image is par-
titioned. The calculation and comparison of the BRIEF-
Gist descriptors is extremely fast, and the exposed exper-
iments show a precision of 100% in the detection of loop
closings. However, there are some relevant restrictions
when detecting loop closings using BRIEF-Gist, related
to the point of view from which scenes that close a loop
are re-viewed.

Another global descriptor that has shown very high per-
formance in the similarity image search in large databases
is VLAD [18]. This image global representation is ob-
tained in two steps: first, the image descriptors are ag-
gregated to a vector, based on their proximity to the cen-
ter of any of the clusters that sectors the feature space.
Second, a PCA projection is performed to reduce the di-
mensionality of the vector, resulting in a compact global
image descriptor that can be used for fast image compar-
ison. Recent studies [2] demonstrate that VLAD outper-
forms other popular global descriptors, such as GIST, in
terms of accuracy, when applied on public image retrieval
benchmarks. Moreover, as bag-of-words, VLAD requires
a visual dictionary computed by, for example, K-means
clustering in an offline training stage, causing the same
disadvantages discussed above. In general, most of these
global descriptors have demonstrated to be relatively ro-
bust in image recognition, scene categorization and, in

some occasions, for loop closure detection, but none of
them, to the best of the authors knowledge, have been
tested in complex scenarios, such as underwater environ-
ments with no clear dominant spatial structures or seman-
tic categories, and with extremely textured areas.

Our proposal is framed in the global descriptors context
but, unlike the methods listed above, we apply a multi-
projection function directly to the entire array of descrip-
tors providing the following advantages:

1. Two images with similar descriptor matrices (i.e.
having descriptors matching) will result in similar
signatures due to the projection properties.

2. The query image and the obtained candidates to
close a loop mostly have significant overlap, since
the signature represents the whole descriptor matrix.

In general terms, the main contributions of this paper
are:

1. We present an algorithm for fast loop-closure detec-
tion based on a global image signature. This ap-
proach reduces the computational time dedicated to
search for image candidates to close a loop with a
query, with respect to other approaches.

2. A wide set of experiments show how the method pro-
posed here outperforms in scene recognition other
important works based on the main techiques: BoW-
based ([16], [1]), LSH-based ([34]) and global de-
scriptors based [18]. Moreover, our method does
not require a training stage that can negatively affect
the results in the normal execution of the localization
process.

3. The presented architecture has been tested in terres-
trial (indoor and outdoor) and underwater datasets to
demonstrate the non-dependence on the environment
type and the parameter set. All experiments were
performed using the default parameters provided in
the public implementation, without any change or
adjustment. Notice that, underwater is one of the
most challenging environments for detecting loop
closures due to the repeated patterns and textures.
Is in these particular scenarios where our approach
outdoes others extendedly used nowadays.
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The rest of the paper is structured as follows: Section
3 outlines the procedure for calculating the new image
signature; the whole loop-closing algorithm including the
search for candidates and the subsequent validation stage
is detailed in Section 4; experimental results are given in
Section 5 and Section 6 is dedicated to the conclusions
and future work.

3 Signature Generation
Generating a signature that describes the image informa-
tion (also known as global image descriptor) can also be
seen as a mathematical hash function, also known as me-
dia hash [32]. The principal purpose of a hash function is
to extract a fixed-length string or bit vector from a large
data structure [31] [28] [32] (a text message, a document
file or an image, for example). Hash functions perform
many-to-one mappings and can be defined as:

h = Ψ(ρ) (1)

where Ψ is the hash function, ρ is the input data to be
hashed and h is the computed hash string.

A key feature of conventional hashing algorithms, such
as MD5 and SHA-1, is that they are extremely sensitive
to small perturbations in the original input, causing large
differences in the resulting hash. However, most of the vi-
sual applications (scene recognition or image categoriza-
tion, for instance), need that two images with high percep-
tual similarities have resembling signatures. Some studies
[41] [26] investigate how to prevent significant changes
on image signatures that have suffered controlled modifi-
cations (p.e. rotation from 2 to 5 degrees, cropping from
10% to 20% of image area, etc.).

Signature generation functions can be roughly classi-
fied in two main groups depending on the input data used
to generate the global descriptor:

1. Appearance-based: the signature is calculated from
texture, color information, transformations in the fre-
quency space or matrix factorizations [41] [21] [36]
[27].

2. Feature-based: the signature is calculated from the
image keypoints and their descriptors [34] [18] [32]
[28].

Our work is framed in the feature-based group and aims
to create a unique signature for each set of features that
characterize an image. With this approach we want to
avoid the perceptual aliasing problem present in cluster-
ing algorithms (i.e. BoW) that use the same visual words
for different visual features. The objective is that com-
puted signatures result similar for images that represent
the same scene (i.e have matching features), but grabbed
from different points of view.

3.1 Descriptor Matrix Projection
Let us define the image descriptor matrix Dn×m, where
n is the number of visual keypoints (features) found in the
current image and m is the length of their corresponding
descriptors. The signature function proposed in this work
is based on the projection of each column of Dn×m onto
a set of k directions defined by unit vectors of n dimen-
sions. For a certain image set, m will be always the same
(i.e. determined by the descriptor type), while n will vary
for each image in the sequence. The aim of this process is
to transform the variable descriptor space size into a fixed
size: Rn×m → R1×k·m. The value of k has to provide
an acceptable trade-off between low size and high perfor-
mance. Details of k setting are exposed at the end of this
section.

The projection of the descriptor matrix onto a single
(k = 1) unit vector û of random direction is defined as:

ρi =

n∑
j=1

D(j, i) · û(j) (2)

where 1 ≤ i ≤ m. Hence, the final sequence that forms
the signature h will be:

h = ρ1 ⊕ ρ2 ⊕ ...⊕ ρm (3)

where ⊕ is the concatenation operator.
Projections have already been used as hash functions in

[15] and the advantages of introducing a random factor in
the generation of the image signature has been proven in
[37] and [26], among others.

The rows of the descriptor matrix corresponding to
overlapping images that are rotated, scaled or translated
(i.e. a possible loop-closure), can be unsorted or the size
n can differ considerably. In principle and theoretically,
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Figure 1: Ideal case (a) where similarities and differences in the descriptor space are translated to the projected points.
Random vector projections (b) and orthogonal projections (c).

this might lead to distant values in equation 2 for both im-
ages, when they should be similar. To solve these prob-
lems, first the bucketing mechanism [14] is applied to
keep a constant number of keypoints n in every image and
spread them uniformly over the image domain. Secondly,
the vectors used in the projections (û) are unitary. This
circumstance causes the signature computed from the de-
scriptors matrix (D) to be very similar to the case in which
the columns ofD were projected onto a vector with a con-
stant value in each of its components (as shown in section
5.1), which would make the signature invariant to the or-
der of the features in D. However, the û component val-
ues need to be different enough so that descriptor changes
are reflected in the projections. In consequence, when us-
ing a projective unit vector and a descriptor invariant to
image rotation, scale and translation changes, this new ap-
proach has a considerable tolerance to these effects as it
has been widely observed empirically, and shown in sec-
tion 5.1 .

The direction of the unit vector û is defined at the be-
ginning of the process and must be the same to compute
the signature of all the images of a certain sequence or
trajectory. Moreover, the length of û must be adaptable to
the number of rows n of the descriptor matrix correspond-
ing to each image of the sequence. The maximum value
of n is unknown a priori, but the dimension of û can be
set large enough. Experiments demonstrated that a 5% of
the image size in pixels is an appropriate value.

Figure 1-(a) illustrates the effects of projecting the de-
scriptor components of two different images, A and B,
onto a unit vector of random direction. For an easy un-
derstanding, let us assume a two-dimensional orthogonal
space (m = 2), i.e. each descriptor has two components:
x and y. Features of image A are plotted with blue circles
and features of image B with red squares. In plot 1-(a), the
projections of the x-components onto û (Cx in the figure)
are not useful for discriminating the descriptor p2 from
p3. This is because the distance between p2 and p3 is not
preserved on the x-projection. However, the projections
of the y-components onto û (Cy in the figure) perfectly
reflect the differences of the descriptors space into the
projected values. Plot 1-(b) illustrates a case where none
of the two possible random directions of the unit vector
(û1 or û2) is able transfer the differences of the descrip-
tor space into the projected components. In these cases,
significant differences in the x and y components of the
descriptors are nearly negligible in the projected values.
It is obvious that a single projection may not be enough to
discriminate the descriptors of both images.

Next section offers a suitable solution to this problem
by using more than one projection.

3.2 Multiple Orthogonal Projections

In order to reinforce the performance, the descriptor ma-
trix is projected on several directions, and the different
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projections are concatenated to form the final signature.
Let us define hl as the result of projecting the descriptor

matrix onto the lth direction ûl. Then, equation 3 can be
rewritten as:

hl =

m⊕
i=1

 n∑
j=1

D(j, i) · ûl(j)

 (4)

and the final signature is defined as the concatenation
of the k projections on all the different directions ûl:

H =

k⊕
l=1

hl (5)

The set of vectors ûl (1 ≤ l ≤ k) must be defined
offline, previously to the global localization process. If
the k unit vectors were randomly generated, some of them
could result in a similar direction, providing a repetitive
and useless information and causing inefficiency in the
hashing process. This is, for example, the case shown in
figure 1-(b).

A way to generate an efficient and distinctive set of vec-
tors û is to calculate their directions so that they are mu-
tually orthogonal [15]: ((û1 ⊥ û2) ⊥ û3) ⊥ ...ûk.

See the example of figure 1-(c) where the directions
of û1 and û2 are orthogonal. Projections on direction û1
are not distinctive enough, but projections on û2 (mostly
the y-component, Cy2 in the figure) clearly differentiate
the features p2 and p3. For a signature composed of k
projections, the first unit vector û1 is generated randomly,
and the successive k − 1 unit vectors are computed to be
orthogonal between them by forcing their inner product
equal to zero. E.g. if k = 2:

û1(1)·û2(1)+û1(2)·û2(2)+...+û1(n)·û2(n) = 0 (6)

Since û1 is known, it is possible to give random values
to û2(1), û2(2), ..., û2(n − 1) and then solve for the last
index, û2(n), to make û1 ⊥ û2. For k > 2 a recursive
solution in the form of a linear matrix equation Ax = B
can be defined forcing each vector to be orthogonal to the
others using any of the existing decomposition procedures
such as QR (Orthogonal-Triangular Matrix) factorization
or SVD (Singular Value Decomposition) among others.

Preliminary experiments demonstrate that selecting
k = 3 provides a good trade-off between signature size

and accuracy in the detection of loop closures. So, from
now on, all the analysis and experiments are performed
with this value.

The current implementation of the signature calculation
supports integer (p.e. SIFT [25]) and float (p.e. SURF [3])
descriptors.

As will be shown later, the present global image de-
scriptor method for loop-closure detection outperforms
the previous related approaches in two main aspects, reli-
ability and computation time:

• First, scene recognition techniques supported on
the comparison of color histogram or texture-based
hashes [15] [41] introduce the problem of perceptual
aliasing, where different scenes are wrongly labeled
to represent the same.

Although experimental results of the approach de-
scribed in [1] show a certain robustness to the per-
ceptual aliasing, this problem is commented and
treated extendedly in this reference as one of the
main challenges when using BoW. In [9], the percep-
tual aliasing is overcome to a certain extent, using the
techniques proposed in the approach. Scene features
of different places with high perceptual aliasing can
be labeled with a low probability to close a loop, but,
still, if they really close a loop, the results will be the
same. According to [1] [9] (among many others),
this is due to the use of a pre-computed training set
of visual words which could have no relation with
the current trajectory. Instead, our multi-projection
function is applied directly over the image descrip-
tors and no precomputed or training information is
assumed. This reduces considerably the perceptual
aliasing problem, since descriptors and their com-
parisons rely uniquely on each particular scene of
the current trajectory, increasing the reliability of the
system.

• Second, the multi-projection function proposed
transforms the unknown size (n) of the descriptor
matrix Dn×m to a fixed-length signature of size
W = k ·m. This implies that the computation time
will be bounded and considerably reduced. Contrar-
ily, [34] applies a hash function over every particular
feature obtaining a large set of hash indices for each
image, increasing its complexity and, thus, causing
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higher computing time.

4 Loop Closing Algorithm

The main purpose of this work is to build a fast algorithm
applicable online that allows to find possible loop closures
between the last received image and all the images ac-
quired previously during a robot mission. Our efforts are
focused on speeding up this process as much as possible,
while maintaining a high reliability.

The process of image signature generation exposed in
the previous section is used to search and retrieve the best
candidates to close a loop with the most recently grabbed
image. Afterwards, successive stages of image similarity
validation are performed in order to accept or reject these
pre-selected candidates. The proposed algorithm can be
divided in 2 main stages:

1. Similarity Image Search. For every new image
in the trajectory, compute its signature and store it
into a table. The latest received image is treated as
a query and compared with all the existing records
(except itself and its neighbors) of the table in or-
der to find the best candidates to close loop with it.
The best candidates will be those with similar sig-
natures. Finally, a Bayes filter is applied to improve
the search for candidates by using the past trajectory
information.

2. Loop-Closure Validation. For every candidate to
close a loop obtained in the previous stage, its feature
descriptors are matched with the feature descriptors
of the query image using the classic Knn-Match (K-
nearest neighbor Match). The existence of a consid-
erable number of matchings reinforces the assumed
image coincidence. Then, the epipolar geometry
is imposed between the candidates and the query,
and outliers are discarded applying RANSAC. If the
epipolar condition is consistent, the loop-closure is
confirmed.

The whole loop-closing process is illustrated in figure
2 and all the steps are detailed in the next sections.

Query image (Iq)

Descriptor matrix (D)

Signature (hq)

Table of image signatures
Image Id Signature

Best candidates to
close loop

Desc.
matching

Epipolar
geometry

Reject loop closure

Accept loop 
closure

yes yes

nono

Similarity Image Search

Loop-Closure Validation

Figure 2: Overall loop-closing process diagram.
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4.1 Similarity Image Search

For every new image in the trajectory, the algorithm ex-
tracts its descriptors and then applies eq. 5 to calculate its
signature. This signature is saved alongside its index into
a table to be a candidate for future queries. Moreover,
descriptors of every image are also stored into another
database to be accessible for a validation of a possible
loop-closure. The frequency of accesses to this database
is much lower than the number for the table of image sig-
natures, thus it is implemented in a second priority mem-
ory level.

Every new signature is treated as a query (hq) and com-
pared with the signatures previously stored into the table
with the purpose of finding possible candidates to close
loops with it. Signatures for the corresponding s-nearest
precedent neighbors of the query image are not consid-
ered as candidates to avoid closing loops between consec-
utive images, so hq is only compared to {h1, h2...hq−s}.
The s parameter is adjusted depending on the frame rate
and the velocity of the camera motion.

The comparison of image signatures is performed by
applying the l1-norm between the query and the candi-
date: ‖hq − hc‖1 where hc is the candidate signature.
The reason of using l1 instead of, for example, l2 is
that, the experiments performed on the Webseek project
[35] demonstrate that l1 is marginally better than l2 for
signature-based similarity image search. It is expected
that the images with significant overlap have a high num-
ber of feature matchings, giving rise to similar signatures
and, thus, a small l1 value.

At this moment, best candidates (i.e. those with a min-
imum value of l1) could be taken and passed to the next
step for its validation and loop-closing confirmation or re-
jection. However, it is possible to improve the quality of
these candidates by taking advantage of the trajectory in-
formation. If, for example, the comparison made using
the l1-norm for the latest hq indicates that the best candi-
date to close loop is hi then, the neighbors of hi have a
high probability to be also candidates for the subsequent
queries. A common way to introduce this probability over
the candidates and their neighbors consists in using a nor-
mal distribution weighting function [10]; let Sq be the ran-
dom variable representing the loop-closure hypotheses for
the current query image (Iq), then the event Sq = i is the
event that the query image Iq closes a loop with a previ-

ous image Ii, while Sq = −1 is the event that no loop-
closure has been found for the query. We define Ic as one
of the candidate images (obtained after the l1-norm com-
parison) and Is as the set of its s-neighbor images plus Ic
(i.e. Is = {Ic−s, ..., Ic+s}). In a Gaussian probabilistic
context, similarly to [1], we formulate the probability that
the current query image Iq closes a loop with a certain
image in the neighborhood of Ic as follows:

p(Sq|Isb ) = η
1

σ
√

2π
e−

(Isb−Ic)
2

2σ2 (7)

where Isb is the b-nth element of Is, i.e. b ∈ [c −
s, ..., c+ s]. η is a normalization factor used to weight the
resulting probability according to the result of the l1-norm
comparison. σ is the amplitude of the normal distribution
(standard deviation) and depends on the overlap between
images. For example, in a side-looking sequence like [8],
if the frame rate causes 3 consecutive images to overlap
σ = 3.

Through eq. 7 each image of Is is labeled with a prob-
ability of closing a loop with the query Iq . Therefore, the
probability that the set of images Is closes a loop with Iq
is:

p(Sq|Is) =
[
p(Sq|Isc−s), ..., p(Sq|Isc+s)

]
(8)

Since it is desirable to have more than one candi-
date to close a loop, let us define Zp as the set of p-
best image candidates obtained after the l1-norm com-
parison: Zp =

{
Ic0 , Ic1 , ..., Icp−1

}
. The set of the cor-

responding neighbors of Zp can be expressed as Zsp =
{Is0 , Is1 , ..., Isp−1}.

So, the probability that a query image Iq closes a loop
with some image in the neighborhood of the p-best candi-
dates can be expressed as follows:

p(Sq|Zsp) =

p−1∑
j=0

p(Sq|Isj ) (9)

where j represents the candidate image index. Figure 3
illustrates the result of applying eq. 9 (taking p = 5 and
s = 10) over a certain query image of one of the datasets
used in the experimental results. The x-axis represents all
the image indices of the trajectory and the y-axis is the
probability that the query image (Iq) closes a loop with
any of the other images.
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Figure 3: Probability vector example. Illustrates the prob-
ability (y-axis) of every image index (x-axis) to close loop
with the query image. In this example the five best candi-
dates (p = 5) have been taken.

As we mentioned above, the probability obtained in eq.
9 can be used on consecutive image queries to refine the
results. Thus, let Zsp(q) be the set of neighbors of all the
candidates to close a loop with the latest query image Iq .
Then, it is possible to take into account the probability
information of the previous queries to compute the prob-
ability that the latest query image closes a loop with any
other image (Ii), applying:

p(Sq|II) =

υ∑
ω=0

p(Sq|Zsp(q − ω)) (10)

where II = {I0, I1, ...Iq−s} and υ is the number of
prior queries to take into account for the calculation of
the final probability.

The result of eq. 10, for υ = 0, is a probability vector
similar to the one shown in fig. 3.

Finally, the similarity image search algorithm returns
a vector with the image indices of the p-best candidates,
which correspond to the p-highest peaks of the result of
eq. 10. Then, these candidates are passed to the next stage
where they will be rejected or confirmed as valid loop clo-
sures. In that sense, p is a configurable parameter that
must be set properly, in order to get a trade-off between
efficiency and precision. Large values of p increases the
computational time since the steps of descriptor match-
ing and epipolar geometry can be repeated p times, but
the probability of finding a valid loop-closure is higher.
Otherwise, small values of p significantly reduce the run-
time but decreases the probability of loop-closing. Exper-

iments demonstrate that values of p in the range of 2-5
produce the desired results.

4.2 Loop-Closure Validation

For each p-best candidate images selected in the previous
step, its descriptor matrix is recovered from the descrip-
tors database to perform a matching with the feature de-
scriptors of the query image. If the number of descriptor
matchings is above a pre-defined threshold, outliers are
discarded by imposing the epipolar geometry constraint
(xFx

′
= 0 where F is the Fundamental Matrix, x is the

vector containing the features of the query and x
′

is the
vector containing the features of the candidate) and apply-
ing RANSAC [17]. Two frames whose features fulfill the
epipolar constraint are very likely to represent the same
scene viewed from different viewpoints. If this process
ends consistently, that loop-closure is definitely accepted.

The execution time of the loop-closure validation stage,
which is the task that requires more computational re-
sources, depends only on the selected number of candi-
dates (p), the descriptor type, and the image size. There-
fore, this time is bounded and does not depend on the
length of the robot trajectory or the total number of pro-
cessed images. On the other hand, the similarity image
search stage compares the signature of the query image
with all the previously stored signatures, thus its complex-
ity is linear with O(kmT ) where T is the size of the hash
table (i.e. the amount of images already processed). How-
ever, the execution time of this stage is more than 7 orders
of magnitude lower than for the validation (using SIFT
descriptors and p = 5). This means that, to have an ex-
ecution time of the similarity image search stage higher
than the execution time of the validation stage, a table
with more than 107 entries is needed. Experiments on
a commercial laptop show that one signature-to-signature
comparison with k = 3 projections and SIFT descriptors
(m = 128) takes about 10ns. Thus, for example, a tra-
jectory comprising 10.000 images would spend approxi-
mately 0.1ms on the similarity image search stage for a
given query.
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5 Experimental Results
The experiments presented in this section are aimed to
validate, independently, the two main parts of the pro-
posed algorithm.

First, the Similarity Image Search method is evaluated
and compared with three well known alternatives: (a)
OpenFABMAP2 [16] which is one of the most popular
approaches of image retrieval for loop-closure detection
based on BoW, (b) VLAD [18] as one of the most out-
standing global descriptors in the literature; the imple-
mentation of VLAD included in the public VLFeat li-
brary [40] was used in all the following experiments, and,
(c) an efficient LSH algorithm for loop-closure detec-
tion recently presented in [34]. To compare with Open-
FABMAP2 and VLAD, we use four different datasets
taken at two completely different environments, two out-
doors and two underwater. Regarding the comparison
with the third approach, although there is no public im-
plementation of the Shahbazi and Zhang’s method, we
use the data given by the authors in their original work
[34] setting their proposal against BoW.

Secondly, the Loop-Closure Validation is evaluated to-
gether with the overall loop-closing algorithm and com-
pared to the work of Angeli et al. [1], which is one of the
most outstanding and accepted contributions to the loop-
closure detection and confirmation using BoW. Moreover,
the authors provide the image datasets (one indoor and
one outdoor) with which the experiments were performed
in the original paper, thus the comparison is straightfor-
ward.

For an easier understanding and to short, from now on,
our algorithm, as described in fig. 2, will be referred to
as HALOC, while its Similarity Image Search part will be
named sisHALOC. On the other hand, OpenFABMAP2
will be cited as BoW, [34] as LSH and [1] as FIBoW.

5.1 Similarity Image Search Results
One of the most important contributions of the present
proposal lies in the similarity image search stage. In the
first part of this section, the performance of sisHALOC is
compared to BoW and VLAD. Two outdoor datasets and
two underwater datasets are used in this experiment (Fig.
4 shows sample images of these datasets). The outdoor
datasets correspond to two public image sets of the Ox-

(a) Sample image of Oxford city
center dataset.

(b) Sample image of Oxford new
college dataset.

(c) Sample image of Valldemossa
harbor dataset.

(d) Sample image of Valldemossa
beach dataset.

Figure 4: Sample images from the outdoor (a and b) and
underwater (c and d) datasets.

ford city center and Oxford new college provided by the
Oxford Mobile Robotics group [8]. Images were grabbed
every 1.5 meters with a resolution of 640 × 480 pixels.
The city center dataset contains a total of 2474 images
while the new college dataset has 2146. The two other
datasets were recorded underwater, in the Valldemossa
(Mallorca, Spain) harbor and beach respectively. A Go-
Pro camera moving at a constant depth with a resolution
of 512 × 288 pixels was used to grab these datasets. The
harbor dataset has a total of 682 images while the beach
dataset has 738 images. Ground truth files are available
for all these datasets indicating the total number of loop
closures found in the trajectory and which images are in-
volved in each one of them.

For BoW and VLAD training, we used two additional
datasets to reproduce the situation in which a visual vo-
cabulary is built from images taken in a certain environ-
ment, but used for loop-closure detection in another one.
The UCID database [33] was used to train the Oxford se-
quences and an underwater dataset available to our group
from previous research [46] was used for the training of
underwater sequences.

The outputs of BoW, VLAD and sisHALOC are di-
rectly comparable since all of them return one array with
the best loop-closure candidates ordered by its probabil-
ity to close loop with the query image. This probability
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is also returned by BoW and sisHALOC so the final user
can implement a threshold to decide if a candidate will be
processed or not. In order to not depend on this threshold
when measuring the quality of the candidates provided by
the algorithms, in this experiment we only take into ac-
count the real loop closures (i.e. those appearing in the
ground truth). The experimental setup is as follows:

1. We used SIFT features for all methods: BoW, VLAD
and sisHALOC. All the other parameters were set
to the default for all the algorithms, except, a) the
cluster radius of BoW that was properly configured
to produce a vocabulary of 10K words and, b) the
VLAD number of clusters to k = 64 and the vec-
tor dimension after the PCA dimensionality reduc-
tion D′ = 64 [18]. We did not change any parame-
ter in the execution of these algorithms over the four
datasets, since one of the priorities was to demon-
strate their independence with respect to the image
and environment type.

2. Each image of the sequence was used as query to be
compared with all the previously processed, except
the 10 precedent (s = 10) to avoid closing loops
between consecutive images.

3. For each query, 5 loop-closure candidates were re-
quested for all the algorithms (p = 5).

4. For every position in the returned vector of candi-
dates, we computed its percentage of valid loop clo-
sures by validating every candidate with the ground
truth.

Figure 5 shows the accuracy of the three algorithms
over the outdoor and underwater datasets by means of the
percentage of valid loop closures for the top 5 candidates
of all the queries. From these graphs we can highlight two
main aspects: first, sisHALOC has the highest probability
to close loops, regardless of the environment type (out-
door and underwater) and number of selected candidates.
On the other hand, BoW and VLAD have a high depen-
dency on the environment type, since these algorithms al-
ternate good results depending on the dataset. Second,
the percentage of valid loop closures of BoW and VLAD
increase substantially as the number of candidates are in-
creased, while sisHALOC for p = 4 and p = 5 behaves

Performance Speed up over BoW
p LSH sisHALOC LSH sisHALOC
1 12% 33%

0.1 1.12 7% 39%
5 4% 26%

Table 2: Comparison of performances and runtime be-
tween LSH and sisHALOC.

similar than for p = 3. This means that, choosing p = 3,
the overall loop closing procedure will spend much less
time confirming or rejecting the candidates, without im-
plying a substantial loss of accuracy.

Table 1 illustrates the algorithm mean runtimes for ev-
ery dataset. This is the mean of the time that the algo-
rithm spend between a new query image arrives and the
potential candidates to close loop with it are calculated.
Therefore, this time has two parts: the calculation of the
global signature for the current query image (bounded)
and the comparison/search for possible loop closing can-
didates using the past images (unbounded). From Ta-
ble 1, BoW and sisHALOC have similar execution times,
being sisHALOC slightly better in all cases. Further-
more, VLAD runs on one order of magnitude larger than
BoW and sisHALOC. This is because of the calculation
of VLAD itself and not the search for candidates, which
is very fast. Although the VLAD implementation used is
optimized at runtime, calculating VLAD is expensive. It
is worth noting that, in the original work of VLAD [18],
the authors do not consider the calculation of VLAD vec-
tor in the runtime evaluation, i.e. the execution time they
present only takes into account the search for candidates.

Comparing sisHALOC to LSH is not as direct, since
neither the datasets nor the implementation are provided
by the authors. Fortunately, a detailed comparison of the
LSH and BoW methods is given in [34], using an outdoor
dataset. Thus, we use this information to calculate the
relative improvement of LSH respect to BoW and do the
same with sisHALOC. To be as fair as possible, we use
the outdoor Oxford city center dataset and the same set of
parameters from [34] to configure BoW.

The experimental setup is as follows:

1. From [34] we take the results of LSH2 configuration,
which has a good trade-off between performance and
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(a) Performance of Oxford city center dataset.
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(b) Performance of Oxford new college dataset.
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(c) Performance of Valldemossa harbor dataset.
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(d) Performance of Valldemossa beach dataset.

Figure 5: Performance results: the percentage of valid loop closures for every candidate index for the outdoor datasets
(a and b) and underwater datasets (c and d).

Runtime (ms)
Ox. city Ox. college Vall. harbor Vall. beach

sisHALOC 6.54 7.37 1.88 1.81
BoW 8.72 10.03 2.87 2.74
VLAD 70.79 70.86 32.85 31.39

Table 1: Runtime results: the mean runtime of the candidate search for every image in the trajectory on all datasets.
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execution time.

2. BoW with a clustering size of 1000 and sisHALOC
are both executed using SIFT descriptors for p =
1, 2, 5 and all the other parameters are set to default.

3. For every candidate index we compute the percent-
age of valid loop closures as the sum of correct
matchings (validated thanks to the ground truth) di-
vided by the total number of loop closures into the
trajectory (as in [34]).

4. The execution time of BoW and sisHALOC is the
mean of all the executions for p = 1, 2, 5.

Table 2 details the comparison of LSH and sisHALOC
(in terms of performance and execution time) to BoW.
For p = 1, 2, 5 the table shows the increased percent-
age in the number of loop closures found using LSH and
sisHALOC compared to BoW. The speed up of LSH and
sisHALOC over BoW is also illustrated. LSH always out-
performs BoW detecting at least 4% more loop closures
(for p = 5), but it requires a runtime 10 times greater
than BoW. In the original paper [34], 0.18 seconds are re-
quired to execute LSH for the search of image candidates
to close loop with a query, without taking into account the
time needed for the descriptor extraction process and for
the subsequent validation stage. This implies that LSH
could not be implemented in an online localization sys-
tem that needs loop-closure corrections at, at least, 5Hz.
On the other hand, sisHALOC highly improve the results
of BoW detecting a 39% more loop closures for p = 2,
for example. Moreover, its execution time is one order of
magnitude faster than LSH.

5.2 Loop-Closure Validation Results
The last stages of HALOC algorithm (shown in figure
2) accept or reject the image candidates provided by the
similarity image search part. In this section, the perfor-
mance of the overall process is analyzed using a set of
public image datasets different from those of Section 5.1
and that have already been used in FIBoW [1]: two pub-
lic sequences (one indoor and one outdoor) grabbed with
a monocular handheld camera with a resolution is 240
× 192 pixels. The indoor dataset has 388 images while
the outdoor has 531 images. These sequences are called

Lip6Indoor and Lip6Outdoor respectively and both are
provided with a ground truth file just as in the previous
experiments.

The performance of the loop-closing process is evalu-
ated with the following metrics:

Precision =

(
TP

TP + FP

)
;Recall =

(
TP

TP + FN

)
; (11)

where TP (true positives) is the number of images
correctly accepted as loop closures, FP (false positives)
is the number of images wrongly accepted as loop clo-
sures and FN (false negatives) is the number of im-
ages wrongly discarded as loop closures. A high Recall
value is desirable since it means that most of the available
loop closures have been detected. On the other hand, a
Precision of 100% is imperative as this implies no false
loop closures have been accepted. The inclusion of false
loop closures in the localization cycle would cause impor-
tant errors in the robot pose estimation.

The assessment of the loop-closing procedure is per-
formed for each dataset as follows:

1. SIFT features and default parameters are set for
HALOC.

2. Each image of the sequence is used as query to be
compared with all the previous ones, except the 10
precedent (s = 10) to avoid closing loops between
consecutive images.

3. For each query, the 5 best candidates are taken to
close a loop with it (p = 5).

4. Every candidate is passed to the validation stage (de-
scriptor matching and epipolar geometry) to be con-
firmed or rejected.

5. When a loop-closure is confirmed by both HALOC
and the ground truth, it is accounted as a TP . If the
ground truth does not confirm the loop-closure, the
candidate is labeled as a FP .

6. Finally, all the candidates not detected by HALOC
but marked as loop closings in the ground truth are
labeled as FN .
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FIBoW HALOC
Sequence #img Length Prec. Recall CPU Prec. Recall CPU i7 CPU Core2Duo
Lip6Indoor 388 6m28s 100% 68% 1m33s 100% 74% 0m19s 0m39s
Lip6Outdoor 531 17m42s 100% 70% 6m48s 100% 76% 1m08s 3m04s

Table 3: Comparison of loop-closure detection performances for Lip6 datasets.

The experiments detailed here have been executed on
two different machines: an Intel Core i7 at 2.20 GHz and
8GB of RAM and an Intel Core2Duo at 1.8GHz and 2GB
of RAM, to facilitate the comparison of HALOC against
FIBoW, where the experiments were processed on an Intel
Core2Duo at 2.33GHz.

Table 3 shows the results of the assessment for the se-
quences Lip6Indoor and Lip6Outdoor, compared with the
results obtained by FIBoW, using the same datasets. Table
3 shows the name of the image set, the number of images
of each trajectory (#img), the recording time (Length) of
the trajectory and the corresponding Precision (Prec.),
Recall, and execution time (CPU ) for both approaches.
Our method gives better recalls than the fastest approach
(SIFT without histograms) of FIBoW and it is 58% faster
for the indoor dataset and 55% faster for the outdoor one
(taking times of Core2Duo machine).

For all the experiments, our approach achieved a 100%
of Precision, which indicates the best rate of correct de-
tections. Also, high rates of Recall indicate that most of
the available loop closures are detected, which endows the
localization process with a high reliability.

Moreover, these experiments show how the global sig-
nature proposed in this paper is useful, when using de-
scriptors invariant to scale changes, translations and rota-
tions, to detect loop closings of the same area viewed from
different translated/rotated viewpoints or at different dis-
tance to the camera. Table 4 contains some of the loop
closures detected in the Lip6Indoor dataset for rotated,
scaled and translated images (see figure 6). This is the
consequence of that, a) the bucketing method explained
in section 3 forces descriptor matrices with the same di-
mension, and, b) the vectors used in the projections are
unitary. Table 5 shows the first 5 values (from ρ0 to ρ4) of
the new image signature of three image samples and for
two different types of projections. The columns named
û correspond to signature values generated using a ran-
dom unit vector (as explained in section 3) while columns

Query Image Retrieved Candidates
201 58 (r)
202 60 (r,s)
203 60 (r,s)
204 59 (r,s), 63 (r,s,t)
207 64 (r)
213 65 (r,s,t), 71(r,s)

Table 4: Some of the loop-closure candidates provided by
sisHALOC when executed over rotated, scaled and trans-
lated images of the Lip6Indoor dataset. Image numbers
correspond to the image filenames of the dataset. The in-
dices r, s and t indicate the following transformations be-
tween query and candidate: rotated, scaled and translated
respectively.

named CST correspond to values generated using a vec-
tor with all the components containing a constant value
equal to the mean of the unit random vector. The resulting
signatures are very similar so that the order of descriptors
in the descriptors matrix has a low influence in the calcu-
lation of the signature, i.e. rotation, scale and translation
effects inherent to SIFT or SURF features are preserved,
to a certain extent, in the global signature. However, they
are also different enough so that descriptor changes are
reflected in the different projections.

Assessment tools used in this section are provided in
conjunction with the HALOC C++ library in the public
repository [29].

6 Conclusions and Future Work
This paper proposes a new global descriptor-based image
signature especially designed to detect candidates for loop
closings, together with a complete procedure to validate
them. The aim of this new approach is to characterize im-
ages in a fast but reliable manner, in such a way that, im-
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(a) Query image (204). (b) Candidate image 1 (59). (c) Candidate image 2 (63).

(d) Query image (213). (e) Candidate image 1 (65). (f) Candidate image 2 (71).

Figure 6: Two examples (one per row) of a loop-closure detection for rotated, scaled and translated images of the
Lip6Indoor dataset. Left column represents the query image while center and right column are the first and second
candidate to close loop with the respective query.
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H1 H2 H3
û CST û CST û CST

ρ0 0.695 0.648 0.596 0.613 0.708 0.669
ρ1 0.291 0.267 0.327 0.352 0.611 0.647
ρ2 0.474 0.344 0.660 0.701 0.433 0.483
ρ3 0.315 0.306 0.674 0.630 0.307 0.323
ρ4 1.169 1.245 0.779 0.676 0.261 0.228

Table 5: Three samples of the first five signature values
for two types of projections: unit vector (û) and constant
value (CST ).

ages that overlap present signatures with small differences
and images that do not overlap present distant signatures.
The proposed image signature is obtained by projecting
the components of the visual features of every image onto
multiple orthogonal directions, generating a small vector
easy and fast to operate with. In this way, the percep-
tual aliasing present in clustering algorithms caused by
using the same visual words for different visual features
is avoided. Images with similar signatures are proposed
as candidates for loop-closing, and are passed to a second
stage where the existence of a loop-closure is confirmed
or rejected.

The performance of the proposed new method is com-
pared to three of the most popular approaches to similar-
ity image search: OpenFABMAP2, VLAD and LSH. The
assessment has been done by comparing four datasets,
two terrestrial and two underwater. The results of these
experiments have shown that HALOC algorithm outper-
forms OpenFABMAP2, VLAD and LSH on all the envi-
ronments, using the same set of parameters for each dif-
ferent technique. Although it is possible to adapt the con-
figuration of BoW and VLAD to the type of images and
carry out a tuning process to improve performance for a
given dataset, this paper demonstrates its high dependence
on the environment. Otherwise, HALOC performs well in
all the scenarios with the default parameters (which are in
fact very few) and with no training stage.

The overall algorithm used to confirm or reject the
possible loop closings provided by the similarity image
search stage has been assessed with two more datasets and
compared to one of the most popular BoW-based loop-
closure detection systems on the literature. Recall and
Precision result in comparable or even better figures, but

with a notably reduced execution time. The experimental
assessment also shows an excellent performance when us-
ing SIFT features and detecting loop closures that present
changes on scale, rotation and translation.

In conclusion, HALOC algorithm has shown to be a
multi-environment plug and play loop closure detector. It
achieves high performances for datasets grabbed indoor,
outdoor and underwater with a minor runtime than other
alternatives, without the need of tuning the parameters for
every scene and without an offline training stage. Further-
more, HALOC preserves, to a certain extent, the proper-
ties of features invariant to scale changes, rotations and
translations.

Finally, the implementation of HALOC is available to
the scientific community in a public C++ repository [29].
This package has been designed and coded focusing our
efforts on getting the maximum performance while mak-
ing an efficient use of memory and CPU.

Future work includes the integration of the technique
into a visual SLAM procedure to execute long trajectories
online.
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