

A Multi-Threaded Architecture for
Fast Topology Estimation in Image Mosaicing

Emilio Garcia-Fidalgo, Alberto Ortiz, Francisco Bonnin-Pascual and Joan P. Company

Abstract— Image mosaicing has gained increasing attention
in the last few years, specially for robotic mapping applications.
Due to the richness of the sensor data provided, several science
fields require the creation of large-area image mosaics for
further analysis. In this paper, we propose a novel and generic
image mosaicing approach that can produce seamless compos-
ites under different configurations in a reasonable amount of
time. Our approach is based on a multi-threaded architecture
which allows us to execute the different steps of the algorithm
simultaneously. To find the topology of the environment, we use
a visual index based on a Bag-of-Binary-Words scheme, which
is built in an online manner, and thus avoids the classic training
step. Our approach is validated under different environments
and camera configurations, showing that it can be used on
several scenarios producing coherent results. Furthermore,
the implementation of the algorithm is made public to the
community.

I. INTRODUCTION

Robots are becoming more important for automating tasks,
specially in places that present a difficult access for humans.
In this regard, several platforms have been recently proposed
for vessel inspection [1], [2], underwater surveying [3]–[8] or
aerial mapping [9]–[11], where the operating conditions can
be dangerous for human intervention. In the last decades,
cameras have been widely used for collecting information
from the environment, due to their low cost, the richness of
the sensor data provided and the availability of cheap power-
ful computers. When a robot is equipped with a camera, it is
usually of interest to obtain a large visual representation of
the operating area, which can be used for close-up inspection,
for localization and even for navigation tasks. Since the field-
of-view of conventional cameras is limited, image mosaicing
techniques have been developed for building a larger view of
the surveyed area. Mosaicing is then defined as the process
of stitching images together to provide a wide-area image of
the scene.

One of the key steps for image mosaicing is the estimation
of the topology. The quality and the time needed to obtain
the final topology are directly related to the method used
for describing images and the ability for finding overlapping
pairs. With regard to image description, most part of the
existent image mosaicing approaches make use of SIFT [12]

This work is partially supported by the European Social Fund through
grant FPI11-43123621R (Conselleria d’Educacio, Cultura i Universitats,
Govern de les Illes Balears) and by project INCASS. This project has
received research funding from the EU FP7 under GA 605200. This
publication reflects only the author’s views and the European Union is not
liable for any use that may be made of the information contained therein.

All authors are with the Department of Mathematics and Computer
Science, University of the Balearic Islands, 07122 Palma de Mallorca, Spain,
email: emilio.garcia@uib.es

or SURF [13], due to their invariance properties to illumi-
nation, scale and rotation changes. However, recently there
has been a growing interest in the development of binary
descriptors, such as BRIEF [14], ORB [15], BRISK [16]
or LDB [17], which are faster to compute and require less
storage space. In order to detect the existent relationships
between images, if no other source of information is present,
a frame-to-frame comparison approach can be used only
when the number of images is low. As it grows, this approach
becomes unfeasible and an indexing scheme is needed for
searching overlapping pairs in an efficient way. The Bag-
of-Words (BoW) approach [18], commonly used for image
retrieval, is of application here. However, despite its good
results, this technique presents several drawbacks that can
affect the global performance of a mosaicing algorithm, such
as the training step.

Image mosaicing has drawn attention of the robotics com-
munity some years ago, specially for mapping areas using
down-looking cameras, as the most part of the approaches
presented so far. However, it is less usual to find solutions
that make use of forward-looking cameras, as presented in [3]
for underwater environments and in [2] for a Micro-Aerial
Vehicle (MAV). Furthermore, image mosaicing algorithms
are usually validated to work in only one environment.

In this paper, we propose a novel image mosaicing
approach, named BIMOS (Binary descriptor-based Image
MOSaicing), which can produce seamless mosaics on dif-
ferent scenarios and camera configurations in a reasonable
amount of time. More precisely, we introduce a multi-
threaded architecture for image mosaicing that allows us
to decouple the strategic steps involved in the mosaicing
process, speeding up the time required to estimate the final
topology. To find overlapping candidates, we employ a binary
visual dictionary [19], which is based on a BoW scheme that
is built in an online manner. Our approach takes advantage of
the use of the ORB detector and descriptor [15] to accelerate
the image description process.

In our previous work [2], we presented an image mosaic-
ing approach to work with sequences of images captured
by a MAV. The resulting mosaics were then used during
a vessel inspection process. In this work, we go a step
further presenting a more generic mosaicing approach based
on a multi-threaded architecture and a new image selection
policy, which makes the current solution even faster than our
previous work, as will be shown in the results. Furthermore,
we evaluate our algorithm in several environments to validate
that it can be used in different scenarios and using several
camera configurations. As an additional contribution, we

release the code of BIMOS as a ROS (Robot Operating
System) node1 so that other researchers can use it.

The rest of the paper is organized as follows: Section II
describes our approach for indexing images, which is used
for detecting overlaps between images, Sections III and IV
describe our mosaicing approach, Section V reports the
experimental results obtained, and Section VI concludes the
paper.

II. SEARCH FOR OVERLAPPING PAIRS

As mentioned above, finding the existent relationships
between the images of the sequence is of prime importance
for the correct estimation of the topology. If we want to
avoid an image-to-image approach, we need a fast and
efficient method to determine overlapping image pairs. Image
retrieval methods developed recently are based on the BoW
approach [18]. Despite its good performance, this technique
presents several drawbacks, since it usually needs a training
phase, and the generated visual dictionary can be non-
representative for all environments. Furthermore, most BoW
approaches for image indexing are usually based on real-
valued descriptors [12], [13] and is less common to find
binary solutions [20]. In this work, we employ a method
for computing a vocabulary of binary features that can be
built online, avoiding thus the training phase. This method,
called OBIndex (Online Binary Index)2, is used as a base in
our approach to estimate the topology of the environment.
The algorithm is briefly reviewed next for completeness. For
further details, the reader is referred to [19].

Our method is built over on an incremental visual dic-
tionary based on a modified version of Muja and Lowe’s
approach [21]. The dictionary is combined with an inverted
index, which contains, for each visual word, a list of images
where it was found.

Since our approach relies on an incremental visual dic-
tionary based on binary features, an updating policy for
combining binary descriptors is needed. Averaging each
component of the vector is an option for real-valued descrip-
tors, but it cannot be considered for the binary case. OBIndex
uses a bitwise AND operation. Formally, being B a binary
descriptor:

Bt
wi

= Bt−1
wi
∧Bq , (1)

where Bt−1
wi

is the binary descriptor of the word wi stored in
the dictionary at time t− 1, Bq is the query descriptor and
Bt

wi
is the merged descriptor for word wi at time t. This

policy is inspired by the observation that each component
of a binary descriptor is usually set to 1 or 0 according to
the result of a comparison between a pair of image pixel
intensities. If the i-th bit is the same in both descriptors,
it means that the result of this comparison between the
pixel intensities was the same in both images. Otherwise,
we experimentally prioritize the use of the zero value by
means of the AND operation.

1http://github.com/emiliofidalgo/bimos
2http://github.com/emiliofidalgo/obindex

The index is initially built using the descriptors of the
first image as visual words. When a new image needs to
be added to the index, their descriptors are searched in the
index. Given a query binary descriptor, we search for the two
nearest neighbours traversing the tree from the root to the
leafs and selecting at each level the node that minimizes the
Hamming distance. Using these two neighbours, we apply
the ratio test [12] using a threshold of 0.8 to determine if
both descriptors represent the same visual feature. If positive,
the query descriptor and the visual word are merged using
(1) and the latter is replaced in the dictionary. Otherwise,
the query descriptor is considered a new feature and is
added to the index as a new visual word. In both cases, the
inverted index is updated accordingly, adding a reference to
the current image in the list corresponding to the modified or
added word. Given the features of a query image as input,
OBIndex returns an ordered list of images according to a
scoring process based on Term Frequency Inverse Document
Frequency (TF-IDF) weighting [22].

III. MOTION ESTIMATION

Once two images have been detected as an overlapping
pair, the alignment between them is determined. The model
employed to estimate the image motion plays a key role in
the image registration process. BIMOS assumes that either
the scene is planar or the distance from the camera to the
scene is high enough so as to neglect the depth changes. It is
also assumed that the camera is more or less perpendicular
to the scene and at a more or less constant distance.

Under these conditions, two overlapping images Ii and Ij
are related by a homography, a linear transformation repre-
sented by a 3×3 matrix iHj such that pi = iHj pj , where
pi and pj are two corresponding points from, respectively,
Ii and Ij , expressed in homogeneous coordinates. Despite
BIMOS can deal with affine transformations (six degrees of
freedom), we approximate the motion of the camera by a
simpler model using a similarity transformation, which has
four degrees of freedom comprising rotation, translation and
scaling. iHj is expressed as:

iHj =

s cos θ −s sin θ tx
s sin θ s cos θ ty

0 0 1

 =

a −b c
b a d
0 0 1

 , (2)

where s is the scale, θ the rotation angle and (tx, ty) the
translation vector. The estimation of any of these homo-
graphies starts by matching corresponding points between
images. Maximum Likelihood Estimation Sample Consensus
(MLESAC) [23] is next used as a robust estimation algorithm
to minimize the reprojection error for (2) and discard outliers.
Finally, for the case of a path of images Ii, Ik1 , . . . , Ikm , Ij ,
the associated transformation that relates frames Ii and Ij
can be computed by concatenating the corresponding relative
homographies iHj =

iHk1
k1Hk2

. . . km−1Hkm
kmHj .

IV. IMAGE MOSAICING USING BINARY DESCRIPTORS

In this section, we describe BIMOS, whose architecture is
outlined in Fig 1. Inspired by ORB-SLAM [24], the system

Mosaic Graph

Topology

Keyframe Selector

Image
Description

New
Keyframe?

Images

Loop Closer

Detect
Overlaps

Image
Index

Optimizer

Optimize
Mosaic Graph

Blending

Create
Mosaic

Mosaic

New KF

Add new KF

Optimize

Get Graph

New KF
Link KFs

Generate
Mosaic

Fig. 1. BIMOS architecture. The four threads (in light blue) interact with
a shared structure called mosaic graph (in light green). The arrows indicate
the main actions performed between the different components. See text for
further details.

consists of four threads that run in parallel, each one in
charge of a strategic step of the algorithm. This configuration
allows us to decouple the execution of the different parts of
BIMOS, reducing the time needed to generate a mosaic. All
threads interact with a shared structure called mosaic graph,
which is used to manage the topology of the environment
and the synchronization mechanisms between threads. The
keyframe selector thread, which is the entry to the system,
describes the input images and decides if they should be
part of the final composite. The loop closer thread detects
overlapping image pairs and the optimizer thread reduces
the global misalignment in the graph performing a bundle
adjustment process. Finally, the blending thread is responsi-
ble for generating the final image mosaic. BIMOS is ready
to work online using a ROS topic through which it processes
images on demand, contrary to most mosaicing algoritnms,
which work offline. In the following sections, we describe
the building blocks of BIMOS.

A. Mosaic Graph

The topology of the environment represents the relation-
ships that exist between the images conforming the mosaic.
In our approach, the topology is modelled by means of an
undirected graph, where nodes represent a selected set of
images that will be included in the final mosaic and links
represent the overlaps between them. In BIMOS, the selected
images are called keyframes.

The mosaic graph is a key component of BIMOS. It
manages the graph that represents the topology of the en-
vironment and provides mechanisms to ensure the exclusive
access of the different threads to this graph. In order to create
the final mosaic, keyframes need to be aligned according
to a common selected frame, referred to as the mosaic
frame. Then, each keyframe is associated to an absolute
homography MHi, which relates the correspondent keyframe
i with the mosaic frame M . In our previous work [2], the
mosaic frame was selected as the node with the highest
output degree after the graph construction was completed. In
this work, since BIMOS processes images on demand and
the graph is updated as new images arrive, the first keyframe

10

MH
0

3

2

MH
1

MH
2

MH
3

Fig. 2. Example of a mosaic graph comprising four keyframes with their
corresponding absolute homographies. The keyframe 0, coloured in green,
is the mosaic frame and, therefore, MH0 is the identity. The keyframe 3 is
the last one inserted in the graph. The node and the link with the keyframe
2, marked in blue, were added by the keyframe selector thread. The link
with the keyframe 0, marked in red, was added by the loop closer thread
after detecting an overlap between the images. The optimizer thread will
tune the absolute homographies of the graph.

is always selected as the reference frame of the mosaic. Its
absolute homography is thus the identity matrix. Each link
is also associated to a relative homography, which will be
used during the pose-graph optimization step.

Several threads of the system modify concurrently the
mosaic graph: the keyframe selector thread inserts new
keyframes in the graph, the loop closer thread links
keyframes as it detects overlapping image pairs and the
optimizer thread globally adjusts the absolute homographies
MHi. The mosaic graph structure and its use are illustrated
in Fig 2.

B. Keyframe Selection

This component is responsible for describing the input
images and deciding which ones are useful for building the
final mosaic. First of all, the ORB [15] algorithm is used
to detect and describe a set of keypoints in the image. We
use ORB due to its good tolerance to rotations [24], instead
of FAST [25] and LDB [17] as in our previous solution [2].
However, note that BIMOS is descriptor-independent and any
detector-descriptor combination including a binary descriptor
can be used. Besides, to favour accurate estimation of
the image transformations, a minimum number of features
(3000) is requested to be found, and they are required to
cover the full image in a more or less uniform way defining
a 4×4 regular grid over the image.

Instead of using all the input images, we apply a keyframe
selection policy in order to discard images which are not
deemed to provide a significant contribution to the mosaic,
avoiding unnecessary drift during the alignment process. This
contribution is measured as the amount of overlap between
the current image and the last keyframe inserted in the
graph, so that the higher the overlap the less relevant is the
image. More specifically, we compute the homography kH∗

i

between the current image i and the last inserted keyframe k.
Given the resulting set of inliers, we obtain the coordinates
of the corresponding points in each image. We then calculate
the minimal up-right bounding rectangle for each point
set, formally rj for image j, and, next, we evaluate the
percentage of overlap that this bounding rectangle represents

in the image. This overlap is expressed as follows:

Oj =
area(rj)
wj × hj

, (3)

where the function area(·) computes the area of the bounding
rectangle and wj and hj are, respectively, the width and the
height of image j in pixels. In order to take a final decision,
the overlap between the images is computed as:

kOi = min(Ok, Oi) . (4)

Then, if the number of inliers is higher than a threshold
τin and kOi is higher than another threshold τov , the current
image i is stored as a potential keyframe. Otherwise, the
last potential keyframe found is added to the mosaic graph,
and the transformation from the current image to the new
keyframe is recomputed. This policy allows us to ensure
that, despite we are discarding several images, there exists
a minimum overlap between consecutive keyframes and the
topology is not broken in different parts.

When an image i is added as keyframe into the mosaic
graph, it is linked with the previous keyframe. The link is
associated to the computed homography kH∗

i and the abso-
lute homography is initialized concatenating the homography
of the previous keyframe with kH∗

i . Then, following the
notation used in this paper, if the image i is added as the
keyframe k + 1 in the graph, kH∗

i becomes kHk+1 and,
consequently, the initial absolute homography can be written
as:

MHk+1 = MHk
kHk+1 . (5)

C. Loop Closing

This thread detects which keyframes close a loop with
previously added keyframes. To this end, we use our indexing
scheme explained in Section II. This component maintains
an instance of OBIndex, which indexes all the keyframes
defined up to the current time. When a new keyframe is
received, it is searched in the index, obtaining a list of can-
didates sorted from highest to lowest visual similarity. Next,
each candidate is evaluated in descending order, computing
the homography with the current keyframe. If the number
of resulting inliers is higher than a certain threshold, a link
between the corresponding keyframes is incorporated into
the graph. Otherwise, the process finishes and, if exists, next
keyframe is processed.

Since consecutive images are linked by default, we want
to find overlapping pairs at farther distances, which is of
prime importance during the optimization step. To achieve
this, keyframes are not directly indexed as soon as they
are processed. Instead, a buffer is used to store the most
recent keyframes, delaying their publication as overlapping
candidates for the following processed keyframes.

D. Optimization

Despite the efforts for accurately estimating the topology,
alignment errors still arise, resulting into globally inconsis-
tent mosaics. To correct this problem, this component is in
charge of performing a bundle adjustment step to jointly

minimize the global misalignment induced by the current
absolute homographies. The error function is defined as
follows:

ε =
∑
i

∑
j

n∑
k=1

‖pki − (MHi)
−1 MHj p

k
j ‖ + R(MHj)

‖pkj − (MHj)
−1 MHi p

k
i ‖ + R(MHi) ,

(6)

where i and j are two images related by a link, n is the
total number of resulting inliers when computing the related
homography, (pki , p

k
j) are the corresponding points for the

inlier k, MHi and MHj are the absolute homographies for,
respectively, images i and j, and R(MHi) and R(MHj) are
regularization terms. These terms prioritize homographies
with scale closer to 1 during the optimization, since BIMOS
assumes that the camera moves at a more or less constant
distance from the scene, and are defined as follows:

R(MHi) = γ
(
a2 + b2 − 1

)
= γ

(
(s cos θ)2 + (s sin θ)2 − 1

)
(7)

where γ is a regularization factor, s and θ are the, respec-
tively, scale and orientation contained in the homography,
and a and b are defined in (2). To reduce the influence
of outliers, we optimize, instead of (6), a Huber robust
error function h(ε) = {|ε|2 if |ε| ≤ 1; 2|ε| − 1 if |ε| > 1}.
The system of non-linear equations is solved by means of
the Levenberg-Marquardt algorithm using the Ceres Solver
library3 and the absolute homographies available so far as a
starting point. Usually a few iterations are needed to achieve
convergence.

Differently to our previous solution [2], where the bundle
adjustment step was executed once after the topology estima-
tion phase, in this work a short optimization is executed peri-
odically after the insertion of a certain number of keyframes
in the graph, limiting the optimization to a maximum of 30
seconds and 50 iterations. This parameter is of prime impor-
tance in the performance of the algorithm, since excessive
optimizations may slow down the process. Just before the
blending step, a longer optimization (a maximum of 600
seconds and 1000 iterations) is also performed to finally
adjust the absolute homographies. Note that, despite the
different convergence criteria, both optimizations adjust the
absolute homographies in the whole graph. Instead, a local
optimization could be performed only taking into account
the part of the graph involving a detected loop closure. The
implementation of this feature is proposed as future work.

E. Blending

This last component makes use of the multi-band blending
algorithm [26] to create the final seamless mosaic. As in [2],
this step is an adaptation of the stitching module imple-
mented in the OpenCV library, which includes seam finding
and exposure compensation. In BIMOS, this component runs
as a thread on demand, which permits generating mosaics at
different moments along the process.

3http://ceres-solver.org/

TABLE I
SUMMARY OF THE EXPERIMENTAL RESULTS. TIMES ARE EXPRESSED IN SECONDS AND ERRORS ARE EXPRESSED IN PIXELS.

BIMOS Approach [2]
Ex. Times Rep. Error Ex. Time Rep. Error

Seq Size #Imgs KFs Alig Opt Blend Total Avg Std Total Avg Std
VALLDEMOSSA1 320×180 201 80 14.44 0.42 38.71 53.57 2.25 2.27 187.52 2.71 3.02
VALLDEMOSSA2 1024×768 2504 335 330.07 0.44 2876.21 3206.72 8.08 14.75 9042.95 7.94 10.21

MAV 752×480 137 88 3.69 0.16 21.48 25.33 1.84 1.76 108.64 2.15 2.11
AIR1 800×533 71 32 5.34 0.50 68.65 74.49 4.29 6.61 224.39 4.12 3.24
AIR2 800×533 840 336 106.92 2.66 1008.43 1118.01 6.29 6.76 4766.64 5.94 5.31

V. EXPERIMENTAL RESULTS

We have validated our approach under different operating
conditions using several datasets. The results obtained for
each dataset are summarized in Table I, indicating the size
of the images comprising the dataset (Size), the total number
of images in the input set (#Imgs), the number of keyframes
selected by BIMOS (KFs), the execution times corresponding
to the different phases of the algorithm —global alignment
(Alig), global optimization (Opt), blending (Blend) and the
total time needed to build the mosaic (Total)— and, finally,
the average and standard deviation of the reprojection error
calculated using all the correspondences with the resulting set
of homographies (Avg, Std). Note that the global alignment
time also includes the small optimizations produced during
the estimation of the topology. We also include in the
table the execution time and the reprojection error of our
previous image mosaicing algorithm [2] in order to show
the performance improvement that BIMOS presents against
this solution. All experiments were performed on a desktop
computer fitted with an Intel Core i7 at 4.4Ghz processor
and 32GB of RAM memory.

As a first experiment, we use an underwater dataset
whose images come from the Valldemossa harbour seabed
(Mallorca, Spain) and a hand-held down-looking camera.
The dataset consists of 201 images of 320×180 pixels, which
comprises a large loop, what allows us to validate the ability
of our algorithm for recognizing previously seen places. A
total number of 80 images were selected by BIMOS, leading
to the final mosaic and the topology shown in Fig 3. Despite
the reprojection error is similar to one obtained with our
previous approach, the time needed to complete the mosaic
is only 53.57 seconds in front of 187.52, which implies an
increase of performance of 3.5x regarding the execution time.

The second dataset, also recorded at Valldemossa harbour,
is a more challenging environment in the sense that it
comprises a Posidonia meadow, characterized by a self-
similar texture and vegetation in continuous motion. A total
number of 2504 images were obtained, covering an area of
approximately 400 m2. BIMOS selects 335 as keyframes,
producing the mosaic and the topology shown in Fig 4. As
in the previous experiment, we obtain a coherent mosaic in
less time than our previous approach.

The third dataset was recorded using a MAV designed
for vessel visual inspection [27], which was fitted with a
752×480-pixel/58o-lens uEye UI-1221LE camera running
at 10Hz. Since currently we do not have access to a real
vessel, we created a canvas of size 2.5×4 meters using

400 600 800 1000 1200 1400

−300

−200

−100

0

100

200

Estimated Topology

X (pixels)

Y
 (

pi
xe

ls
)

Fig. 3. (top) Resulting mosaic obtained for the Valldemossa1 dataset.
(bottom) Topology estimated by BIMOS. Each keyframe is indicated using
a red circle, and the mosaic frame is labelled by a green triangle.

images from a real cargo hold of a container ship. Next,
we flew in front of the canvas with the MAV at a more
or less constant distance from the wall (1.5m), performing
a top down trajectory at the central part of the canvas.
Note that due to the more aggressive dynamics of the MAV
and the front-looking camera configuration, this is a more
challenging situation than the Valldemossa dataset. A total
number of 137 images were captured, from where BIMOS
selects 88 as keyframes. As in the previous experiment, the
reprojection error is lower than for our previous approach.
However, the most interesting result has to do with the
execution time of BIMOS, which is, according to our results,
4.3 times faster than our previous algorithm. The resulting
mosaic and the estimated topology are shown in Fig. 5.

As a fourth experiment, we employ an aerial image se-
quence taken at a high altitude. This dataset was taken using
a bottom-looking camera attached to an aerial vehicle [11],
which was controlled manually by an operator. Note that
this is a challenging scenario since the movement of the
vehicle is more aggressive than in the previous cases, what
makes the camera be far from perpendicular to the scene
sometimes. We have considered two sequences from this

−6000 −5000 −4000 −3000 −2000 −1000 0 1000

−6000

−5000

−4000

−3000

−2000

−1000

0

1000

Estimated Topology

X (pixels)

Y
 (

pi
xe

ls
)

Fig. 4. (top) Resulting mosaic obtained for the Valldemossa2 dataset.
(bottom) Topology estimated by BIMOS. Each keyframe is indicated using
a red circle, and the mosaic frame is labelled by a green triangle.

dataset, comprising, respectively, 71 and 840 images of size
800 × 533 pixels, corresponding to areas covering several
kilometers. Each sequence is identified in Table I as AIR1
and AIR2. The corresponding mosaics and the estimated
topologies are shown, respectively, in Fig 6. and Fig 7. As
in the other experiments, BIMOS is faster than our previous
approach keeping a similar reprojection error.

In general terms, BIMOS is faster than our previous solu-
tion, but still producing coherent mosaics and maintaining
a similar performance according to the reprojection error
measure. The multi-threaded architecture and the keyframe
selection policy can be considered as the main reasons to
this increment of speed. Typically, most of the BIMOS
execution time is invested at the blending step, an external
module adapted to be used in BIMOS, whose seam finding
algorithm is computationally demanding. We plan to make

−400 −200 0

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Estimated Topology

X (pixels)

Y
 (

pi
xe

ls
)

Fig. 5. (left) Resulting mosaic using the images collected by a MAV.
(right) Topology estimated by BIMOS. Each keyframe is indicated using a
red circle, and the mosaic frame is labelled by a green triangle.

−1000 −500 0 500

500

1000

1500

2000

2500

3000

3500

4000

Estimated Topology

X (pixels)

Y
 (

pi
xe

ls
)

Fig. 6. (left) Resulting mosaic using the AIR1 sequence. (right) Topology
estimated by BIMOS. Each keyframe is indicated using a red circle, and
the mosaic frame is labelled by a green triangle.

our own implementation of this step of the algorithm to
further improve the execution times of BIMOS.

VI. CONCLUSIONS

In this paper, we have described a novel approach for gen-
erating mosaics from images. Our scheme, named BIMOS,
is based on a multi-threaded architecture which allows us
to decouple the different parts of the algorithm, speeding
up the mosaicing process. The topology of the environment
is modeled by means of an undirected graph. To find the
overlapping pairs in an efficient way, this graph is created
using a visual index of binary features, which is built online.
We have validated our approach under different operating
conditions, obtaining coherent mosaics in all cases. As a
secondary contribution, the code of BIMOS has been made
public to the community as a ROS node.

As a future work, as said previously, we are interested in
improving the blending component of the algorithm, since it

−15000 −10000 −5000 0 5000

1

1.2

1.4

1.6

1.8

2

x 10
4 Estimated Topology

X (pixels)
Y

 (
pi

xe
ls

)

Fig. 7. (top) Resulting mosaic using the AIR2 sequence. (bottom) Topology estimated by BIMOS. Each keyframe is indicated using a red circle, and the
mosaic frame is labelled by a green triangle.

is an external code and is the main bottleneck of our current
solution. Finally, to further speed up the process, we plan to
adopt a local optimization strategy instead of adjusting the
whole graph during the global alignment process.

ACKNOWLEDGMENT

The authors would like to thank Tom Botterill and Fran-
cisco Bonin-Font for providing us, respectively, the aerial
and the Valldemossa datasets used in this work.

REFERENCES

[1] M. Eich, F. Bonnin-Pascual, E. Garcia-Fidalgo, A. Ortiz, G. Bruzzone,
Y. Koveos, and F. Kirchner, “A Robot Application for Marine Vessel
Inspection,” J. Field Rob., vol. 31, no. 2, pp. 319–341, 2014.

[2] E. Garcia-Fidalgo, A. Ortiz, F. Bonnin-Pascual, and J. P. Company,
“A Mosaicing Approach for Vessel Visual Inspection using a Micro
Aerial Vehicle,” in IROS, 2015.

[3] P. Ridao, M. Carreras, D. Ribas, and R. Garcia, “Visual Inspection
of Hydroelectric Dams using an Autonomous Underwater Vehicle,” J.
Field Rob., vol. 27, no. 6, pp. 759–778, 2010.

[4] N. Gracias, S. van der Zwaan, A. Bernardino, and J. Santos-Victor,
“Mosaic-Based Navigation for Autonomous Underwater Vehicles,”
IEEE J. Oceanic Eng., vol. 28, no. 4, pp. 609–624, 2003.

[5] O. Pizarro and H. Singh, “Toward Large-Area Mosaicing for Under-
water Scientific Applications,” IEEE J. Oceanic Eng., vol. 28, no. 4,
pp. 651–672, 2003.

[6] H. Madjidi and S. Negahdaripour, “Global Alignment of Sensor Posi-
tions with Noisy Motion Measurements,” IEEE Trans. Rob., vol. 21,
no. 6, pp. 1092–1104, 2005.

[7] A. Elibol, R. Garcia, and N. Gracias, “A New Global Alignment
Approach for Underwater Optical Mapping,” Ocean Eng., vol. 38,
no. 10, pp. 1207–1219, 2011.

[8] F. Ferreira, G. Veruggio, M. Caccia, E. Zereik, and G. Bruzzone, “A
Real-Time Mosaicking Algorithm Using Binary Features for ROVs,”
in MED, 2013, pp. 1267–1273.

[9] T. Kekec, A. Yildirim, and M. Unel, “A New Approach to Real-Time
Mosaicing of Aerial Images,” Rob. Auton. Syst., vol. 62, no. 12, pp.
1755–1767, 2014.

[10] H. Bulow and A. Birk, “Fast and Robust Photomapping with an
Unmanned Aerial Vehicle (UAV),” in IROS, 2009, pp. 3368–3373.

[11] T. Botterill, S. Mills, and R. Green, “Real-Time Aerial Image Mosaic-
ing,” in IVCNZ, 2010, pp. 1–8.

[12] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Key-
points,” Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110, 2004.

[13] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded Up Robust
Features,” in ECCV, vol. 3951, 2006, pp. 404–417.

[14] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF : Binary
Robust Independent Elementary Features,” in ECCV, 2010, pp. 778–
792.

[15] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An
Efficient Alternative to SIFT or SURF,” in ICCV, 2011, pp. 2564–
2571.

[16] S. Leutenegger, M. Chli, and R. Siegwart, “BRISK: Binary Robust
Invariant Scalable Keypoints,” in ICCV, 2011, pp. 2548–2555.

[17] X. Yang and K.-T. Cheng, “Local Difference Binary for Ultrafast and
Distinctive Feature Description,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 36, no. 1, pp. 188–94, 2014.

[18] J. Sivic and A. Zisserman, “Video Google: A Text Retrieval Approach
to Object Matching in Videos,” in ICCV, 2003, pp. 1470–1477.

[19] E. Garcia-Fidalgo and A. Ortiz, “On the Use of Binary Feature
Descriptors for Loop Closure Detection,” in ETFA, 2014, pp. 1–8.

[20] D. Gálvez-López and J. D. Tardos, “Bags of Binary Words for Fast
Place Recognition in Image Sequences,” IEEE Trans. Rob., vol. 28,
no. 5, pp. 1188–1197, 2012.

[21] M. Muja and D. G. Lowe, “Fast Matching of Binary Features,” in
Conference on Computer and Robot Vision, 2012, pp. 404–410.

[22] K. Sparck Jones, “A Statistical Interpretation of Term Specificity and
its Application in Retrieval,” J. Doc., vol. 28, pp. 11–21, 1972.

[23] P. H. Torr and A. Zisserman, “MLESAC: A New Robust Estimator
with Application to Estimating Image Geometry,” Comput. Vision
Image Understanding, vol. 78, no. 1, pp. 138–156, 2000.

[24] R. Mur-Artal and J. D. Tardos, “ORB-SLAM: Tracking and Mapping
Recognizable Features,” in RSS, 2014.

[25] E. Rosten and T. Drummond, “Machine Learning for High-Speed
Corner Detection,” in ECCV, no. 1, 2006, pp. 430–443.

[26] P. J. Burt and E. H. Adelson, “A Multiresolution Spline with Ap-
plication to Image Mosaics,” ACM Trans. Graph., vol. 2, no. 4, pp.
217–236, 1983.

[27] F. Bonnin-Pascual, A. Ortiz, E. Garcia-Fidalgo, and J. P. Company,
“A Micro-Aerial Platform for Vessel Visual Inspection based on
Supervised Autonomy,” in IROS, 2015.

