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Abstract— This paper reports on a novel technique to visually
detect loop closings in feature-poor underwater environments
in order to increase the accuracy of vision-based localization
systems. The main problem of the classical visual Simultaneous
Localization and Mapping (SLAM) for underwater vehicles is
the lack of robust, stable and matchable features in certain
aquatic environments. The presence of sandbanks, seagrass
or other underwater phenomena cause the visual features to
concentrate in regions heavily textured, leaving great image
areas completely free of visual information. In this situation,
the classical loop closing detection algorithms fail, resulting
in no corrections for the SLAM system. Our novel method
proposes to reinforce the loop closing detection by clustering
visual keypoints present in multiple keyframes and to match
features of clusters instead of features of keyframes.

This new technique is assessed on the particular application
of navigating an Autonomous Underwater Vehicle (AUV) in ma-
rine environments colonized with seagrass or with the presence
of sandbanks. Experiments conducted in several coastal zones
on the Balearic Islands show a high degree of success in the
visual registration of overlapping areas.

I. PROBLEM STATEMENT AND RELATED WORK

Underwater visual navigation is a highly challenging task
in feature-poor, complex and extremely irregular textured
environments. The situation is further complicated in shallow
scenarios with rocks, sandbanks, molluscs, anemones or
algae/seagrass that slightly swings with the swell. These
environments present important difficulties to obtain stable
visual keypoints, which results in instability in the calculation
of the vehicle visual odometry and a great difficulty to
register image pairs that partially overlap, especially if both
frames have been taken from different viewpoints, distances
or lighting conditions.

Figure 1 illustrates an example image of such environ-
ments, where (a) to (d) show, respectively, the ORB, SIFT,
SURF and FAST features [8] matched between two con-
secutive frames, to highlight the stable keypoints. Darker
areas correspond to the Mediterranean seagrass Posidonia
Oceanica (P.O.) and clearer areas correspond to stones.
Regardless the type of detector used, areas with seagrass
generate very few stable and robust keypoints, being the most
of them in areas with rocks. In this kind of environments,
only a small portion of the image is useful to generate
keypoints that characterize the region.
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FIG. 1: (a) to (d) feature matchings in two consecutive frames
for ORB, SIFT, SURF and FAST keypoints.

Usually, due to the difficultly of the environment, under-
water robot localization systems are performed combining
data provided by different sensors. Inertial units (accelerome-
ter or gyroscope), a DVL (Doppler Velocity Log), a pressure
sensor or other sensory systems are often integrated in a
Kalman filter to localize the vehicle [13]. But all these
approaches are prone to drift without a periodical correction
given by a loop closing detection mechanism based on, for
example, acoustic sonars [20] or stereo cameras [10], in the
well-known SLAM approaches.

In the classical visual SLAM systems, the loop closing
detection is performed between two keyframes [19], [15].
Normally, features of the last keyframe are matched with
the features of all previously grabbed keyframes to find
candidates to close a loop. The problem of applying these
techniques in the underwater scenarios described above is
that the feature matchings between pairs of keyframes may
be insufficient. It is very difficult to describe its loop closing
transformation, since the major part of the image does not
have enough salient visual information.

Indeed, many of the underwater visual SLAM algorithms
present on the literature [17] require the presence of artificial
structures, such as boats, dams or marine platforms to
succeed in the task. Very few visual SLAM systems are
tested on natural seabeds [1] but, in any case, experiments
have been always performed in environments rich in texture
[14]. In the field of underwater hull inspection, some authors
[7] improve the image registration process by labeling each
frame with a saliency score in such a way that only visually
salient keyframes are preserved. In [12], a particle filter is
used to delimit the candidate images to close a loop with a
query, in an sparse and optimized graph-map context.



FIG. 2: Sample SLAM trajectory with keypoints clustering
and loop closing detection between last inserted keyframe
(j-th) and two past keyframes (i-th and (i+1)-th).

The main contribution of this paper is a novel technique
that reduces the number of keyframes and increases the
effectivity in the loop closing detection in poor textured
underwater areas with respect to the classical solutions based
on keyframe-to-keyframe matching. To achieve this goal,
we designed a loop closing detection mechanism between
the last keyframe and multiple past keyframes. We take
advantage of the contrast between the poor textured (sand,
seagrass) and the well textured (rocks, coral) regions present
on the underwater scenarios to cluster the image keypoints.
Then, when an area of the environment is imaged several
times from different keyframes (i.e. viewpoints), although
the overlapping area between image pairs is small, the total
imaged area can provide a sufficient number of keypoints to
be recognized when revisited. So, in principle, detecting a
loop closure would be more effective if, instead of matching
features of two overlapping keyframes, the system matches
clusters of keypoints that can belong to several keyframes.

The idea is illustrated in figure 2. The dashed lines
represent the robot trajectory at two different time instants
of the mission. The triangles represent three robot positions
where keyframes have been taken. There are two consecutive
keyframes: (j−n)−th and (j−n+1)−th; and one isolated:
j−th. The cluster A is seen from keyframes (j−n)−th and
j−th, while cluster B is seen from (j−n+1)−th and j−th,
finally, cluster C belongs only to keyframe (j−n+1)− th.
It can happen that the feature matchings between the two
possible pairs of keyframes (i.e. (j−n)− th with j− th and
(j−n+1)− th with j− th) are not enough to close any of
both loops or, may be, there are sufficient matches but they
are concentrated at a very small region of the image, so the
transformation obtained in the registration process is very
inaccurate. However, it is clear that clustering features and
using the combination of matchings of the keyframe j − th
with the two keyframes (j − n)− th and (j − n+ 1)− th,
the probability of closing a loop increases considerably and
the final transformation will be more accurate. The example
of figure 2 illustrates the case where one keyframe closes a
loop with two past keyframes but our algorithm extends this
idea to several keyframes present on the region.

However, the cluster-based loop closing scheme can not
operate without a complete Graph-SLAM system. There-

FIG. 3: Flowchart of the overall stereo Graph-SLAM process.

fore we have taken the previous work based on an online
stereo Graph-SLAM [10] to integrate the new loop closing
mechanism, modifying all those aspects necessary for proper
operation.

This work is framed in the context of the ARSEA Spanish
national project (TIN2014-58662-R), where marine areas are
surveyed with an SPARUS II AUV [4] equipped with a stereo
rig looking downwards to detect, map and control extended
settlements of P.O.. This seagrass is an endemic specie of the
Mediterranean sea that forms large meadows which play an
extremely important role in the maintenance of the subsea
ecosystems.

The remainder of this paper is organized as follows:
Section II outlines the complete localization and mapping
pipeline; Section III shows the experimental setup and some
significant and successful results of loop closing detection,
mapping and localization in feature-poor marine areas with
P.O.. Section IV concludes the paper.

II. THE OVERALL GRAPH-SLAM PIPELINE

Figure 3 shows an overview of the complete SLAM
process, which incorporates three threads that run in parallel:
the keyframe pipeline, the loop detection and the graph opti-
mization. One of the main differences between the classical
SLAM algorithms and our implementation is the absence of
a tracking stage. Although we have tried some of the most
popular tracking algorithms [15], [19], these fail in complex
underwater environments. However, some stereo odometers
have proved to work in these scenarios [21]. Therefore, we
substitute the tracking stage for the viso2 [6] stereo odometer.
Synchronized images and odometry estimates are the system
inputs, in such a way that, an estimated camera position can
be assigned to each incoming image-pair. In the following
paragraphs every algorithm step is explained separately.

A. Keyframe Decision Mechanism

Only selected frames (so called keyframes) are passed to
the algorithm pipeline to reduce the computation time and
improve the localization performance. Most of the popular



FIG. 4: Two sample images of the DBSCAN keypoint
clustering with three clusters per image. Clusters are located
on rocks and darker parts of the images correspond to P.O..

SLAM systems use a descriptor matching threshold, together
with geometrical viewpoint constrains to decide when to
insert a new keyframe [15]. But the environments in which
we are working in this paper are poor in features, thus
the keyframe decision mechanism takes into account only
geometrical information. We use the method presented in
[3] to estimate the overlap between the current frame and
the last processed keyframe. When this overlap is smaller
than a threshold, a new keyframe is passed to the pipeline.

B. Keypoint Clustering and its Signature Generation

For every keyframe, ORB [18] keypoints are detected in
the image and clustered using the popular DBSCAN [5]
(see figure 4). Moreover, ORB descriptors are extracted and
matched between stereo image pairs to triangulate the 3D
coordinates of all clustered keypoints. For every cluster, its
centroid relative to the camera frame, named Xc, is calcu-
lated from the 3D keypoint coordinates. ORB is used because
its good performance and fast calculation and matching.

When the vehicle carries out long missions, searching loop
closing candidates by matching descriptors of the current
cluster with all previously stored ones has a high compu-
tational cost, non suitable for online applications. Instead,
every cluster of keypoints is transformed into a light global
signature (named HALOC [11]) by projecting the descriptor
matrix. The use of HALOC instead of common bag-of-words
methods for loop closing candidate selection is because its
high performance on underwater environments. The ORB
keypoints extracted in the previous stage are described with
SIFT since HALOC needs integer elements. In short, for
every cluster of keypoints, its SIFT descriptor matrix Dn×m
is extracted, where n is the number of visual keypoints
included in the current cluster and m is the length of
SIFT descriptors (typically, 128). The signature consists in
a discretization of the descriptor space by projecting each
column of Dn×m onto a set of k orthogonal directions
defined by unit vectors of n dimensions. All projections
are computed as the scalar product and concatenated in a
vector of k ·m dimensions, transforming the descriptor space
size into a fixed size: Rn×m → R1×k·m. k is set to 3
following the indications of [11]. Finally, SIFT descriptors
are discarded when signature is calculated.

Characterizing images with HALOC has shown to decrease
considerably the computation time and to improve the per-
formance in the processes of image comparison and loop

closing detection, with respect to the popular FAB-MAP,
Locality Sensitive Hashing (LSH) and VLAD, in underwater
environments [11].

C. Management of Graph and Signatures Database

The graph (based on the popular g2o framework [9])
consists of nodes and edges representing the arrangement
and connection of the clusters in the world coordinate frame.
Every new cluster is inserted into the graph as a new node
and stores the following information:
• A cluster unique identifier (i).
• The corresponding keyframe unique identifier (j).
• The estimate of the camera global position, named

Ewc(j), taken as the odometry input (viso2) for the
current keyframe.

• The node position (x,y,z), relative to camera frame,
named Xc(i). This is the cluster centroid.

• The node position (x,y,z), relative to the world frame,
named Xw(i).

Xw(i) is computed by:

Xw(i) = E′wc(j)Xc(i), (1)

where E′wc(j) is the first estimate of the corrected camera
global position corresponding to the current keyframe, j.
This position (E′wc(j)) uses all the graph optimizations until
the insertion of cluster/s of the keyframe j − 1 and the
odometry estimates of keyframes j − 1 and j:

E′wc(j) = E′′wc(j − 1)Dj
j−1, (2)

where
Dj

j−1 = E−1wc (j − 1)Ewc(j), (3)

and E′′wc(j−1) is the position of the camera corresponding
to keyframe j − 1 extracted from Eq. 1 after the last graph
optimization.

The edges between clusters are set following these con-
ventions:

1) The clusters corresponding to the same keyframe,
named co-framed clusters, are linked by edges weighed
with the maximum number of inliers allowed by the
loop closing procedure detailed in section II-D.

2) The clusters between consecutive keyframes are linked
by edges weighed with the number of inliers found
applying the same procedure of loop closing detection.
In the absence of inliers among all possible combi-
nations of clusters between the current and previous
keyframes, the closer two clusters are connected by
an edge weighed with the minimum number of inliers
configured in the loop closing detection stage.

3) When a loop closing is detected between clusters of
non-consecutive keyframes (as shown in figure 2), an
edge is added between all those cluster-pairs which
have a significant number of inliers. These edges are
weighed with its corresponding number of inliers.

Labeling edges that link co-framed clusters with a larger
value generates a strong nexus among them. If later, a loop
closing with these clusters is found, its corresponding link



in the graph will be the real number of inliers, establishing
weaker connexions more pliable in each graph optimization.

On the other hand, the system builds incrementally a
database (named Signatures Database) that contains an invert
index, which stores for each unique node identifier (i), its
cluster signature, the ORB descriptors and the 3D stereo
points (relative to camera frame) of all cluster keypoints.

D. Loop Detection and Validation

The loop closing detection stage is divided in three steps:
1) the selection of past cluster candidates to close loops with
the clusters of the current keyframe, 2) the search for more
cluster matches in the neighborhood of the candidates (if
any) and 3) the geometrical validation based on a RANSAC
scheme.

The search for loop closing candidates is performed by
means of two different systems:

1) By proximity. For each cluster present in the current
keyframe, the closest p clusters are retrieved using the
updated positions of the graph.

2) By cluster signature. For each cluster present in
the current keyframe, its signature is compared using
l1-norm (according to [11]) with all previous signa-
tures stored in the database. One signature-to-signature
matching with k = 3 expends about 10ns in a commer-
cial laptop. Thus, for example, a trajectory comprising
10.000 keyframes would spend approximately 0.1ms
on the search for loop closing candidates for a given
cluster. q clusters with the best signature matches are
taken as candidates to close a loop.

In both cases, the clusters corresponding to the previous
10 keyframes are not included in the search to avoid loop
closures with the immediately preceding neighbors.

Proximity and signature methods generate a set of loop
closing candidate pairs, e.g. proximity mechanism could
indicate that a cluster Ci of the current keyframe Kj has
the cluster Ci−s (with s > 10) as a loop closure candidate.
Possible repeated candidate pairs coming from both methods
are discarded before proceeding to the next step.

Once all possible loop closing candidates are obtained, the
following steps are applied for every pair of candidate cluster
and current cluster:

1) Retrieve the set Sr of r neighbor clusters of the
candidate Ci−s by querying the graph.

2) From the Signatures Database, retrieve the ORB de-
scriptors corresponding to Ci−s, named D(Ci−s), and
to Sr, named D(Sr).

3) The union D(Ci−s) ∪ D(Sr) is matched with all the
current keyframe descriptors, D(Kj), using brute force
matching with a hamming distance.

4) From the Signatures Database, extract the 3D stereo
points corresponding to the matched features. Then,
translate these 3D points to the world frame applying
the following equation to each 3D point:

Pw = E′′wc(x)Pc (4)

where Pc is the original 3D point relative to camera
frame and E′′wc(x) is the optimized global pose of the
keyframe containing Pc.

5) A 3D to 2D correspondences table is build using the
3D points calculated with Eq. 4 and the matched 2D
keypoints of Kj .

6) 3D to 2D correspondences are then passed to an itera-
tive RANSAC PnP algorithm to find a possible camera
pose [2], named Twc(j) for the current keyframe Kj .
A new loop closure is considered if a valid camera
pose with enough inliers is found. Then the consecutive
Loop Fusion stage (Section II-E) is responsible for
integrating this new loop closure into the graph.

In the case that a valid loop closure is detected, every inlier
relates a point contained in a cluster of the current keyframe
Kj with a point located in a cluster of the region defined by
Ci−s ∪ Sr.

A table indicating the number of inliers for each pair
of those aforementioned related clusters is built. This table,
together with the new camera pose, Twc(j), for the keyframe
Kj , will be used in the next stage to determine the edges and
its corresponding weights into the graph.

Notice that feature matching is not performed only on
a cluster pair, instead all the keypoints of the current
keyframe are matched with the keypoints in the vicinity
of the candidate cluster. Therefore, this region may contain
clusters from several past keyframes increasing considerably
the probability of loop closure detection.

E. Loop Fusion and Graph Optimization

When a loop closing is successfully detected by the
previous stage, the loop fusion mechanism is responsible for
inserting the different edges and its weights between clusters
(nodes) into the graph.

Loop Detection and Validation stage provides the cor-
rected camera pose for the current keyframe, Twc(j), and
a table containing the number of inliers for every cluster
pair.

The following operations are applied for every cluster
included in the current keyframe Kj :

1) The cluster global position, Xw(a), is recalculated
according to:

Xw(a) = Twc(j)Xc(a), (5)

where a ∈ N, 0 < a ≤ N , being N the number of
clusters of the current keyframe.

2) The edge between a cluster Ca of the current keyframe
and its corresponding counterpart Cb included in
Ci−s ∪ Sr is composed by:

Qb,a = X−1w (a)Xw(b), (6)

where Xw(b) is the position of Cb, extracted from the
updated graph with Eq. 1, substituting i for b.

At the end of this process, we obtain different edges
defined by a set of transformations as Eq. 6 and its number
of inliers. All of them are inserted into the graph weighed



(A) Viso2. (B) ORB-SLAM. (C) Stereo-SLAM. (D) Trajectory errors.

FIG. 5: Indoor Tank results. Plots (A), (B) and (C) illustrate the trajectories of viso2, ORB-SLAM and Stereo-SLAM
respectively. Plot (D) shows the trajectory errors for every approach with respect to the ground truth.

with the corresponding number of inliers as explained in
Section II-C. Finally a pose graph optimization is performed
to achieve global consistency.

III. EXPERIMENTS

We have performed an extensive experimental validation
of our system in two different environments: an indoor water
tank and an outdoor coast region of the Balearic Islands.

For each experiment, the trajectories estimated by a visual
odometer viso2 [6], ORB-SLAM [15] and our system, named,
from now on, Stereo-SLAM are computed. The choice of
ORB-SLAM as benchmark to be compared with our Stereo-
SLAM is because it is one of the most modern, popular and
versatile keyframe-to-keyframe registration SLAM systems
that we have proven to work on underwater environments.
However, ORB-SLAM is a monocular algorithm and, before
it can be directly compared with Stereo-SLAM, its pose
estimates must be conveniently scaled. To this end, the
AUVs used for the experiments have been equipped with
a pressure sensor that provides a depth measure in meters.
This measure, contrasted with estimates of the ORB-SLAM,
is used to compute a factor to scale the vehicle trajectory.

A. Indoor Tank

These experiments used data gathered during the TRI-
DENT project1, and were performed in a water tank located
in the University of Girona moving the AUV Girona500
[16] equipped with a stereo camera pointing downwards, in
several programmed trajectories. The water tank bottom is
covered with a poster that reproduces a marine environment
without 3D structure. Ground truth is extracted by matching
each image that has been captured online against the known
image of the poster printed on the floor of the pool. As
the size of the print is known, 6 DOF camera poses can
be computed minimizing reprojection errors of matched
features. In the experiment of Fig. 5, a survey 50m long
is performed passing several times through same locations
to close loops.

Figures 5-(a) to 5-(c) illustrate the trajectories of viso2,
ORB-SLAM and Stereo-SLAM with respect to the ground

1See http://www.irs.uji.es/trident/

Algorithm Trans. ME (m) #LC #KF
Viso2 0.86 - -

ORB-SLAM 0.74 4 271
Stereo-SLAM 0.35 5 128

TABLE I: Indoor tank experiments: trajectory mean errors
and number of loop closures and keyframes.

truth. Figure 5-(d) shows the trajectory errors concerning to
this indoor experiment. Errors are computed by comparing
each trajectory position against its corresponding point in
the ground truth. Quantitative values are shown in Table I.
The column Algorithm indicates the localization approach,
the column Trans. ME shows the translation mean error,
that is, the mean of the trajectory error shown in plot 5,
and finally, the columns #LC and #KF indicate the number
of loop corrections and the number of keyframes for the
SLAM algorithms. Stereo-SLAM closes loops between clus-
ters instead of keyframes, this causes that one keyframe can
close loop with several past keyframes. Thus, to be fair to
ORB-SLAM, we consider all the keyframe-to-keyframe loop
closures, that is, if one keyframe closes loops with 3 past
keyframes the total number of loop closings is increased by
3.

The printed image on the floor of the test pool is rich on
textures, thus ORB-SLAM and Stereo-SLAM close a similar
number of loops. Even so, Stereo-SLAM closes one more
loop, resulting in a more accurate trajectory with respect
to the ground truth. Moreover, Stereo-SLAM finishes the
trajectory using less number of keyframes, resulting in better
use of system resources.

B. Balearic Coast

A Sparus II AUV [4] equipped with a stereo camera
pointing downwards is used to survey areas of the Balearic
coast to detect, map and control extended settlements of
P.O. seagrass. Two different missions were programmed: one
small mission surveying an area of 10m x 12m (Fig. 7-a)
and a longer mission which surveys an area of 20m x 22m
(Fig. 7-b).

GPS is not available underwater and the vehicle does
not have any tracking system that can be used as ground
truth. However, in the first experiment, we installed an



(A) Viso2. (B) ORB-SLAM. (C) Stereo-SLAM.

FIG. 6: Balearic coast experiment 2 (large mission of 20m x 22m) results. Plots (A), (B) and (C) illustrate the trajectories of
viso2, ORB-SLAM and Stereo-SLAM respectively. In (C), keyframes are represented with dots and the edges (corresponding
to loop closures) are drawn in red.

Algorithm Trans. Error (%) #LC #KF
Viso2 7.85% - -

ORB-SLAM 7.43% 0 512
Stereo-SLAM 2.98% 11 223

TABLE II: Balearic coast experiment 1 (small mission of
10m x 12m) results: trajectory errors and number of loop
closures and keyframes.

AR − Marker on the seabed (see Fig. 7-a), located at a
perfectly known position with respect to the origin, to obtain
the absolute position of the vehicle when navigating over
the marker. There was no ground truth for any point of the
trajectory, but calculating the drift of the AUV at the marker
was possible.

The mission carried out in the first experiment of 10m x
12m is a grid over an area of 120m2 colonized with P.O.,
with steps each 5m and 6m along the axes, resulting in a
trajectory 88m long (see Fig. 7-a).

Table II details the experiment results. The column Algo-
rithm indicates the localization approach, the column Trans.
Error shows the translation error at the marker position,
and finally, the columns #LC and #KF indicate the number
of loop corrections and the number of keyframes for the
SLAM algorithms. ORB-SLAM did not close any loop during
the mission, thus its error at the marker is similar to the
visual odometry since only its tracking stage provided pose
estimates.

On the other hand, Stereo-SLAM is able to close up
to 11 loops across the entire robot mission. Stereo-SLAM
uses these corrections to significantly improve the position
provided by the visual odometer, from an error of 7.85%
to 2.98% at the marker position. In this experiment, the
total number of keyframes stored by the SLAM algorithms
also shows a significant improvement of Stereo-SLAM versus
ORB-SLAM.

For the second experiment2 of 20m x 22m, it was not
possible to install a marker because of the depth at which the
mission was carried out. However, this mission was longer

2See the video on https://youtu.be/C4U8eaPzrLg

(a) (b)

FIG. 7: Two programmed missions on the AUV control
application which integrates Google Maps. (a) Small mission
of 10m x 12m with an AR−Marker installed on the seabed
at a specific point and (b) large mission of 20m x 22m.

than the previous and included more programmed trajectory
crossings to facilitate the loop closure detections by the
SLAM algorithms. Therefore, based on the final shape of
the trajectories and the total number of closed loops, the
results can be assessed qualitatively.

The mission carried out in this experiment of 20m x
22m is a grid over an area of 440m2 colonized with P.O.,
with steps each 5m and 5.5m along the axes, resulting in a
trajectory 274m long (see Fig. 7-b).

Figure 6 illustrates the trajectories of viso2, ORB-SLAM
and Stereo-SLAM. The internal graph of the Stereo-SLAM
algorithm represents the clusters and their connections, but in
Fig. 6-(c) a graph corresponding to the keyframes is shown.
This is possible since the camera position for every cluster
is stored, as explained in Section II-C.

Table III indicates the number of loop closures and
keyframes for the ORB-SLAM and the Stereo-SLAM algo-
rithms. Note that ORB-SLAM closes only one loop while
Stereo-SLAM performs 121 loop corrections. In addition,
this large improvement in the number of loop closure de-
tections is achieved with a considerably smaller number of
keyframes.

Finally, figure 8 shows two samples of the set of 121
loop detections performed by the Stereo-SLAM algorithm. In



Algorithm #LC #KF
ORB-SLAM 1 1569

Stereo-SLAM 121 363

TABLE III: Balearic coast experiment 2 (large mission of
20m x 22m) results: number of loop closures and keyframes.

(a) Keyframe 225 closes loop with keyframes 102, 103, 104.

(b) Keyframe 279 closes loop with keyframes 18, 19, 20.

FIG. 8: Two keyframe to multi-keyframe loop closure sam-
ples for the Balearic coast experiment 2 (large mission of
20m x 22m). The colored lines correspond to inliers of
different clusters for the current keyframe.

both cases, the clusters of the current keyframe (top) close
loops with the clusters of the 3 past keyframes (bottom).
It can also be seen that these two samples are particularly
significant, since the number of inliers between pairs of
keyframes would not be enough to validate the loop, but
the combination of the inliers of all loop closings provides
an accurate transformation.

IV. CONCLUSIONS

This work presents a new loop closure detection method
which goes one step forward with respect to the current
SLAM approaches when applied in poor-feature underwater
environments.

The keyframe decision mechanism based on image overlap
instead of feature matching threshold ensures that the number
of keyframes is appropriate for these scenarios, reducing the
computational time and the system resources. Moreover, the
search for loop closure candidates using HALOC shows again
that it is better than BoW for underwater environments, as
detailed in [11]. Finally, the keyframe to multi-keyframe loop
closure mechanism (based on keypoint clusters) closes many
loops that would not be detected in a classical keyframe-
to-keyframe system. All these issues lead to a considerable

improvement in the AUV localization.
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