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Abstract—Distributed Embedded Control Systems (DECSs)
used for Real-Time (RT) critical applications must satisfy strin-
gent time requirements and attain high reliability. FTT-Ethernet
provides nodes of DECSs with real-time communication capabil-
ities, but does not include Fault Tolerance (FT) mechanisms. The
FT4FTT project aims at proposing a complete FT architecture for
RT critical DECSs. It uses a duplicated switched FTT-Ethernet
star and active node replication with consistent distributed
majority voting to respectively tolerate channel and node faults.
However, FT4FTT, in its current state, still lacks mechanisms
to prevent node redundancy attrition due to temporary faults
affecting the nodes and channel, which are the most likely types of
faults in DESs. This paper presents our ongoing work to complete
the FT4FTT architecture with appropriate fault-diagnosis and
reintegration mechanisms that overcome this limitation.

I. INTRODUCTION

The design of Real-Time (RT) critical Distributed Em-
bedded Control Systems (DECSs), specially adaptive ones, is
currently one of the main topics of research in the context of
embedded systems. In order to provide these critical systems
with the high reliability they require, the FT4FTT project
proposes a complete fault-tolerant (FT) architecture.

A system following the FT4FTT architecture has M nodes
interconnected by two enhanced HaRTES switches [1]. Each
switch embeds an FTT Master that cooperatively controls the
communication of multiple slaves. Communication is divided
into cycles called Elementary Cycles (ECs). Each EC starts by
the FTT Masters quasi-simultaneously broadcasting a control
message, the Trigger Message (TM), that indicates which
messages must be transmitted, and by whom, in the EC.

In FT4FTT, permanent hardware faults affecting the chan-
nel are tolerated by means of switch/link replication and switch
internal duplication and comparison [2]. Link temporary faults
are tolerated by time redundancy, i.e. by retransmitting critical
messages. For instance, the TM is sent multiple times in
each EC [3]. Likewise, as in the example of Figure 1, in
FT4FTT permanent and temporary hardware faults affecting
nodes are tolerated by means of active node replication [4] with
Distributed Consistent Majority Voting (DCMV), i.e. by error
compensation. To simplify the voting procedure each switch
policies the traffic coming to its ports, so that any arbitrarily-
faulty node is enforced to exhibit incorrect computation fail-
ures from the other nodes’ point of view.

The basic idea of distributed voting [5] is that each replica,
after some partial execution called segment, produces an output

Fig. 1. Example of control application relying on FT4FTT

called cc-vector. Replicas then exchange the cc-vectors and
vote on them to agree on the same result. This result is
called consensus cc-vector and each replica uses it to com-
pute the next segment. To guarantee that non-faulty replicas
produce the same consensus when voting, it is necessary to
enforce external replica determinism [6], i.e. that each replica
is provided with the same input values (cc-vectors). In [7]
and [8] we propose and implement a Consistent replication
Voting Protocol (CVP) to reliably vote while enforcing external
replica determinism. On the one hand it includes a sub-protocol
called Cc-vector Exchange Protocol (CVEP). Replicas use it
to exchange multiple times cc-vectors and their corresponding
acknowledgments (ACKs) during a Voting Communication
Round (VCR), to tolerate temporary faults affecting the links.
At the end of each VCR, the switches send to each replica a
Message-Status vector (MS-vector) that specifies for each cc-
vector both, whether or not its replica has transmitted it, and
which replicas have acknowledged it. Once the VCR ends,
each replica uses an algorithm called Voting Set-Up Algorithm
(VSUA), to decide which replicas can consistently vote based
on the content of the MS-vector.

Nevertheless, FT4FTT currently lacks mechanisms to pre-
vent temporary faults from causing node redundancy attrition,
i.e. to prevent temporary faults from making replicas to be
perceived as permanently faulty. Time redundancy is used to
tolerate temporary faults in the links, but not in the replicas.
Thus, a single temporary fault affecting a replica itself can
make it to behave incorrectly from then on, e.g. a replica
is permanently desynchronized if its reception buffer is tem-
porarily corrupted so that it does not receive the TMs of an
EC. Preventing redundancy attrition is mandatory to attain
high reliability, as temporary faults are the most probable
ones. Moreover, although FT4FTT provides time redundancy,
preventing node redundancy attrition also caused by link
temporary faults opens room for flexible FT mechanisms, e.g.
time redundancy can be reduced temporarily to devote more



bandwidth to other (FT) mechanism. Because all of these
reasons, current paper presents our ongoing work to complete
the FT4FTT architecture with adequate Fault-Diagnosis and
Reintegration (recovery), FDR, mechanisms that thoroughly
prevent node redundancy attrition due to temporary faults.

Finally, despite FDR mechanisms for RT critical DES have
been proposed in the past, there is a lack of literature address-
ing the recovery of replicas in active node replication schemes
for such systems. The few works that do it either assume
too restrictive failure semantics, or provide a very complex
solution as they consider an Event-Triggered architecture. The
most recent Time-Triggered control networks, such as TTP,
FlexRay or TTEthernet [9], [10], [11], propose membership
and clock synchronization mechanisms that tolerate the failure
of fail-silent groups of node replicas, e.g. called FTUs in [9];
but do not address how replicas, or even FTUs, recover.

Section II clarifies concepts essential to this work; presents
the main structural decisions; and sketches the strategy used to
identify and design the fault-diagnosis and reintegration mech-
anisms needed for the different faults. Section III explains the
classification of faults and outlines the mechanisms. Section
IV concludes the paper and points out future work.

II. DESIGN RATIONALE

A. Definitions

Next we clarify some concepts that are fundamental to
understand the rest of the paper. First, for non-faulty replicas to
provide a correct service they need to be replica determinate,
i.e. they must deliver the same outputs and perform the same
service state changes [6]. In this sense the DCMV does not
only allow nodes to compensate errors, but also enforces node
replica determinism. This is because each divergence among
replicas that is not provoked by a fault is resolved in each
segment when obtaining the consensus cc-vector.

Moreover, in DCMV each replica votes locally and uses
the consensus cc-vector to start the next segment. Thus,
besides compensating errors at the system level, DCMV also
allows each replica suffering from a temporary fault in a
segment to seamlessly recover, i.e. to correct its internal state,
by simply voting and, then, to become replica determinate
again. However, note that a temporary fault may affect several
segments, or it can manifest as permanent in which case the
replica has to be reinitialized. To recover when a temporary
fault manifests as such, a replica may need to diagnose it and,
then, perform additional actions prior to simply voting at the
end of a segment. For the sake of simplicity, we will use the
concept of reintegration to refer to the actions a replica carries
out to become replica determinate, independently of whether
these actions are complex or just a simple voting.

Finally, we consider that a non-faulty replica is replica
determinate at the end of a given segment when its operational
state allows the replica to produce, at the next segments and
in absence of faults, results that are correct and consistent
with respect to the rest of non-faulty replicas. In a control
application relying on FT4FTT, the operational state includes
the value of the sensors, actuators, set point (SP) and, also,
the control status, e.g. the error, the derivative and the integral
terms in the case of a PID controller.

Fig. 2. Extended Control Application Cycle

B. Extended Control Application Cycle

In FT4FTT each replica continuously repeats a sense-
control-actuate cycle that is divided into 7 phases, some of
which are used to vote on the sensors or actuators [12]. In the
present work we both extend the cycle by adding more actions
(tasks in [12]) to some phases, and change the way in which
the TM is used to trigger (dispatch in [12]) those actions.

Figure 2 depicts the phases and actions of the Extended
Control Application Cycle. The phases are renamed, but the
actions already proposed in [12] for each one of them are kept.
Specifically, in Sense (S) the replica acquires the value of each
sensor; in Exchange Sensor Values (ESV) it exchanges the
value of each sensor with the other replicas during one VCR
using the CVEP (see Section I); in Vote on Sensor values (VS)
the replica obtains the consensus value of each sensor (for
each consensus value it votes on the value it proposes and
the values received from the other replicas during the ESV);
in Control (C) it uses the consensus sensor values to calculate
both the actuation/s value/s and the control status; in Exchange
Actuation Values (EAV) the replica exchanges the calculated
actuation values with the other replicas during one VCR using
the CVEP; in Vote on Actuation values (VA) it obtains the
consensus of each actuation value (by voting on the value it
proposes and the ones received from the other replicas in the
EAV); and in Actuate (A) it sends each consensus actuation
value to the corresponding actuator.

Note that phases A, S, ESV and VS can be considered as
a first segment; whereas phases C, EAV and VA constitute a
second one. The voting carried out in VS was already used
in [12] to compensate erroneous sensor values, enforce replica
determinism, and seamlessly reintegrate any replica acquiring
a sensor incorrect value. Similarly, the voting in VA was
used to compensate erroneous actuation values, enforce replica
determinism and, also, to seamlessly reintegrate any replica
producing an actuation incorrect value.

In the extended cycle the replicas use the ESV/VS and
the EAV/VA to exchange (and vote on) not only the values
of the sensors and actuators respectively, but also the SP and
the control status. How and when the replica acquires the SP
is application dependent, e.g. it can receive the SP through
the network or can calculate it. In any case, divergences or
errors in the SP or control status would propagate from one
control cycle to the next ones, leading the replica to indefinitely
calculate the control status and the actuation values incorrectly.
Fortunately, on the one hand, exchanging and voting on these
values in the ESV/VS corrects discrepancies due to either
divergences/errors when obtaining them in the previous control
cycle, or errors in their storage. Thus, this exchange and
voting enforces replica determinism and provides seamlessly



reintegration with respect to these values at the end of the
first segment, i.e. these values can correctly serve to calculate
and update the actuation and control status in phase C. On
the other hand, exchanging and voting on these values in the
EAV/VA corrects discrepancies caused by divergences/errors
when calculating and/or storing them in C. This correction
does serve neither to enforce replica determinism nor to
seamlessly reintegrate. This is because the SP and the control
status are not needed to carry out the first segment and will be
corrected there in any case. However, the extra exchange and
voting in EAV/VA increases the robustness, as the replica will
be able to propose correct SP and control status in the ESV
of the next control cycle.

Finally, as concerns the change of how the TM is used
to trigger the actions of each phase, we propose to substitute
the internal EC counter used in [12] for that purpose by a
local TM sequence number counter. As it will be explained in
Section III, this allows the replica to properly reintegrate after
receiving no TM during one or more ECs.

C. Analysis of faults and identification of mechanisms

To identify and properly design the necessary FDR mech-
anisms, we first classified the faults a replica may encounter.
Then we exhaustively analyzed how each one of these faults
can affect the communication and operation of the replica,
what errors do these faults generate in each case, and how the
replica can address them.

Table I summarizes the results of this classification and
analysis. Rows represent the different classes of faults, and
columns which communication or operational capabilities of
the replica can be affected. Each cell sketches the mechanism/s
that are used to tolerate, diagnose and/or reintegrate from
the fault. Due to space limitations we cannot detail these
mechanisms and how they are used in each case. Next section,
though, briefly describes each kind of fault and outlines the
mechanisms used to address them.

III. FAULT-DIAGNOSIS & REINTEGRATION MECHANISMS

The types of faults and the FDR mechanisms we are
designing to address them are as follows.

1. Temporary hardware Faults affecting Links (TFL). They
corrupt messages and are tolerated using the time redundancy
provided by the TM replication or the CVEP. These mecha-
nisms were respectively proposed in [3] and [7].

2. Temporary Long Lasting hardware Faults affecting Links
(LLFL). They are TFLs for which the aforementioned time
redundancy does not suffice. They are tolerated by means of
node replication and majority voting. In addition, each affected
replica reintegrates by using a mechanism called TM resync
and/or a mechanism called Voting Reint. Point.

As concerns the TM resync, note that each TM conveys a
number called Trigger Message SeQuence number (TMSQ) the
switches increment every EC. As mentioned in Section II-B,
each replica increases a local Trigger Message SeQuence num-
ber Counter (TMSQC) in each EC. As long as a replica and its
corresponding links are non-faulty, replica’s TMSQC matches
TMSQ. When the replica detects a discrepancy between them,
it determines that it has lost all TMs of (TMSQ - TMSQC)

consecutive ECs. Moreover, since each value of the TMSQ
corresponds to a given EC of the control cycle, the replica
also knows during which ECs of which phases it has been
black out. Then, the replica reintegrates at the EC/phase level,
i.e. regains EC/phase synchronization, by forcing its TMSQC
to the value of the just received TMSQ. Afterwards, depending
on which ECs/phases it has lost, the replica determines which
actions it can perform in the current EC, e.g. if the current EC
is the last one of ESV and the replica was able to sense in S,
then it sends its sensor cc-vector and acknowledges the ones
by other replicas.

The replica uses the Voting Reint. Point mechanism to
reintegrate when it loses replica determinism with respect
to the operational state. The replica applies this mechanism
when after voting it detects that a fault led it to consider an
erroneous operational state value; or when after reintegrating
at the EC/phase level, it determines that it has not correctly
updated any of these values. This mechanism simply consists
in updating any incorrect value by the consensus one obtained
when voting. Also note that for voting, the replica does not
use the VSUA [7] any longer; but simply votes on both its
value and all cc-vectors it receives. The VSUA was designed
in absence of the FDR mechanisms herein presented and, thus,
it proposed a complex voting to take as much as advantage as
possible from the node/links redundancy in a best effort basis.

3. Permanent hardware Faults affecting Links (PFL).
They corrupt messages, manifest as permanent transmis-
sion/reception omissions, and are tolerated by link replication.

4. Temporary hardware Faults affecting Node replicas
(TFN). They affect replicas internal circuitry. If a TFN ham-
pers the replica capacity for receiving/transmitting, it may be
tolerated by means of the TM replication and/or the CVEP.
However, if these mechanisms do not suffice or the fault affects
the replica internal operations, e.g. the replica cannot calculate
the actuation, then the same mechanisms as for LLFLs apply.
In other words, the fault is tolerated by node replication and
majority voting, and the replica reintegrates using the TM
resync and/or the Voting Reint. Point.

5. Temporary hardware Faults affecting Node replicas
manifesting as Permanent (TFNP). They are TFNs preventing
a replica from correctly communicating and/or operating as
long as it is not reinitialized. A TFNP is diagnosed by differ-
ent mechanisms, namely the Communication Error Counter
(CEC), the Discrepancy Error Counter (DEC) and the You
Are Alive (YAA) watchdog. When so, the replica is reset and,
then, reintegrated by means of TM resync and Voting Reint.
Point.

The replica increases/decreases the CEC after each VCR
depending on whether or not it successfully transmit-
ted/received cc-vectors and acknowledgments in that VCR. For
this, the replica uses both the content of the MS-vector (see
Section I) and the status of its reception buffers. Likewise,
the replica increases/decreases the DEC after each voting
depending on whether or not it could successfully vote on
each value of the operational state, and whether or not its local
values disagreed with the consensus ones. When any of these
counters exceeds a given threshold, the replica resets itself.

The YAA watchdog is an independent device attached to
the replica. It is used to guarantee that the replica resets even



TABLE I. FAULT ANALYSIS SUMMARY

rx TM rx/tx cc-vec./ACK/SP sensor acquisition actuator/control calculation majority voting
TFL TM replication CVEP x x x

LLFL
node rep. & maj. vot.

TM resync
Voting Reint. Point

node rep. & maj. vot.
Voting Reint. Point x x x

PFL link replication link replication x x x

TFN

TM replication
node rep. & maj. vot.

TM resync
Voting Reint. Point

CVEP
node rep. & maj. vot.

Voting Reint. Point

node rep. & maj. vot.
Voting Reint. Point

node rep. & maj. vot.
Voting Reint. Point

node rep. & maj. vot.
Voting Reint. Point

TFNP

node rep. & maj. vot.
YAA watchdog

reset
TM resyn.

Voting Reint. Point

node rep. & maj. vot.
diagnosis (CEC)

reset
TM resync.

Voting Reint. Point

node rep. & maj. vot.
diagnosis (DEC)

reset
TM resync.

Voting Reint. Point

node rep. & maj. vot.
diagnosis (DEC)

reset
TM resync.

Voting Reint. Point

node rep. & maj. vot.
diagnosis (DEC)

reset
TM resync.

Voting Reint. Point

PFN node rep. & maj. vot.
node rep. & maj. vot.

degraded mode diagnosis
degraded mode notification

node rep. & maj. vot.
degraded mode diagnosis

degraded mode notification

node rep. & maj. vot.
degraded mode diagnosis

degraded mode notification

node rep. & maj. vot.
degraded mode diagnosis

degraded mode notification

when a TNFP makes it to crash or to be lost so that it does
not process the TM anymore. The YAA watchdog waits for
the periodic reception of a You Are Alive message (YAA),
sent from the switches within the TM, that has to traverse
the node application on its way to the watchdog. If the replica
crashes or gets lost, then the watchdog expires and resets the
replica. We are exploring the possibility of including within the
switches mechanisms to diagnose a replica as faulty; so that
the switches can force the replica to reset by not sending the
YAA. Moreover, to prevent the replica from forging the YAA,
we would piggyback within the YAA a sequence number based
on a look up table only known by the switches and watchdogs.

However, implementing fault-diagnosis mechanisms in the
switches is strongly limited. First, switches cannot rely on any
information received from the replica, as the replica is not
trustworthy. Second, to keep switches application-independent,
switches should only include error counters related to the ob-
served traffic, i.e. switches should only include error counters
they can manage based on the content of the MS-vector they
generate in each VCR, or on statistics about the transmissions
(scheduled in the TM) the replica omits.

6. Permanent hardware Faults affecting Node replicas
(PFN). They permanently affect replicas internal circuitry,
so that replicas cannot correctly communicate and/or operate
anymore. They are tolerated by active node replication with
majority voting. We are exploring the feasibility of switches
being able to diagnose, after several resets, when a replica can
communicate/operate in a degraded mode. If so the switches
could use a special version of the YAA to instruct the replica
to not reset but try to communicate/operate in that mode.

IV. CONCLUSIONS & FUTURE WORK

FT4FTT aims to provide a complete fault-tolerant archi-
tecture for real-time critical DECSs based on FTT-Ethernet.
Particularly, FT4FTT tolerates node faults by active node repli-
cation. But as all other architectures based on even the most re-
cent Time-Triggered (TT) control networks, currently FT4FTT
lacks mechanisms for nodes to diagnose and reintegrate from
temporary faults. This leads to node redundancy attrition that
ultimately limits system reliability and, thus, the benefits of
redundancy investment. This paper systematically outlines the
Fault-Diagnosis and Reintegration (FDR) mechanisms we are
designing to thoroughly cover all temporary faults leading
to node redundancy attrition in FT4FTT. We discovered that

the TT nature of FTT and some of its mechanisms, e.g. the
TM, allow designing FDR mechanisms simpler than the ones
literature proposes for Event-Triggered systems. We believe
that our FDR mechanisms can be used in other TT control
networks to some extent. We plan to formally verify these
mechanisms and quantify their reliability benefits.
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