
c©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

First Implementation and Test of a Node
Replication Scheme on top of the Flexible

Time-Triggered Replicated Star for Ethernet
Alberto Ballesteros, Sinisa Derasevic, David Gessner, Francisca Font, Inés Álvarez

Manuel Barranco and Julián Proenza
Dept. Matemàtiques i Informàtica, Universitat de les Illes Balears, Spain

a.ballesteros@uib.es, {sinishadj, davidges}@gmail.com, {manuel.barranco, julian.proenza}@uib.es

Abstract—Distributed embedded systems typically have real-
time and dependability requirements. Moreover, they must also
be flexible to changing conditions when they are deployed in
dynamic environments. The FT4FTT project aims at providing a
switched Ethernet architecture that can support distributed con-
trol applications that are predictable, highly-reliable and adap-
tive. FT4FTT relies on the Flexible Time-Triggered Replicated
Star for Ethernet (FTTRS) to tolerate channel faults. Moreover,
nodes’ hardware faults are tolerated by means of active node
replication with majority voting. In order to coordinately trigger
the execution of the tasks in the replicas, we designed the CD4NR
mechanism, in which the network assists in deciding what to
execute and when. This paper presents the first implementation
of the CD4NR mechanism on a real prototype of FTTRS and
the first testing of the complete system. For this we developed an
experimental setup, based on the hardware-in-the-loop technique,
running a real-time control application.

I. INTRODUCTION

Distributed embedded systems (DESs) typically have real-
time and dependability requirements. Moreover, when they
are deployed in dynamic environments, the communication
subsystem and the nodes must also be flexible to cope
with changing conditions. The FT4FTT (Fault Tolerance for
Flexible Time-Triggered Ethernet) project aims at providing
an architecture for a complete distributed system based on
switched Ethernet which could support distributed control
applications that are predictable, highly-reliable and adaptive.

The communication subsystem of FT4FTT is based on the
Flexible Time-Triggered communication paradigm (FTT) [1].
FTT is a master/multi-slave solution that provides predictabil-
ity and flexibility in the communications. In FTT the master
divides the communication into fixed-duration intervals called
Elementary Cycles (ECs). Each EC starts with the master
transmitting the so-called Trigger Message (TM) which con-
tains the EC schedule, i.e., the list of messages that the slaves
must transmit during that EC. This schedule is calculated
online according to the communication requirements of the
slaves, who can request their modification at any time.

FTT does not provide high-reliability, that is why in
FT4FTT we developed the Flexible Time-Triggered Replicated
Star for Ethernet (FTTRS) [2], a fault-tolerant network based
on FTT. More precisely, as sketched in Fig. 1, slaves are inter-
connected through two custom switches each one embedding
an FTT master. Additionally, FTTRS switches are connected

Switch 1
(master 1)

Switch 2
(master 2)

Slave A

Slave B

Slave C

slave link

interlinks

Fig. 1: FTTRS architecture.

between them by means of several links called interlinks in
order to coordinate their operation.

FT4FTT also provides mechanisms to tolerate hardware
faults affecting the nodes [3]. On the one hand, we use
active replication, i.e., nodes performing critical tasks are
replicated and each of these replicas executes the same code
in parallel. On the other hand, we use a distributed majority
voting algorithm to compensate the errors that nodes could
generate. Specifically, software is partitioned into segments
that are executed in parallel by replicas. For each segment
each replica produces an output, which is exchanged and voted
upon to reach a consensus. This consensus value is then used
by the replicas as input for the next segment.

The operation of the application is driven by the communi-
cation channel. This is because a given segment cannot start
without exchanging and voting on the output of the previous
one. In [4] we proposed the Coordinated Dispatching of tasks
and messages for Node Replication (CD4NR) mechanism,
which makes it possible to control the execution of the tasks
carried out by replicas and the transmission of the messages
they need to exchange. In [5] we already did a first assessment
of the CD4NR mechanism. However, this was done in a sim-
ulated non-real-time environment and with a non-redundant
version of the FT4FTT communication subsystem.

In this paper we present the prototyping and testing of
the CD4NR mechanism on a real FTTRS network. One
relevant contribution of this paper is the development of the
experimental setup used to test this mechanism, which runs a
real-time control application. Additionally, since the prototype
we have built includes the most important aspects of the node
replication and the communication subsystem, the testing we
did represents a first step towards a complete evaluation of the
design of the FT4FTT architecture.



II. SYSTEM ARCHITECTURE AND OPERATION

The architecture of the system we have prototyped, as shown
in Fig 2, can be divided into two parts: the plant and the
replicated distributed control system.

Fig. 2: System architecture

The plant represents a physical system that has to be
controlled. The interaction with the control system is carried
out by means of sensor replicas, each connected to one node
replica, and an actuator subsystem, which is composed of one
or more actuators connected to all the replicas.

The replicated distributed control system is composed of
several interconnected replicated nodes. Each of these replicas
is a processing unit that executes tasks related to the control
of the plant, as well as to the management of the replication.
As explained previously, replicas are interconnected through
FTTRS, which provides a duplicated star-based communica-
tion channel. FTTRS yields important benefits from the point
of view of the tolerance to faults. On the one hand, thanks to
the duplication of the channel, replicas can still communicate
even if one switch and/or some links fail. On the other hand, if
replicas fail, switches can prevent the propagation of the errors
they produce, which eases the design and implementation of
the fault-tolerant mechanisms [6].

A. Control Application Phases

Typical control applications cyclically perform three tasks:
sense, read the state of the plant by means of sensors; control,
determine the actuation to be performed at the plant to change
its current state to the desired state; and actuation, carry out
the action to change the state of the plant. The duration of one
control cycle is called sampling period (Ts).

In FT4FTT replicas perform additional tasks in which they
exchange and vote on the values of the sensors and on the
result of the actuation. That is why we proposed a more
complex scheme composed of seven phases:

1) Sense. Each replica retrieves, from the sensor attached to
it, the current state of the plant.

2) Exchange of sensor values. Each replica sends to the other
replicas, through the fault-tolerant communication channel,
its local view of the state of the plant.

3) Voting on sensor values. Each replica votes on all the sensor
values, i.e., the ones received from the other replicas and
the one acquired from the sensor attached. The result of
this vote is the so-called consensus sensor value. It should
be noted that the type of voting performed depends on the
type of data on which the vote takes place.

4) Control. Each replica uses the consensus sensor value to
determine the actuation to be performed at the plant.

5) Exchange of actuation values. Each replica sends to the
other replicas, through the fault-tolerant communication
channel, the output of the control algorithm.

6) Voting on actuation values. Each replica votes on all the
actuation values, i.e., the ones received from the other
replicas and the one obtained from the control algorithm.
The result of this vote is the so-called consensus actuation
value. Note that in this phase the type of voting performed
always assumes that all the actuations are identical.

7) Actuate. Each replica sends its consensus actuation value
to the actuator subsystem. This subsystem consolidates the
received values and performs the actuation.

In order for the FT4FTT network to assist in the triggering
of the execution of the phases in the replicas, phases are
mapped into ECs. The most intuitive mapping would be to
devote one EC to each of the phases. However, this is not the
only possible mapping. For instance, if the plant needs a very
tight control, we can reduce the sampling period by executing
several phases in one EC. In contrast, if the control system is
working in a very harsh environment in which errors affecting
the communication are likely to occur, we can devote several
ECs for phases 2 and 5 so that replicas have various chances
to exchange their messages.

B. Coordinated Dispatching of Tasks and Messages

To trigger the execution of each of the control application
phases in the correct instant, according to the pace dictated by
the network, we designed the Coordinated Dispatching of tasks
and messages for Node Replication (CD4NR) mechanism.

As explained previously, in FTT the master uses the TM to
periodically trigger the transmission of messages in the nodes.
The CD4NR mechanism takes advantage of this service to also
trigger the execution of tasks in the nodes.

More precisely, we provide each replica with an EC counter
and a dispatching table, i.e., a table specifying the tasks that
should be executed in each EC. Every time a replica receives a
new TM, it updates the value of its EC counter following Eq. 1,
where TM seqno is the so-called TM sequence number, a
numerical value masters insert into the TM to indicate number
of the current EC; and Ts is the sampling period of the
application measured in ECs. It should be noted that the way
in which the EC counter updates its value has been slightly
modified with respect the first proposal did in [4] to be able
to tolerate the omission of TMs. Once the application has
determined the value of the EC counter, the dispatching table
is consulted to executed the corresponding tasks.

EC counter = TM seqno mod Ts (1)

The main advantage of this solution is that the commu-
nication subsystem remains unaware of the operation of the
application. This is because, no changes are needed in the
operation of FTT to support this dispatching scheme.



III. IMPLEMENTATION

The implementation of the node replication scheme implied
the addition of specific features in various components and in
different layers of the architecture. As sketched in Fig. 3, we
can distinguish between the plant and the replicated distributed
control system, this last composed of a set of replicas (here
only one is represented) and the switches. Additionally, the
control system can be divided into three layers. First, the
Ethernet layer is responsible for transmitting the Ethernet
frames among the replicas and the switches. Second, the FTT
layer contains the modules providing the FTT services, namely
one FT4FTT master inside each switch and one FT4FTT
slave inside each replica. Finally, the application layer is only
implemented in the replicas and performs the control of the
plant, as well as the management of their redundancy. Next
we describe the operation of all of these components.

The plant is directly connected to the application of every of
the replicas through dedicated Ethernet links. Sensor replicas
register the state of the plant, while the actuator subsystem
gathers the actuation commands sent by the replicas, consoli-
dates them and performs the result actuation on the plant.

As concerns the control system, its operation starts with
the switches broadcasting the TMs, which act as notifications
for the replicas to know that the communication channel
is available. At this point, replicas request to the masters
the creation of all the communication resources necessary to
execute their applications. More specifically, the Initializers of
the replicas inform the masters about the size and periodicity
of the messages needed to be transmitted. If there is enough
bandwidth available, masters change the schedule so that
the TM triggers the transmission of these messages. It is
noteworthy that, for the replicas to perform their actions in
synchrony, the messages associated with these actions have to
be triggered in the same EC. However, there is no mechanism
in FTT to specify the precise ECs in which messages have
to be triggered. In order to force messages to be triggered in
specific ECs, we make the Initializers to send the initialization
messages in a certain order and each one in a certain instant.

After the initialization the control system starts its regular
operation. More precisely, every time a replica receives a TM
the Task triggerer is notified so that the value of its EC counter
can be update. It should be noted that in this implementation
we slightly modify Eq. 1 to also take into account the number
of ECs used in the initialization. Specifically, as shown in
Eq. 2, we introduce APP start, which is the EC in which
the initialization finishes and, thus, the application starts.

EC counter = (TM seqno−APP start) mod Ts (2)

Next, we describe the actions carried out in every of the
three tasks in which we have divided the application.

First, the sense task gathers from its associated sensor
replica in the plant the last sensor value registered.

Second, the exch+vote+ctrl task transmits the sensor value,
waits for the reception of the sensor values from the other
replicas, votes on all these values and executes the control
algorithm with the result of the vote. In this implementation
we assume that the state of the plant can be represented as
a numerical value like, for instance, the temperature in a
room. These values are not expected to be identical even if
sensors are operating correctly. Therefore, replicas perform a
type of voting that consists in removing the outliers and then
calculating the average of the resulting values.

Finally, the exch+vote+act task transmits the result of
the control algorithm, i.e., the actuation value, waits for the
reception of the actuation values from the other replicas, votes
on all of them and sends the result of this vote to the actuator
subsystem in the plant. As explained in Sec. II-A, the type of
voting performed on the actuations considers that their values
are identical and, thus, here we implemented a majority voting.

Note that, thanks to the clever initialization previously
described in this section, masters generate the TMs according
to the control scheme previously presented. That is, during
the sense task no transmission is triggered, but during the
exch+vote+ctrl and exch+vote+act tasks, masters trigger the
transmission of all the sensor and actuation values respectively.

Fig. 3: Detailed architecture of the control system



IV. TESTING THE SYSTEM

In this section we present the test campaigns we have carried
out to validate the CD4NR mechanism, as well as to verify its
implementation and its integration with the rest of the FT4FTT
fault tolerant mechanisms.

For this we have developed a new experimental setup that
allows us to test the behaviour of the system when running in
a real-time environment and with mixed traffic requirements.
This setup implements an inverted pendulum using the hard-
ware in the loop technique. That is, all the complexity of the
inverted pendulum (the plant) is simulated using Simulink, but
the control system is implemented in hardware. As shown in
Fig. 4, the final prototype is composed of one PC simulating
the plant, two switches and three node replicas implementing
the control system and two nodes exchanging a video stream.

This prototype executes three applications. First, replicas
execute two PIDs controllers to control both the angle and the
position of the inverted pendulum. This allows us to test the
node replication. Second, replicas 2 and 3 exchange the value
of a counter, whose periodicity is set by the network and can
be modified online. This allows us to test the flexibility of
the communications. Finally, a video server transmits a video
stream to a video client. This allows to test the support of
legacy nodes and the transmission of non-real-time traffic.

Fig. 4: Final prototype.

This setup has been used to test the tolerance of the system
to permanent faults in the channel. We have carried out two
test campaigns similar to the ones already carried out in [7]
but with a more complete implementation of the prototype.

In the first test campaign we test the tolerance of the system
to switch crashes. Specifically, we carried out two experiments
each one involving the crash of one of the switches. In both
experiments the system was able to continue its operation
normally. Moreover, no disturbances where noticed in the
control when provoking the crashes.

In the second test campaign we test the tolerance of FTTRS
and the node replication to permanent faults affecting the links
of the control system. More precisely, we provoke all the
possible combinations of failures in the replicas’ links and
in the interlinks. Since the control system contains 8 links
and each link can be online or offline, there are 28 = 256
different error scenarios. However, for the system to work

correctly, some assumptions were done in the design: at least
one interlink must be online and at least a majority of the
replicas (2 in this case) must be online. Consequently, we
test 162 scenarios of these 256 possible scenarios. Note that,
81 of the tested scenarios affected both links of one of the
replicas, i.e., they simulated the failure of said replica. In all
the 162 error scenarios the system operated correctly and no
disturbances were noticed in the control of the plant.

V. CONCLUSIONS AND FUTURE WORK

We presented the first prototyping and testing of CD4NR,
a fault-tolerant mechanism to control the dispatch of tasks
and the transmission of messages in replicated distributed
control systems based on FTT. The communication subsystem
of the prototype is FTTRS, a fault-tolerant network based
on FTT that provides a duplicated communication channel.
Moreover, we developed a new experimental setup, using the
hardware-in-the-loop technique, that runs a real-time control
application. This setup allowed us to test the behaviour of the
system when nodes have different real-time, dependability and
flexibility communication requirements. The testing performed
validated the design of the CD4NR mechanism and verified
its implementation and integration with FTTRS.

The next steps involve finishing the design and implemen-
tation of the recovery mechanisms that make it possible for
the replicas to reset and reenter into the system when they
are faulty. Moreover, after that we will be able to perform a
complete evaluation of the system.

ACKNOWLEDGMENTS

This work was supported by projects DPI2011-22992 and
TEC2015-70313-R (Spanish Ministerio de economı́a y competivi-
dad) and by FEDER funding. Sinisa Derasevic was supported by a
scholarship of the EUROWEB Project, which is funded by the Eras-
mus Mundus Action II programme of the European Commission.

REFERENCES

[1] P. Pedreiras and L. Almeida, “The Flexible Time-Triggered (FTT)
Paradigm: An Approach to QoS Management in Distributed Real-Time
Systems,” Proc. Int. Parallel and Distributed Processing Symp., 2003

[2] D. Gessner, J. Proenza, M. Barranco, and L. Almeida, “Towards a
Flexible Time-Triggered Replicated Star for Ethernet,” in Proc. 18th
IEEE Int. Conf. on Emerging Tech. and Factory Autom. (ETFA), 2013

[3] S. Derasevic, M. Barranco, and J. Proenza, “Appropriate consistent
replicated voting for increased reliability in a node replication scheme
over FTT,” in Proc. 19th IEEE Int. Conf. on Emerging Tech. and
Factory Autom. (ETFA), Barcelona, 2014

[4] S. Derasevic, J. Proenza, and M. Barranco, “Using FTT-ethernet for the
coordinated dispatching of tasks and messages for node replication,”
in Proc. 19th IEEE Int. Conf. on Emerging Tech. and Factory Autom.
(ETFA), Barcelona, 2014

[5] S. Derasevic, M. Barranco, and J. Proenza, “An OMNET++ Model to
Assess Node Fault-tolerance Mechanisms for FTT-Ethernet DESs,” in
Proc. 20th IEEE Int. Conf. on Emerging Tech. and Factory Autom.
(ETFA), Luxemburg, 2015

[6] A. Ballesteros, D. Gessner, J. Proenza, M. Barranco, and P. Pedreiras,
“Towards preventing error propagation in a real-time Ethernet switch,”
in Proc. 18th IEEE Int. Conf. on Emerging Tech. and Factory Autom.
(ETFA), Cagliary, 2013

[7] D. Gessner, A. Ballesteros, A. Adrover, and J. Proenza, “Experimental
evaluation of network component crashes and trigger message omissions
in the Flexible Time-Triggered Replicated Star for Ethernet,” in 2015
IEEE World Conf. on Factory Comm. Systems (WFCS), 2015


