
c©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

A First Performance Analysis of the Admission
Control in the HaRTES Ethernet Switch

Inés Álvarez∗, Mladen Knezic†, Luis Almeida∗, Julián Proenza‡
∗Instituto de Telecomunicações, Universidade do Porto, Portugal,

ines.alvarez.91@gmail.com, lda@fe.up.pt
†Faculty of Electrical Engineering, University of Banja Luka, Bosnia and Herzegovina,

mladen.knezic@etfbl.net
‡Departament de Matemàtiques i Informàtica, Universitat de les Illes Balears, Spain,

julian.proenza@uib.es

Abstract—There is a growing interest in developing embedded
systems capable of being deployed in dynamic environments
that may change in unpredictable manners. When such systems
are Distributed Embedded Systems (DESs) they must exhibit
flexibility at all levels of their architecture, including the network.
On the other hand, there is a clear trend in industry towards
using Ethernet-based protocols at the network level of DESs.
Nevertheless, Ethernet lacks appropriate support for real-time
(RT) communications, mixing different RT traffic and on-line
management of the Quality of Service (QoS). Several imple-
mentations of the Flexible Time-Tiggered (FTT) protocol over
Ethernet were proposed to cope with these drawbacks. FTT
is a master/multi-slave protocol that is able to simultaneously
convey real and non-real-time traffic and provides mechanisms
for dynamically changing the QoS of the network, including
Admission Control (AC). The AC is a fundamental component
for on-line network management, since it guarantees that each
participant gets the required QoS. This paper presents the
implementation in OMNeT++ of a simulation model of the AC in
the FTT HaRTES switch as well as a preliminary performance
study using that model.

I. INTRODUCTION

In recent years the industry has shown an increasing interest
on deploying embedded systems in dynamic environments that
may change in unpredictable manners. When these systems are
Distributed Embedded Systems (DES) they must exhibit the
required level of flexibility at all levels of the architecture,
including the network. Ethernet has become an appealing
technology in the development of DESs, due to its high
bandwidth, low cost, easy scalability, high flexibility and
Internet compatibility.

Nevertheless, Ethernet was not designed to provide support
for real-time communications, e.g. it does not implement
mechanisms to prevent packet bursts, which can lead to
unbounded delays and packet losses. Several proposals were
made to provide Ethernet with real-time guarantees either in
industry, such as Time-Triggered Ethernet [1], as well as in
academia, such as Dynamic TDMA-Ethernet [2].

Nevertheless, approaches to real-time Ethernet generally
lack support for open reconfigurability and adaptivity. This led
to the implementation of the Flexible Time-Triggered (FTT)
paradigm [3] over switched Ethernet. FTT provides flexibility
by supporting the transmission of hard real-time, soft real-
time and non-real-time traffic over the same network with

configurable bounds on each kind of traffic. Moreover, FTT
implements services that allow for the dynamic management
of the Quality of Service (QoS) that the network provides to
the participants, including an Admission Control (AC).

Admission Control guarantees that enough resources are
available in the network to transmit all the authorised informa-
tion, preventing packet delay or loss due to the occurrence of
bursts. Thus, AC is of great importance in order to guarantee
that real-time constraints are met even in dynamic and complex
environments that may change in unpredictable manners, in
which anticipating the behaviour of the network participants
can be hard or even impossible.

This paper describes a model of the FTT Admission Control
mechanism in the OMNeT++ simulation environment. More
specifically, we modelled the AC in the HaRTES implemen-
tation of FTT in which the master is embedded in the switch.
Simulation is a suitable solution, since it is usually faster to
carry out and facilitates the study of specific mechanisms when
compared to the implementation of a real prototype. We start
from a partial model of HaRTES for the OMNET++ INET
framework that is currently being developed at the University
of Banja Luka [4]. OMNeT++ is an extensible and modular
C++-based discrete event simulation library and framework
for the simulation of networks and distributed systems [5].
It provides a series of libraries and frameworks, such as
INET, an open-source library containing a large number of
wired, wireless and mobile network models [6]. This paper
also presents, to the best of the authors’ knowledge, the
first performance study of the Admission Control of HaRTES
switches using the referred simulation model.

II. OVERVIEW OF HARTES

FTT is a communication paradigm that supports time and
event-triggered traffic in a flexible manner, by providing
mechanisms for dynamically changing the communication
requirements. FTT follows a master/multi-slave architecture
where the master coordinates and manages the communication
among the application nodes (slaves). In the HaRTES imple-
mentation of FTT, the master is embedded inside the switch.

In FTT the communication is divided in slots of fixed dura-
tion called Elementary Cycles (EC). The duration of the EC is



a parameter that depends on the dynamics of the application
and must be set at the beginning of the system operation. In
each EC the master schedules the synchronous messages to
be sent by the slaves and triggers their transmission by means
of the Trigger Message (TM). The transmission of the TM
is carried out in a guarded window, isolated from the rest of
the traffic. The rest of the EC is divided into two phases, the
synchronous window for time-triggered data messages and the
asynchronous window for event-triggered messages.

In HaRTES the confinement of the traffic in the correspond-
ing window is forced by the switch. Therefore, each slave
does not need to wait until the synchronous window expires to
transmit its pending asynchronous traffic, but it can transmit it
as soon as the the node sends its scheduled synchronous mes-
sages. Nevertheless, the switch will only process or forward
the asynchronous messages during the asynchronous window
to guarantee the timeliness of the synchronous traffic.

In FTT the communication is carried out through virtual
communication channels called message streams. Each stream
is defined by a set of attributes that vary depending on whether
it is synchronous (Eq. 1) or asynchronous (Eq. 2).

SMi ≡ {Ci, Di, Ti, Oi, P ri, Si, [R
1
i ..R

ki
i ]}, (1)

AMi ≡ {Ci,miti, P ri, Si, [R
1
i ..R

ki
i ]}, (2)

The expressions show the stream attributes where Ci is the
transmission time of the messages sent through the stream, Di

is the relative deadline, Ti is the period and miti represents the
minimum inter-transmission time (for synchronous and asyn-
chronous traffic respectively), Oi is the offset (for synchronous
streams, only), Pri is the priority and Si contains the publisher
ID and R1

i ..R
ki
i contain the subscribers IDs.

These attributes are used by the master to produce the EC-
schedule every EC. All the information related to the streams
is stored in the System Requirements Database (SRDB) in
the master and in the Node Requirements Database (NRDB)
in each slave. The data in these structures is also used by
the AC to filter out changes on the requirements that would
jeopardize the timeliness of the traffic.

Whenever an FTT slave wishes to carry out a modification
in the communication requirements, be it adding, removing
or updating a stream, it issues a request to the master. When
receiving such a request, the master executes the schedula-
bility analysis in order to determine if there are available
resources to carry out the requested modification. In case a
stream is successfully created or modified the master sends
an announcement to all the slaves in the network for them
to update their NRDBs. On the other hand, when the master
receives a deletion request it simply removes the stream from
the SRDB and notifies the slaves to update their NRDBs.

In this work we implemented two different policies for
the schedulability analysis of the AC namely Rate Monotonic
(RM) and Earliest Deadline First (EDF) as described in [7].
These schedulability analyses are utilisation-based, that is,
the sum of the utilisation ratio of the streams per link must
be under a given limit. This utilisation limit is scaled to

(a) Model for the HaRTES switch (b) Model of a slave node

Fig. 1. Simulation models for the HaRTES switch and the slave nodes [4].

account for the Synchronous Window and the Elementary
Cycle lengths. Moreover, different analyses must be carried
out in the uplink and the downlinks. Regarding the uplink, the
utilisation only depends on the load generated by the node in
each EC. On the other hand, the transmission of the message
in the downlink also depends on the instant the frame is
transmitted in the uplink. Thus, the utilisation in the downlink
needs to account for the delay the message may suffer in
the uplink due to the transmission of messages with different
destinations. Further discussion on the analysis is out of the
scope of this paper. The reader can refer to [7] for further
details.

III. SIMULATION MODEL

Our Admission Control model is based on a preliminary
model of HaRTES built on top of the OMNeT++ INET
framework [4]. Since this preliminary version did not imple-
ment the AC all streams were statically defined during the
initialization phase and could not be modified or removed in
run-time. Fig. 1a shows the model of the HaRTES switch,
while Fig. 1b shows the model of a slave node. Even though
the initial model already included the Admission module, this
module was there as a hook for future implementation, only.
Moreover, the transmission of asynchronous messages was not
fully supported by the model. Thus, in this paper we report this
implementation work, providing the internals of such module
together with all the associated signalling messages needed for
an effective Admission Control. The modules modified in this
work are represented in the figures using dashed lines.

On the one hand, slave nodes are responsible for requesting
the creation, modification and deletion of streams. More
specifically, any request must be triggered by the application.
Thus, the App module was modified to support the creation
and transmission of requests. Regarding the Dispatcher mod-
ule, it was adapted to handle the transmission of slave requests,
as well as to process the master command messages received
from the switch as a result of the AC process. Moreover,
since now slaves can request the modification and removal
of streams, the NRDB module was modified to support the
deletion of streams. Note that the modification of a stream
can be achieved by deleting the existing stream and creating



TABLE I
EXPERIMENT PARAMETERS

Network load (ms) a Concurrency

Low Medium Heavy (# nodes)

Test 1 1 50 100 1
Test 2 1 50 100 10
a Time required to carry out the schedulability

analysis depending on the network load.

it again with the new parameters, so no specific functions
were added to this module to modify existing streams. It is
important to note that both NRDB in the nodes and SRDB
in the switch are instances of the same module, thus taking
advantage of OMNeT++ modularity.

On the other hand, in HaRTES, the master that is embedded
inside the switch is responsible for processing the slave re-
quests, carrying out the AC and informing the slaves about the
result. Thus, since both slave requests and master commands
are asynchronous messages the HaRTES switch model was
adapted in order to support the reception and transmission
of these messages. Specifically, the Port Guardian module
was adapted to forward slave requests to the asynchronous
queue, while the Forwarder module was modified to send slave
requests to the Admission module and to broadcast master
commands to the slaves. Finally, the Admission module was
adapted to process slave requests, to carry out the schedula-
bility analysis and to send master command messages.

Moreover, the definition of FTT messages was extended
to include slave request and master command messages. The
definition of the messages does not affect any module in the
switch or the node models, but it is orthogonal to both of them.

IV. STUDY AND RESULTS

As mentioned before, the communication in FTT is divided
in ECs and the duration of the EC is a parameter that depends
on the dynamic of the system. Moreover, the duration of the
EC limits the number of messages that can be transmitted
and processed in every EC. On the other hand, the load of
the network may impact in the duration of the schedulability
analysis. This is because the analysis is utilisation-based,
which means that the sum of the utilisation rate of all the
streams that transmit through a link must be under a certain
limit. Thus, in order to perform the analysis the master must
read all the entries of the SRDB several times. Therefore, when
the load of the network increases so do the size of the SRDB
and the time required to compute the schedulability analysis.

Here we want to study the impact that the duration of the EC
has on the performance of the Admission Control. To that end
we measure the time taken to complete the AC from the instant
a slave sends a request until that slave finishes processing the
master command and updates its NRDB. Moreover, since in
the normal operation of the system the load, and therefore
the duration of the schedulability analysis, may change with
time, we carried out several tests simulating different network
loads. Specifically, we considered three loads, labeled as

Fig. 2. Mean duration of the Admission Control for different EC lengths and
network loads, without concurrent requests.

low, medium, and heavy, which correspond to schedulability
analysis times of 1, 50 and 100 ms.

Note that OMNeT++ is an event-based simulator and
therefore it only simulates the passing of time when events
occur. Moreover, events in OMNeT++ are represented by the
transmission of messages. Thus, we modified the Admission
module to support the simulation of different times for the
schedulability analysis. This was done using a timer that is
set with the selected duration whenever there is a pending
slave request and that triggers the instantaneous analysis of
the request when the timer expires.

On the other hand, we also want to study the impact that
concurrent slave requests may have on the duration of the
AC. To this aim we considered two scenarios, one where the
processing of requests does not overlap and a second one in
which all the requests are issued at the same time. Table I
presents an overview of the parameters used.

The network used in all the experiments is composed of
one switch and ten slave nodes. Moreover, all the slaves in
the network are set to request the creation of a new stream.
Regarding the division of the EC, we considered the time
required for the transmission of TMs to be negligible. We also
considered the length of the synchronous and the asynchronous
windows to be equal. Therefore, each window represents 50%
of the total EC duration.

Fig. 2 shows the mean duration of the AC for different EC
lengths and considering different network loads. As we can
see, the mean duration of the AC grows as the length of the
EC increases, for all considered network loads. In scenarios
with medium and heavy loads the processing of slave requests
can be delayed in the switch by the forwarding or processing
of other frames. Therefore, having longer EC lengths increases
the number of frames that can interfere with the requests.

In order to understand why the EC length has such an impact
even in networks with low load we can look at Table II, that
presents the numerical results of the experiment. We can see
that the mean duration of the AC is increased by approximately
the half of the EC length in most cases. In scenarios with a low
load slaves have few or no synchronous frames to transmit and
therefore they can transmit the slave requests shortly after the



TABLE II
MEAN DURATION OF THE AC FOR DIFFERENT EC LENGTHS NETWORK

LOADS AND NO CONCURRENT REQUESTS

EC(ms) 1 2 5 10 20 50 100

Low 1.50 2.61 3.62 6.12 11.12 26.12 51.12
Medium 50.62 51.12 52.60 55.00 70.2 75.00 150.22
Heavy 100.50 101.12 102.62 105.12 110.12 125.12 150.12

EC has started, during the synchronous window, as explained
in Section II. Nevertheless, the processing of requests by the
master is delayed until the asynchronous window starts, to
protect the timeliness of the synchronous traffic. Therefore,
the size of the windows, and thus the EC, has a severe impact
on the duration of the AC.

Fig. 3 shows the mean duration of the Admission Control
for different EC lengths with concurrency of slave requests. If
we compare these results to the ones obtained in the previous
experiment, we can see that, as expected, the concurrency
of requests impacts the time needed to complete the AC.
Moreover, we can see that the impact is worse when the load
of the network increases. This is because when the load is
low and the size of the EC is large, several requests can be
completed within the same EC, while when the load increases
it is not possible to process more than one request per EC.

Finally, observing the results we can conclude that it might
not be possible for slaves to predict the time that will take
for the AC to be completed, since it will vary depending on
the concurrency level that is unknown by the nodes. This is
particularly critical since the AC process in HaRTES does not
consider the transmission of any message to notify the slaves
when a request to create or modify a stream is rejected by the
master. Therefore, it may be impossible for slaves to know
when a request has been rejected, lost or simply delayed by
the interference of other frames. Furthermore, if slaves are set
to retry the creation of streams when no response is received
from the master, this could force the master to process several
times a request that has been rejected, thus delaying requests
of other streams. Hence, it is crucial to add the notification of
rejected requests to the AC process.

V. CONCLUSIONS AND FUTURE WORK

In this paper we present the implementation of a simulation
model in OMNeT++ for the Admission Control in HaRTES
and a preliminary performance study carried out using that
model. Our Admission Control model is based on a partial
model of HaRTES built on top of the OMNeT++ INET
framework that is currently being developed at the University
of Banja Luka, and it includes both, a model for the HaRTES
switch with the master embedded and a model for slave nodes.
We studied the impact that the EC length has on the duration of
the Admission Control. For the experiments we used a network
with a single switch and ten slave nodes. We simulated
different network loads and we considered scenarios with and
without concurrent slave requests. The results obtained show
that the length of the EC has an important impact on the

Fig. 3. Mean duration of the Admission Control for different EC lengths and
network loads, with concurrent requests.

duration of the AC, that increases with the size of the EC. We
also saw that it is not easy for slaves to determine a bound for
the duration of the AC, and concluded that this is specially
critical since HaRTES does not yet consider any mechanisms
to acknowledge slaves when their requests are rejected. We
recommend this mechanism is added.

As part of the future work, we are currently working on
extending the existing model to develop the model for FTT-
SE, an FTT implementation over Ethernet that uses a COTS
switch. This model will allow us to compare both implemen-
tations, in terms of performance and reliability. Moreover,
we want to extend the comparison to include the Stream
Reservation Protocol implemented in the AVB standards.

ACKNOWLEDGEMENTS

This work was supported by project TEC2015-70313-R
(Spanish MINECO/FEDER), project “DES4DES: Discrete
Event Simulation for Distributed Embedded Systems” (Min-
istry of Science and Technology of Republika Srpska) and by
a grant of the Instituto de Telecomunicações, Portugal.

REFERENCES

[1] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer, “The Time-
Triggered Ethernet (TTE) Design,” in 8th IEEE International Symposium
on Object-oriented Real-time distributed Computing (Seattle, Washington:
TU Wien), May 2005, p. 2233.

[2] G. Carvajal, L. Araneda, A. Wolf, M. Figueroa, and S. Fischmeister, “In-
tegrating Dynamic-TDMA Communication Channels into COTS Ethernet
Networks,” IEEE Transactions on Industrial Informatics, vol. PP, 2016.

[3] P. Pedreiras and L. Almeida, “The Flexible Time-Triggered (FTT)
paradigm: an approach to QoS management in distributed real-time
systems,” in Proc. Int. Parallel and Distributed Processing Symposium.
IEEE Computer Society, 2001.

[4] M. Knezic, A. Ballesteros, and J. Proenza, “Towards extending the
OMNeT++ INET framework for simulating fault injection in Ethernet-
based Flexible Time-Triggered systems,” in Proceedings of the 2014 IEEE
Emerging Technology and Factory Automation (ETFA), Sept 2014.

[5] A. Varga, “The OMNeT++ discrete event simulation system,” in In
ESM01, 2001.

[6] “The INET Framework—An open-source OMNeT++ model suite
for wired, wireless and mobile networks.” [Online]. Available:
https://inet.omnetpp.org/

[7] R. Marau, L. Almeida, P. Pedreiras, K. Lakshmanan, and R. Rajkumar,
“Utilization-based schedulability analysis for switched Ethernet aiming
dynamic QoS management,” in Emerging Technologies and Factory
Automation (ETFA), 2010 IEEE Conference on, Sept 2010, pp. 1–10.


