
978-1-5090-1314-2/16/$31.00 c�2016 IEEE

Improving Maintenance of FT4FTT: Extending it to
Monitor and Log its Available Redundancy via

Internet
Manuel Barranco, Adel Zendouh, Alberto Ballesteros, Julián Proenza

DMI, Universitat de les Illes Balears, Spain
Université Constantine 2 - Abdelhamid Mehri, Algeria

manuel.barranco@uib.es, zendouhadel@gmail.com, a.ballesteros@uib.es, julian.proenza@uib.es

Abstract—The FT4FTT project aims at proposing a complete
Fault-Tolerant (FT) architecture for Real-Time (RT) critical
adaptative Distributed Embedded Control Systems (DECSs)
based on Ethernet. FT4FTT tolerates permanent faults in the
channel and nodes by using a duplicated Flexible Time-Triggered
(FTT) Switched Ethernet star and active replication of the
nodes. It also includes mechanisms for node replicas to diagnose
and reintegrate after temporary faults affecting the channel or
their internal circuitry. However, FT4FTT has no mechanism
to deal with channel and node redundancy attrition provoked
by permanent faults. This paper presents our ongoing work to
extend FT4FTT to both monitor/log its available redundancy, and
to remotely access this information via Internet. This will allow
to carry out proper maintenance actions, for instance, to timely
restore the adequate redundancy level, forecast repairs, and assess
the flexibility of the FT mechanisms of adaptative systems.

I. INTRODUCTION

Providing high reliability for Real-Time (RT) Adaptative
Distributed Embedded Control Systems (DECSs) is becoming
a fundamental issue, as the criticality and the variability
of the operational conditions of the systems under control
are increasing. The FT4FTT project is devoted to proposing
a complete Fault-Tolerant (FT) architecture to provide high
reliability for RT critical adaptative DECSs.

FT4FTT is based on the Flexible Time-Triggered switched
Ethernet (FTT-Ethernet) protocol [1]. FTT-Ethernet is a mas-
ter/multislave approach that provides flexible RT communica-
tion, but that has no Fault-Tolerance (FT) mechanism. Thus,
an FT4FTT control system includes mechanisms to tolerate
faults affecting the links, the switch, the master and the slaves
(nodes). As it will be explained later, F4FTT provides fault
tolerance basically by means of hardware and time redundancy,
e.g. by actively replicating the switches, the links, the critical
slaves and the transmission of critical messages.

Moreover, FT4FTT provides each slave replica with mech-
anisms [2] to both diagnose temporary faults affecting its com-
munication and/or operation, and reintegrate to prevent these
faults from leading the replica to be perceived as permanently
faulty. This is essential to take advantage of the redundancy,
since it prevents temporary faults from unnecessarily causing
redundancy attrition.

Nevertheless, FT4FTT still includes no mechanism to
monitor/log the available redundancy of the system and to
adequately maintain it. This an important limitation, since
the channel/node redundancy attrition caused by permanently-
faulty components that are not repaired necessarily reduces

the system reliability. In other words, when FT is based on
the use of redundancy, a decrease in the available redundancy
compromises the system reliability.

Likewise, timely monitoring the available redundancy can
be fundamental not only to carry out repairs that preserve an
adequate level of reliability; but also to anticipate adequate
actions to deal with a system failure, when the redundancy
is about to exhaust and cannot be restored. Furthermore, if
appropriate data about the available redundancy is logged, then
these data can be analyzed a posteriori to enhance or optimize
the system itself, e.g. to assess the quality of the different
components, or to forecast potential threats and anticipate
repair actions.

Monitoring/logging becomes specially important for adap-
tative systems, where the variability of the environment can
exceed the predicted unreliability the FT mechanisms are
designed for, e.g. if the maximum expected bit-error rate is
exceeded then the planned number of message retransmissions
may not suffice. Monitoring can help in timely detecting limit
situations before the system fails; whereas logging can be used
to evaluate the FT mechanisms and then improve their capacity
for adapting to different situations.

Finally, we are interested in accessing, remotely through
Internet, the data about the available redundancy of an FT4FTT
control system. This will allow to monitor the redundancy by
means of remote devices, placed almost anywhere, that can
implement different strategies, e.g. alarms, to reduce the time
to repair. Also, it will enable retrieving the logged data online
to store and process it by adequate machines, e.g. with high
storage and computational capacity, external to FT4FTT.

This paper presents our on-going work towards extending
FT4FTT with mechanisms and devices to remotely monitor
and log its available redundancy; mechanisms and devices that,
then, can be used to attain the above-mentioned advantages.

The paper outlines the basics of FT4FTT. Then, it summa-
rizes the design decisions about what is the data that character-
izes the available redundancy, as well as how we have extended
the FT4FTT architecture and its mechanisms to monitor/log
these data and make them remotely accessible. Afterwards, it
outlines the current prototype and a set of experiments to test
it. Finally, it highlights the main conclusions and future work.

II. BASICS OF AN FT4FTT CONTROL SYSTEM

As it is depicted in the bottom left corner of Fig. 1, in
FT4FTT each slave (node) communicates through two full-

c©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

duplex HaRTES FTT-Ethernet switches that are internally
duplicated and compared [3]. Since each HaRTES switch
embeds an FTT Master, we will use the term switch and
master interchangeably. Also note that in FT4FTT each switch
includes a set of Slave Error Counters (SECs) per slave, to log
the errors sent by each slave, e.g. untimely frames, and then
disconnect the switch’s port of any faulty slave [4].

Communication takes place in rounds, called Elementary
Cycles (ECs) [1], masters cooperatively control. Specifically,
both masters trigger each EC by quasi-simultaneously broad-
casting the so called Trigger Message (TM), which indicates
what messages must be transmitted, and by whom, in the EC.

Each critical slave is actively replicated [5]. Fig. 1 shows
3 slave replicas, although FT4FTT can include more than
1 replicated slave and, also, non-replicated ones. Each slave
(each replica, Rep

i

, in Fig. 1) transmits/receives to/from each
switch, Switch

j

, using a dedicated link, L
ij

. The switches
exchange their incoming traffic via multiple interlinks, I

i

s,
and then forward the frames to the slaves. This provides
redundant paths between each pair of slaves and, also, allows
both masters to have a consistent view of the communications,
which helps them to be replica determinate [6].

The replicas of a given slave perform exactly the same
application, in parallel, and coordinate among them to take the
right control decisions. The application is split into segments,
which are mapped onto several ECs [2]. After each segment,
the replicas exchange the results of the segment. Then, they
vote locally and consistently to obtain a consensus segment
result that each one of them uses to compute the next segment.

In each segment the masters evaluate each replica’s ability
to correctly transmit/receive the segment results. Based on
this, the masters consistently increase/decrease a Communi-
cation Error Counter (CEC) for each replica. Also, after each
segment, the masters provide each replica with information
about this replica’s ability and, then, each replica uses it to
increase/decrease a local CEC (LCEC). Moreover, each replica
manages a local Discrepancy Error Counter (DEC) to assess
its ability to correctly vote [2]. The LCEC and DEC are
used by the replica to diagnose itself as faulty. When so,
the replica resumes its operation to tries to fix the fault and
reintegrate with non-faulty replicas. Note that if a replica fails
in diagnosing itself as faulty, the masters can force a watchdog
timer located at the replica to resume it [2].

III. DESIGN RATIONALE

A. Characterization of the available redundancy

The FT4FTT’s available redundancy is characterized by
certain data concerning the status of the switches/masters,
links, interlinks, and slaves.

As regards the switches/masters, we are interested in the
Master Operational Status (MOS). Since each switch/master
is internally duplicated and compared, a faulty switch/master
simply does not communicate. Thus, the MOS is up or down.

What are the available paths depends on the available
switches and, also, on the available links and interlinks. Thus,
we characterize each link and interlink by the Link Commu-
nication Status (LCS) and the Interlink Communication Status

(ICS) respectively. Since a faulty link/interlink can only crash
or syntactically corrupt frames, which are then automatically
discarded at the receiver, the LCS/ICS can only be up or down.

Concerning the slaves, first we monitor/log the Slave Com-
munication Status (SCS) of each slave, i.e. whether each slave
communicates or not (up or down) through any of its links, no
matter which link. Second, to have a more accurate vision of
the communication capabilities of each slave, we monitor/log
the Slave Error Counters (SECs) each switch manages to
diagnose what kind of fault each slave manifests (see Section
II). We refer to the pair of SECs sets devoted to a given slave
to as the Slave Error Status (SES) of that slave.

Moreover, when an slave is an slave replica, it is important
to have extra information about the following aspects: (1)
its ability to exchange the segment results for voting; (2)
its ability to diagnose itself as suffering from faults that
prevent it from exchanging these results; (3) and its ability
to both vote correctly and diagnose itself as faulty when it
cannot do so. For this purpose, we respectively monitor/log
the following data about each replica (see Section II): (1) the
CEC both switches consistently manage to assess the replica’s
capacity for exchanging the segment results, i.e. the Replica
Communication Error Status (RCES); (2) the replica’s local
CEC (LCEC), i.e. the Replica Local Communication Error
Status (RLCES); and (3) the replica’s DEC, i.e. the Replica
Discrepancy Error Status (RDES).

B. Monitoring and logging architecture

Fig. 1 sketches in grey-filled boxes the new elements of
the architecture we designed to access and make remotely
available the data that characterizes the available redundancy.

As explained later, the data about the available redundancy
is encapsulated within frames that are periodically sent through
both switches to the Monitoring Server (MSe). The Message
Gatherer (MG) within the MSe de-encapsulates these data and
transfers them to the Event Process (EP), which interprets
them and populates the data base Event DB (EDB). Note that
to precisely characterize the available redundancy, it must be
monitored/logged with a time resolution of the order of few
ECs, e.g. few milliseconds. Thus, to timely and compactly
monitor/log this huge quantity of data, the EP only stores in
the EDB Redundancy Status Events (RSEs), i.e. changes in
the available redundancy. Finally, the MSe includes a set of
Redundancy Status Publishers (RSPs). Each RSP provides a
given type of application with remote access to the EDB. For
instance, an RSP could be used to transfer/retrieve historic data
about the available redundancy to/from an external storage.

Fig. 1 sketches an example in which an RSP is a CoAP
(Constrained Application Protocol) Server that provides light
M2M communication for accessing the EDB from remote de-
vices. It shows a Monitoring Station (MSt), e.g. a workstation
or a mobile device, that accesses the data about the available
redundancy through the Web and then, displays or analyzes it.
To pre-process the data in a specific manner and to minimize
the communication load when accessing the MSe, the MSt
interacts with an intermediary Web Server (WSe). Basically,
within the WSe, there is a HTTP Server that executes server-
side applications that interpret the HTTP requests sent by the

Fig. 1: System Architecture

MSt and, then, exchange the necessary messages with the
CoAP Server in the MSe via a HTTP-CoAP Proxy.

C. FT4FTT new monitoring/logging mechanisms

To gather the data that characterizes the available redun-
dancy and to send them to the MSe, we extended FT4FTT
with a set of additional mechanisms.

The first one is the Slave Communication Status Message
(SCSM) procedure, which is used for the masters to acquire the
ICSs, LCSs, SCSs and RLCESs (see Section III-A). To store
these data each master includes the next vectors: the Interlink
Communication Status Vector (ICSV), the Link Communica-
tion Status Vector (LCSV), the Slave Communication Status
Vector (SCSV), and the Replica Local Communication Error
Status Vector (RLCESV). Each one of the elements of these
vectors respectively stores the ICS of a given interlink, the LCS
of a given link, the SCS of a given slave (or slave replica), and
the RLCES of a given slave replica. Note that the LCSV of
a master includes not only an element for each one the links
connected to the master’s switch, but also for each one of the
links connected to the other master’s switch.

The SCSM procedure is executed every EC. It consists in
slaves (both slaves and slave replicas) and masters exchanging
Slave Communication Status Messages (SCSMs) to populate
the just mentioned vectors. In a first step, each slave transmits
to both masters, at the beginning of the EC, an SCSM that
piggybacks its identifier and, in the case of a slave replica,
also its RLCES (the value of its LCEC). The SCSM is used
as an I am alive message; so that when a master receives an
SCSM through a given link from the corresponding slave, it
sets to up both the element of the LCSV that represents the
link, and the element of the SCSV that represents the slave.

In a second step, each master retransmits all the SCSMs
to the other master through all interlinks. When each master
receives an SCSM from the other one, it sets to up: (1)
the element of its ICSV that registers that it is possible to
receive through the corresponding interlink, (2) the element
of its LCSV that represents the other switch’s link where
the SCSM was originally received, and (3) the element of its
SCSV that represents the slave (or slave replica) that generated
the SCSM. Note that by updating the element (3) the master
obtains a correct view of the SCS, even if a fault prevented it
from receiving the SCSM directly from the slave in the first
step. Additionally, if the slave that sent the original SCSM

(SCSM
or

) in the first step is a replica, the master uses the
RLCES piggybacked in the SCSM retransmitted by the other
switch (SCSM

rt

) to update the position of the RLCESV that
corresponds to that replica. Specifically, if the master did not
receive the SCSM

or

directly from the replica in the first step,
the master simply updates the RLCESV position with the
RLCES piggybacked in the SCSM

rt

. Otherwise, the master
checks if the RLCES of SCSM

or

coincides with the RLCES
of SCSM

rt

. If they do not match, the master writes a special
value in the position of the RLCESV that corresponds to the
slave replica, to indicate that the replica sent a different RLCES
to each master.

The second added mechanism is the Master Report Mes-
sage (MRM) procedure. It consists in each master sending to
the MSe a MRM that is twofold. First, it serves as an I am
alive message of each master, i.e. it allows the MSe to know
each master’s MOS. Second, each master uses it to report to
the MSe the values of the mentioned vectors, as well as the
value of the SES and RCES it dedicates to each slave and
slave replica respectively.

The last mechanisms is the Replica Report Message (RRM)
procedure. It consists in each replica’s application sending
to the MSe, once per EC through both switches, an RRM
reporting the value of the replica’s DEC, i.e. its RDES. Note
that the RRM is devoted to reporting application-dependant
status data (the DEC so far) and, thus, it is independent from
the MRM, which conveys communication-status data.

IV. PROTOTYPE

Taking as a basis the FT4FTT prototype of [7], we are
building up a prototype of the system depicted in Fig. 1
to assess the feasibility, correctness and performance of the
monitoring/logging mechanisms and architecture herein pro-
posed. On the one hand, we extended the functionalities of
the switches and the replicas to implement a first version of
the SCSM, MRM and RRM procedures. So far this version
allows gathering the LCS of each link, as well as the SCS,
RCES and RDES of each one of the 3 slave replicas.

On the other hand, to simplify the implementation of the
monitoring/logging architecture, we embedded the Web Server
(WSe) into the Monitoring Server (MSe). Both of them are
thus placed in the same device, which executes Linux and
which is connected to both switches. We implemented the
MG and the PE of the MSe in C. The MG consists of two
concurrent threads, each of which de-encapsulates the data of
the frames received from one of the switches. The PE interprets
these data to detect any change in the available redundancy,
i.e. any RSE (see Section III-B); inserts the RSEs into a queue
to accommodate potential bursts of RSEs; and then populates
the Event DB (EDB). The EDB is a MySQL data base that
contains 2 tables. The first one stores basic information about
the FT4FTT elements, e.g. type (link, replica, etc.), elements’
identifiers, MAC addresses, etc. The second one stores the
status of all of these elements for each RSE occurrence, i.e.
timestamp, LCSs, SCSs, RCESs and RDESs. We implemented
both the CoAP server and the HTTP-CoAP proxy in Java using
the Californium framework, whereas the WSe is an Apache.

Fig. 2 shows some information the Monitoring Station
retrieves from the WSe. At the top there are the status (up

Fig. 2: Information shown in the Monitoring Station.

in green and down in grey) of the links (LCSs) and the slaves
(SCSs). The bottom shows the RCES of one replica (one
replica’s CEC) in different ECs.

V. TESTING THE SYSTEM

Next we summarize two of the fault injection tests we are
carrying out to asses the proposed mechanisms and architec-
ture. The first test checks the ability of the system to monitor
and log the status of the slave replicas and links, i.e. the SCSs
and LCSs. Specifically, we inspect the content of the EDB after
disconnecting different link combinations. Each row of Table
I show the status of the three replicas and their links, as stored
in the EDB, after injecting some of these combinations. The
column headers label the replicas and links as in Fig. 1. In row
1, when no link is disconnected, all the slaves and their links
are up. In row 2 we disconnect link 1 from replicas R1 and R2,
i.e. L11 and L21. As shown, the system detects the new event
and updates the EDB. Finally, in row 3 we simulate the failure
of R2 by disconnecting all its links. This row shows that the
Monitoring Server detects not only the fault of the links, but
also the inability of R2 to communicate.

R1 R2 R3 L11 L12 L21 L22 L31 L32
1 UP UP UP UP UP UP UP UP UP
2 UP UP UP DW UP DW UP UP UP
3 UP DW UP DW UP DW DW UP UP

TABLE I: Database for the SCSM test.

The second test checks the ability of the system to monitor
and log the RCESs and RDESs, i.e. the value of the CECs
and DECs. Specifically, we inject a fault to prevent one of
the replicas from correctly receiving segment results during
a limited number of consecutive segments. This leads the
switches to increase the replica’s CEC, since the replica cannot
receive; and the replica to increase its DEC, as it has not
enough segments results to consistently vote. Once we stop
injecting the fault, both the CEC and DEC decrease, as the
replica can correctly receive and vote from then on. The
evolution of the CEC that results from this test is shown at
the bottom of Fig. 2.

VI. CONCLUSIONS AND FUTURE WORK

FT4FTT provides fault-tolerance mechanisms based on the
use of hardware and time redundancy to attain high reliability
in critical adaptative DECSs. However, it does not include

any mechanism to monitor/log its available redundancy. This
impedes to carry out adequate maintenance actions to prevent
permanent faults from reducing the FT4FTT redundancy level
and, thus, from compromising the system reliability throughout
its operation. Herein we explain the design, a first prototype
implementation, and some tests of a set of new mechanisms
and devices we have added to FT4FTT to both monitor/log
its available redundancy and, then, to remotely access this
information via Internet. This will enable the addition of
advanced maintenance mechanisms; for example, mechanisms
that assess the response of adaptative systems that operate
in highly-variable environments, in order to improve their
capacity of adaptation, or to timely detect limit situations.

As future work we plan to finish the implementation of
all the mechanisms and, then, to explore the possibility of
integrating them into an Industrial Internet of Things (IIoT)
framework, e.g. OPCA UA, DDS.

ACKNOWLEDGMENTS

This work was supported by grants DPI2011-22992 and
TEC2015-70313-R funded by the Spanish Ministerio de Economia
y Competitividad (MINECO) and by the Fondo Europeo de Desar-
rollo Regional (FEDER).

REFERENCES

[1] P. Pedreiras, L. Almeida, and P. Gai, “The FTT-ethernet protocol:
Merging flexibility, timeliness and efficiency,” in 24th Euromicro Conf.
on Real-Time Systems. IEEE Computer Society, 2002.

[2] S. Derasevic, M. Barranco, and J. Proenza, “Designing fault-diagnosis
and reintegration to prevent node redundancy attrition in highly-reliable
control systems based on FTT-Ethernet,” in World Conference on Factory
Communication Systems (WFCS), 2016 IEEE.

[3] D. Gessner, J. Proenza, M. Barranco, and L. Almeida, “Towards a
Flexible Time-Triggered Replicated Star for Ethernet,” in Emerging
Technologies & Factory Automation (ETFA), 2013 IEEE 18th Conf.

[4] A. Ballesteros, D. Gessner, J. Proenza, M. Barranco, and P. Pedreiras,
“Towards Preventing Error Propagation in a Real-Time Ethernet Switch,”
in Emerging Technology and Factory Automation (ETFA), 2013 IEEE.

[5] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso,
“Understanding replication in databases and distributed systems,” in
Distributed Computing Systems, 2000. Proc. 20th Int. Conf. on. IEEE.

[6] S. Poledna, “The problem of replica determinism,” in Fault-Tolerant
Real-Time Systems. Springer, 1996, vol. 345.

[7] A. Ballesteros, S. Derasevic, D. Gessner, F. Francisca, I. lvarez, M. Bar-
ranco, and J. Proenza, “First Implementation and Test of a Node
Replication Scheme on top of the FTTRS,” in Proc. 12th IEEE World
Conf. on Factory Comm. Systems (WFCS), 2016.

