
Implementation and Testing of the
Node Replication Scheme of the FT4FTT Architecture

MSc Candidate
Alberto Ballesteros

A MSc thesis submitted to Departament de Ciències Matemàtiques i Informàtica of the University of
Balearic Islands in accordance with the requirements for the degree of

Màster Universitari Enginyeria Informàtica (MINF)

Author
Alberto Ballesteros

MSc Supervisor
Julián Proenza

MSc Supervisor
Manuel Barranco

MINF Director
Antònia Mas Pichaco

21/09/2016



Implementation and Testing of the
Node Replication Scheme of the FT4FTT Architecture

Alberto Ballesteros
Tutor: Julián Proenza y Manuel Barranco

Treball de fi de Màster Universitari Enginyeria Informàtica (MINF)
Universitat de les Illes Balears

07122 Palma de Mallorca
ballesteros.alberto@gmail.com

Abstract

Distributed Embedded Control Systems (DECSs) typically
have stringent real-time and dependability requirements.
Moreover, nowadays they are starting to be deployed in dy-
namic environments where they must also be flexible to adapt
to the unexpected changes in the operation conditions. The
FT4FTT project aims at providing an architecture for a com-
plete distributed embedded system which supports applica-
tions that are real-time, highly-reliable and adaptive. This
project addresses all these requirements for both the network
and the nodes of the DECS. In this work we describe the im-
plementation and testing of the fault-tolerance mechanisms
devised to provide the nodes with tolerance to permanent and
temporary faults, as well as to recover a faulty node when a
temporary fault provokes its permanent discoordination with
the rest of the system.

Keywords: Distributed Embedded Systems, Control Sys-
tems, Adaptive Systems, Dependability, Fault Tolerance, In-
dustrial Communications, Ethernet, FTT, HaRTES, FT4FTT,
Node Replication.

1 Introduction

A Distributed Embedded Control Systems (DECS) is a
specific-purpose computer system devoted to control or sup-
port the operation of an equipment, machinery or plant in
which it is spread. These systems typically have stringent
real-time and dependability requirements. Moreover, nowa-
days they are starting to be deployed in dynamic environments
and, thus, these DECSs must also be flexible to adapt to the
unexpected changes in the operation conditions. An example
of a flexible DECS is a system that is able to start new opera-
tions and communications, at the expense of less critical ones,
in response of new operational requirements.

The FT4FTT (Fault Tolerance for Flexible Time-Triggered
Ethernet) project [1] aims at providing an architecture for a

complete distributed embedded system which supports dis-
tributed control applications that are real-time, highly-reliable
and adaptive. This project addresses all these requirements for
both the network and the nodes of the DECS.

As concerns the network, the FT4FTT architecture relies on
the Flexible Time-Triggered communication paradigm (FTT)
[13]. FTT is a time-triggered solution that makes it possi-
ble for a set of nodes, to exchange both periodic and aperi-
odic traffic in a predictable and flexible manner. FTT uses
a master/multi-slave scheme, that is, a dedicated node called
master is responsible for managing the communication among
a set of slaves, which are the regular nodes of the DECS. For
this, the master divides the communication in fixed-duration
slots called Elementary Cycles (ECs). At the beginning of
each EC the master broadcasts the so-called Trigger Message
(TM) which contains the EC schedule, that is, the list of mes-
sages that the slaves must transmit during that EC.

Note that in FTT the scheduling of the messages is cal-
culated online in a central point, the master. This eases the
fulfilment of the slaves’ communication requirements as any
change on the scheduling can be done locally. In this re-
gard, the master ensures the predictability of the traffic, that
is, we know in advance the messages to are going to be trans-
mitted in a given EC and, thus, we can enforce a real-time
behaviour. Furthermore, the master also provides flexibility
since the slaves can request the modification of the communi-
cation requirements at any time.

There are several implementations of FTT. Here we are in-
terested in a switched Ethernet implementation called Hard
Real-Time Ethernet Switching (HaRTES) [14]. In HaRTES
all the slaves are interconnected by means of a custom Ether-
net switch that embeds the master. This configuration yields
important benefits from the point of view of the management
of the aperiodic traffic, the implementation of fault-tolerance
mechanisms and the delay of master messages.

Nevertheless, HaRTES was not developed to provide high
reliability in the communications. That is why in the scope
of the FT4FTT project we developed a fault-tolerant version
of HaRTES called Flexible Time-Triggered Replicated Star



for Ethernet (FTTRS) [12][11]. FTTRS tolerates permanent
and temporary hardware faults affecting the switches and the
links. On the one hand, permanent faults are tolerated by
means of space redundancy. Specifically, as sketched in Fig. 1,
slaves are interconnected among them through two custom
switches each one embedding an FTT master. Note that, FT-
TRS switches are also connected between them through sev-
eral links called interlinks in order to coordinate their opera-
tion. On the other hand, temporary hardware faults are toler-
ated by means of time redundancy, that is, critical messages
are transmitted several times.

Fig. 1: FTTRS architecture.

As concerns the nodes, the FT4FTT architecture also pro-
vides mechanisms to tolerate permanent and temporary hard-
ware faults in the context of control applications [10]. For
this, active replication with majority voting is used. The ac-
tive replication technique consists in replicating each node
performing a critical task. For example, Node 3 in Fig. 2 per-
forms the control of a plant and, thus, a fault affecting this
node can lead to a failure in said plant. Thus, to make the sys-
tem more reliable, the control is performed by several replicas.

Fig. 2: Active replication.

However, it is not enough to add more nodes. It is also
necessary to coordinate the operation of the replicas. Con-
sequently, in the FT4FTT architecture a distributed majority
voting algorithm is used to keep replicas coordinated and to
compensate the errors that they could generate, as long as
there is a majority of non-faulty replicas. For this, software
executed by the replicas is partitioned into segments. For each
segment each replica produces an output, which is exchanged
and voted upon to reach a consensus. This consensus value is
then used by the replicas as input for the next segment.

More recently, in [8] the FT4FTT project has addressed the
tolerance of temporary faults affecting the replicas. These
faults are more likely to occur than permanent ones and, de-
pending on their kind and duration, can lead a replica to a

loss of coordination at the communication and/or computa-
tion level. If this happens, said replica is permanently disabled
and cannot be used anymore. This phenomenon is called re-
dundancy attrition and is a big issue as we are not taking full
advantage of the investment done for the redundancy. There-
fore, in [8] additional fault-diagnosis and reintegration mech-
anisms were proposed. These mechanisms make it possible
to identify temporary faulty replicas and bring them back to a
coordinated operation with the non-faulty ones.

In this document we present the prototyping and testing of
the node replication mechanisms designed for the FT4FTT ar-
chitecture. Theses mechanisms include the ones devised to
allow the tolerance of permanent and temporary faults affect-
ing the nodes and the ones devised to allow the diagnosis and
reintegration of permanently discoordinated replicas.

The rest of this paper is organized as follows. First, Sec. 2
further describes the mechanisms devised to tolerate faults
affecting the nodes. Second, in Sec. 3 we explain how all
these mechanisms were implemented. Third, Sec. 4 is de-
voted to give some details about the testbed used for the test-
ing. Fourth, in Sec. 5 we describe the tests carried out and
discusses the results obtained. Finally, Sec. 6 summarizes the
contribution and points out some future work.

2 Design of Fault-Tolerance Mecha-
nisms for Faults Affecting the Nodes

This section summarizes the most important fault-tolerance
mechanisms addressed to tolerate faults affecting the nodes.
For this purpose, we first explain how the FT4FTT architec-
ture physically replicates the nodes in the context of control
systems. Then, we distinguish the actions carried out by a
replica to both perform the control and to achieve the coor-
dination with the rest of the replicas. After that, we describe
the mechanism responsible for triggering each of these actions
in all the replicas and in a synchronized manner. Finally, we
list the additional mechanisms designed to identify and rein-
tegrate a permanently discoordinated replica.

2.1 Node Replication for a Control System

As introduced previously, in the FT4FTT architecture perma-
nent and temporary hardware faults affecting the nodes are
firstly tolerated by means of active replication. The active
replication technique consists in identifying each of the nodes
whose failure could provoke a failure in the whole system, and
then adding active nodes that execute the same code in paral-
lel. The main advantage of this approach is that faults can be
tolerated transparently with no downtime.

In Fig. 3 we show how the FT4FTT architecture uses this
technique in the context of a control system. As depicted
in the left-most part of this figure, we distinguish the plant,
which represents a physical system that has to be controlled;
and the control system, which contains the controller, that is,



a device executing a control application that regulates the be-
haviour of the plant. The interaction between plant and control
system is carried out by means of a sensor and an actuator.

Fig. 3: System architecture.

The failure of the controller can lead to the failure of the
plant and, thus, in the right-most part of this figure we show
a more reliable version of the system in which the control
system is replaced by a replicated distributed control system.
This system is composed of several interconnected replicated
nodes. Replicas are processing units with identical hardware
that execute exactly the same tasks: control the plant and co-
ordinate the replicas. Finally, note that now each replica inter-
acts with the plant through dedicated sensors and actuators.

2.2 Extended Control Application Cycle

Apart from physically replicating the nodes, it is necessary to
include on them some logic to ensure that they operate in a co-
ordinated manner. In the FT4FTT architecture this is achieved
by means of a distributed majority voting algorithm. Next we
explain the additional actions a replica performs to periodi-
cally synchronize with the other replicas

Typical control applications can be divided in three phases:
sense, read the state of the plant by means of sensors; control,
determine the actuation to be performed at the plant to change
its current state to the desired one; and actuation, carry out
the action to change the state of the plant. The duration of one
control cycle is called sampling period (Ts).

In the FT4FTT architecture new phases are introduced to
deal with the tasks related to management of the node repli-
cation. Specifically, replicas need additional time to exchange
and vote on the values of the sensors and on the result of the
actuation. That is why a more complex scheme composed of
seven phases was proposed:

1. Sense (S). Each replica retrieves, from the sensor attached
to it, the current state of the plant.

2. Exchange of sensor values (ES). Each replica sends to the
other replicas, through the fault-tolerant communication
channel, its local view of the state of the plant.

3. Voting on sensor values (VS). Each replica votes on all
the sensor values, that is, the ones received from the other
replicas and the one acquired from the sensor attached.
The result of this vote is the so-called consensus sensor
value. It should be noted that the type of voting performed
depends on the type of data on which the vote takes place.

4. Control (C). Each replica uses the consensus sensor value
to determine the actuation to be performed at the plant.

5. Exchange of actuation values (EA). Each replica sends to
the other replicas, through the fault-tolerant communica-
tion channel, the output of the control algorithm.

6. Voting on actuation values (VA). Each replica votes on all
the actuation values, i.e., the ones received from the other
replicas and the one obtained from the control algorithm.
The result of this vote is the so-called consensus actuation
value. Note that in this phase the type of voting performed
always assumes that all the actuations are identical.

7. Actuate (A). Each replica sends its consensus actuation
value to the actuator subsystem. This subsystem consol-
idates the received values and performs the actuation.

In order for the FT4FTT network to assist in the trigger-
ing of the execution of the phases in the replicas, phases are
mapped into ECs. The most intuitive mapping would be to
devote one EC to each of the phases. However, this is not the
only possible mapping. For instance, if the plant needs a very
tight control, we can reduce the sampling period by executing
several phases in one EC. In contrast, if the control system is
working in a very harsh environment in which errors affecting
the communication are likely to occur, we can devote several
ECs for phases 2 and 5 so that replicas have various chances
to exchange their messages.

2.3 Coordinated Triggering of Phases

Once the control application phases have been defined it is
necessary to specify how to trigger their execution in all the
replicas and at the same time. For this purpose the FT4FTT ar-
chitecture contains the Coordinated Dispatching of tasks and
messages for Node Replication (CD4NR) mechanism, which
takes advantage of the TM to also trigger the execution of
phases in the nodes.

More precisely, each replica is provided with an EC
Counter and a Triggering Table. The former is a local copy
of the so-called TM sequence number, which is a numerical
value the masters insert into the TM to indicate number of the
current EC. The second one is a table specifying the phase
that has to be executed in each EC. Every time a replica re-
ceives a new TM it updates the value of its EC Counter fol-
lowing Eq. 1, where TM_seqno is the TM sequence number,
and Ts is the sampling period of the application measured in
ECs. Once the application has determined the value of the
EC Counter, it consults the Dispatching Table to execute the
corresponding phase.

EC_counter = TM_seqno mod Ts (1)

The main advantage of this solution is that the communica-
tion subsystem remains unaware of the operation of the appli-
cation. This is because, no changes are needed in the opera-
tion of FTT to support this dispatching scheme.



2.4 Fault-Diagnosis and Reintegration
The fault-tolerance mechanisms previously described make it
possible to tolerate permanent, as well as transitory faults that
prevent nodes from properly communicating or operating.

In particular these mechanisms require that the non-faulty
replicas are coordinated among at both the communication
and the application levels. On the one hand, to be coordi-
nated at the communication or EC/phase level means that the
replica follows the EC pace dictated by the network and, thus,
executes the appropriate phase in the correct instant. On the
other hand, to be coordinated at the application level means
that the replica has the same correct operational state as the
non-faulty replicas. The operational state is the information a
non-faulty replica needs to produce results for the current and
following phases. As explained in [8], the operational state in-
cludes information such as the value of sensors, actuators and
the control status. This last value depends on the type of con-
troller and, since we are assuming a PID, these are the error,
the derivative and the integral terms.

Although the already described mechanisms allow tolerat-
ing faults, it may happen that a temporary fault, depending on
its kind or duration, makes a replica to lose coordination with
respect to the non-faulty replicas. In [8] authors thoroughly
classified the temporary faults that may provoke this discoor-
dination. Basically, a temporary fault affecting the commu-
nication capabilities of a replica may lead said replica to lose
coordination if the fault lasts too much. This can happen, for
instance, when the replica does not receive a TM or enough
messages for voting. As regards a temporary fault affecting
the capacity of a replica for correctly operating, note that it
normally discoordinates the replica. This is because an incor-
rect operation, for instance, a wrong read operation, usually
prevents the replica from producing correct results.

In most cases a temporary fault may lead a replica to be lost
from the on and, thus, to behave as if it was permanently faulty
unless it is reinitialized. This problem is a redundancy attrition
as the discoordinated replica cannot participate in tolerating
faults any longer. This problem is a big issue since temporary
faults are more likely to happen than permanent ones.

In order to overcome this vulnerability, the FT4FTT archi-
tecture includes additional mechanisms to both diagnose repli-
cas that are lost and reintegrate them. Note that this has to be
done as soon as possible so the fault tolerance capabilities of
the system are restored, and additional faults can be tolerated.
These mechanisms are sketched next, for further details about
them please refer to [8]:

1. TM resync. When a temporary fault prevents a replica from
receiving the TM during one or more ECs, the value of its
EC Counter gets desynchronized with respect to the other
replicas. In order to reintegrate at the communication level
the replica updates its EC Counter with the TM sequence
number piggybacked at the TM.

2. Voting Reint. Point. Replicas use this mechanism to reinte-
grate at the application level, that is, to acquire the correct

operational status of the non-faulty replicas. On the one
hand, the extended control cycle is modified so that repli-
cas use phases ES, VS and EA, VA to exchange and vote
on, not only the values of the sensors and actuators respec-
tively, but also on the control status. Note that the control
status is a fundamental part of the operational status, as
a replica needs the control status to correctly execute the
control algorithm. On the other hand, a faulty replica rein-
tegrates by updating any incorrect value of its operational
state by the consensus one obtained when voting.

3. Communication Error Counter (CEC). This mechanism is
devoted to diagnose and reintegrate any replica from tem-
porary faults that prevent it from correctly communicat-
ing, as long as the replica itself is not reinitialized. On the
one hand, the replica increases or decreases the CEC after
phases VS and VA, depending on its ability to communi-
cate. For the replica to know this, the masters convey in ev-
ery TM information concerning what messages the replica
successfully transmitted and received during the last ex-
change phase. More details of the mechanism used for
populating the communication status can be found in [9].
On the other hand, when the CEC exceeds a given thresh-
old, the replica resets itself and then reintegrates using the
two previously-explained reintegration mechanisms.

4. Discrepancy Error Counter (DEC). This mechanisms is
analogous to the CEC, but it is intended to diagnose and
reintegrate from temporary node internal faults that pre-
vent the replica from correctly operating, as long as the
replica itself is not reinitialized. For instance, a tempo-
rary fault that corrupts a memory-stored value may lead the
replica to behave incorrectly until the replica is resumed.
The replica increases or decreases the DEC after each vot-
ing, basically depending on whether or not its local values
for the operational state deviate from the consensus ones
that result from the voting.

5. You Are Alive (YAA) watchdog. This is an external device
connected to each one of the replicas that is able to detect
a crash of the replica to whom it is connected and reset
it if necessary. To avoid being considered as permanently
faulty and, thus, being reset, the replica has to periodically
forward the so-called YAA message that is piggybacked
on every TM. This message is specifically generated by
the masters and cannot be forged.

3 Implementation of the Node Replica-
tion Scheme

This section describes the implementation of all the fault-
tolerance mechanisms previously introduced in Sec. 2.
Specifically, we first describe the initial prototype built in the
scope of the FT4FTT project. Then we explain how this proto-
type was modified to extend the control application cycle and



Fig. 4: Software diagram of the node replication implementation.

to include the coordinate triggering of the phases. Finally, we
describe the implementation of the fault-diagnosis and reinte-
gration mechanisms.

3.1 Initial prototype
The starting point for the implementation of the node replica-
tion scheme was a prototype containing the FTTRS network,
as well as a basic node replication consisting in one round for
the exchange voting on the intermediate results. The func-
tionalities of this prototype can be seen in [2]. As shown in
this video, it included a simple example program simulating a
control algorithm and a basic triggering mechanism to activate
each of the phases of the application.

This implementation was completely done using the C lan-
guage. This language is well suited for embedded applications
as the code generated is quiet efficient. In this sense, note that
HaRTES was already developed in this language.

As concerns the hardware, the prototype is composed of
two FT4FTT switches and three node replicas (see Fig. 6b).
On the one hand, each switch is a regular Intel i7-4770 multi-
core PC with 8 GB of RAM provided with several Intel i350-
T4 Ethernet interfaces. The main benefit of this configura-
tion is that the Asus Z87-WS motherboard contains a PCI-
Express switch which makes it possible for the applications
to receive and transmit Ethernet frames in parallel with little
interferences. Moreover, the selected Ethernet adapters allow
the possibility of managing multiple low-level operation pa-
rameters so that we can configure them to decrease the delay
in the communications. On the other hand, each slave is built
using a commercial computer devised fer embedded devices,
the Jetway JBC373F38-525-B. This is a small barebone con-
taining an Intel Atom D525 processor with 2 GB of RAM and
four Ethernet interfaces.

Finally, as concerns the operating system, switches and
slaves run Ubuntu Linux 12.04 with Xenomai, a supplement
that enables its use in systems with real-time requirements.

3.2 Extended Control Application Cycle and
Coordinated Triggering of its Phases

This section discusses the additions carried out on top of the
initial implementation to include the extended control appli-
cation cycle and the CD4NR mechanism.

More precisely, the implementation consisted in the addi-
tion of specific features in various components and in different
layers of the architecture. As sketched in Fig. 4, we can dis-
tinguish between the plant and the replicated distributed con-
trol system. This last is composed of a set of replicas (here
only one is represented) and the switches. Additionally, the
control system can be divided into three layers. First, the Eth-
ernet layer is responsible for transmitting the Ethernet frames
among the replicas and the switches. Second, the FTT layer
contains the modules providing the FTT services, namely one
FT4FTT master inside each switch and one FT4FTT slave in-
side each replica. Finally, the application layer is only imple-
mented in the replicas and performs the control of the plant,
as well as the management of their redundancy. Next we de-
scribe the operation of all of these components.

In the plant, every sensor replica is directly connected to
the application of one of the replicas and periodically informs
about the internal state of the plant. Similarly, the application
of every replica is directly connected to the actuator subsys-
tem. In this implementation this subsystem includes a consol-
idator that gathers the actuation commands of all the replicas,
unifies them and applies the resultant actuation to the plant.

As concerns the control system, its operation starts with the
switches broadcasting the TMs, which act as notifications for



the replicas to know that the communication channel is avail-
able. At this point, replicas request to the masters the creation
of all the communication resources necessary to execute their
applications. More specifically, the Initializers of the replicas
inform the masters about the size and periodicity of the mes-
sages needed to be transmitted. If there is enough bandwidth
available, masters change the schedule so that the TM trig-
gers the transmission of these messages. It is noteworthy that,
for the replicas to perform their actions in synchrony, the mes-
sages associated with these actions have to be scheduled in the
same EC. However, there is no mechanism in FTT to specify
the precise ECs in which messages have to be triggered. To
solve this problem the Initializers send the initialization mes-
sages in an order and in instants of time that, then, lead the
masters to schedule the messages in the desired ECs.

After the initialization the control system starts its regular
operation. Specifically, every time a replica receives a TM the
Action triggerer is notified so that the value of its EC counter
can be updated. It should be noted that in this implementation
we slightly modify Eq. 1 to also take into account the number
of ECs used in the initialization. Specifically, as shown in
Eq. 2, we introduce APP_start, which is the EC in which
the initialization finishes and, thus, the application starts.

EC_counter = (TM_seqno−APP_start) mod Ts (2)

Next, we describe the actions carried out in every of the
three tasks in which we have divided the extended control cy-
cle (see Section 2.2) of the application.

First, the S task gathers from its associated sensor replica in
the plant the last sensor value registered.

Second, the ES/VS/C task transmits the sensor value to the
other replicas, waits for the reception of the sensor values
from the other replicas, votes on all these values and executes
the control algorithm with the result of the voting, in order
to calculate the actuation value. In this implementation we
assume that the state of the plant can be represented as a float-
ing point value like, for instance, the temperature in a room.
These values are not expected to be identical even if sensors
are operating correctly. Therefore, replicas perform a type of
voting that consists in removing the outliers and then calculat-
ing the average of the resulting values.

Finally, the EA/VA/A task transmits the result of the con-
trol algorithm, that is, the actuation value, waits for the re-
ception of the actuation values from the other replicas, votes
on all of them and sends the result of this vote to the actuator
subsystem in the plant. As explained in Sec. 2.2, the type of
voting performed on the actuations considers that their values
are identical and, thus, the task implements a majority voting.

Note that, thanks to the clever initialization previously de-
scribed in this section, masters generate the TMs according
to the control scheme previously presented. That is, during
the sense task no transmission is scheduled, but during the
ES/VS/C and EA/VA/A tasks, masters schedule the transmis-
sion of all the sensor and actuation values respectively.

3.3 Fault Diagnosis and Reintegration
This section describes the extensions carried out in the node
replication implementation presented in the previous section
to include the fault-diagnosis and reintegration mechanisms
explained in Sec. 2.4. It is noteworthy that, as shown in Fig. 5,
to make the application robust and fast, in this new implemen-
tation the 7 phases of the extended control cycle are imple-
mented by means of 5 tasks. Next we discuss the implemen-
tation of every fault-diagnosis and reintegration mechanism.

Fig. 5: Software diagram of the fault-diagnosis and reintegra-
tion implementation.

First, the TM resync mechanism did not need relevant mod-
ifications in the code as the Action triggerer already triggers
the execution of each of the tasks upon the reception of a TM.

Second, to add the Voting Reint. Point mechanism we re-
programmed tasks VS/C and VA/A to not only respectively
vote on the sensor and actuation values, but also to vote on the
values that constitute the control status. The control status is
labelled Status in Fig. 5. Note that the control status is also
voted in the VA phase to give more chances to reintegrate dur-
ing a given control cycle. Additionally, we also include the
setpoint in the voting.

Third, as concerns the Communication Error Counter
(CEC) mechanism, we implemented the counter itself at the
FTT level so that it can update its value upon the reception of
a new TM. As introduced in Sec. 2.4, every TM conveys the
list of application messages correctly transmitted and received
by the replicas. Thus, it serves to diagnose communication er-
rors. If any communication error is detected, the value of the
counter is increased, otherwise it is decreased unless it is zero.
The value of this counter can be read by the application, which
resets itself if it exceeds a certain threshold. Note that, for sim-
plicity we perform a soft reset, which consists in reinitializing
the operational state information rather than reinitializing the
hardware components of the replica.

Fourth, the Discrepancy Error Counter (DEC) mechanism
is similar to the CEC but for errors affecting the application. It
is implemented at the application level and increases its value
whenever the consensus value resulting from a voting differs
from what the replica proposed. Otherwise it decreases the
counter if it is not zero already. As for the CEC, the applica-
tion reinitializes when the DEC exceeds a given threshold.



Finally, we add a simplified version of the You Are Alive
(YAA) watchdog. Specifically, we implemented it as a soft-
ware module that resets the application when several consec-
utive TMs are not received; that is, when the replica seems to
be completely lost and cannot reset itself.

4 Testbed Setup

Up to this point of the document we have been assuming that
the FT4FTT architecture only executes a replicated real-time
control application. However, as stated in the introduction,
this architecture also provides flexibility in the communica-
tions. In this regard, it is possible for the slaves to change
the communication requirements online, as well as to con-
nect legacy nodes that exchange non-real-time traffic. Conse-
quently, we developed a complete new experimental setup that
allowed us to test all the fault-tolerance mechanisms described
in this document while running several applications with dif-
ferent real-time, reliability and adaptivity requirements. The
complete design and implementation of this setup is sketched
in Figs. 6a and 6b respectively.

Physically, this setup is composed of two FT4FTT
switches, three node replicas and two legacy nodes. Each
switch executes an F4FTT master, whereas each replica ex-
ecutes an FT4FTT slave implementing a typical control ap-
plication. Finally, legacy nodes execute a multimedia appli-
cation. Next we describe in more depth the applications exe-
cuted in each node and the services we test in each case.

First, to test the support of replicated real-time traffic, we
developed a control application that regulates the behaviour of
a plant, a simulated inverted pendulum [4]. More specifically,
as shown in Fig. 6a, we built a system using the hardware-in-
the-loop [3] technique, where the plant is simulated in soft-
ware while the control system is implemented as a realistic
combination of hardware and software. The control applica-
tion is executed in parallel by three node replicas, the gray-
filled nodes in the figure. The implementation of the simulated
plant is discussed below, in Sec. 4.1.

Second, to demonstrate the support of flexibility in real-
time communications, blue-filled FT4FTT nodes in Fig. 6a
perform an exchange of periodic information. Specifically,
FNode1 creates and manages a virtual communication chan-
nel between FNode2 and FNode3. FNode2 periodically trans-
mits the value of a counter to FNode3. The periodicity of this
transmission can be modified online by FNode1. Finally, note
that, although these three nodes are represented in the figure
as independent physical nodes, their operation is carried out
by the same physical nodes performing the control of the sim-
ulated inverted pendulum, that is, the gray-filled nodes.

Third, two legacy nodes, depicted as red nodes in Fig. 6a,
exchange non-real-time information. Specifically, LNode1
acts as a video server and transmits a video stream to LN-
ode2. This last node acts as a video client and outputs the
video stream through a screen.

(a) Design of the experimental setup.

(b) Implementation of the experimental setup.

Fig. 6: Experimental setup.

4.1 Simulated plant

As indicated above, the experimental setup includes a sim-
ulated plant that makes it possible to assess the correct op-
eration of the replicated control application in the presence
of faults. The construction of this simulator is quite com-
plex and, thus, was carried out within the final-year project of
an informatics degree student. Specifically, the author of the
present work was responsible for supervising said project and,
more specifically, for designing the architecture of the plant,
which includes the simulated inverted pendulum and its inter-
face with the node replicas, and for performing various final
modifications to adapt the solution to the existing prototype.
On the other side, the student was responsible for finding and
adapting an available graphical simulated inverted pendulum
and implementing the interface between this simulator and the
node replicas. Next we describe more deeply these tasks.



The initial design for the plant consisted in a document con-
taining the main components of the plant and their interac-
tions. Specifically, as sketched in Fig. 6a, the Simulated in-
verted pendulum, module has to simulate the physics of an
inverted pendulum, as well as to graphically represent it, all
in real time. Additionally, the Replica interface module has
to send the status information to the replicas and the actuation
to the inverted pendulum. On the one hand, this module has
to obtain the angle of the pendulum and the position of the
cart, replicate them and send them to the replicas. Note that
here we can simulate sensor value discrepancies by introduc-
ing some errors into the readings. On the other hand, after the
execution of the control algorithm, the Replica interface has
to collect the actuations coming from the replicas, consolidate
them and perform a single actuation into de plant.

The student made a thorough search to find an inverted pen-
dulum implementation that could be easily adapted for our
purposes. Specifically, we selected a Simulink implementa-
tion which can be adapted by tuning its operational parameters
and by modifying and adding new blocks, that is, a Simulink
element that carries out a predefined action. As shown in
Fig. 6a, the Simulink model communicates with the Replica
interface, and the latter one with the replicas. The commu-
nication between the Simulink model and the Replica inter-
face was implemented by means of a network block, that is,
a Simulink element that makes it possible to transmit and re-
ceive TCP/IP packets. Regarding the details of the implemen-
tation, the Replica interface is an independent program pro-
grammed in C code using network sockets for the communi-
cation with both, the Simulink model and the replicas. Note
that the idea of communicating all these pieces of software
through network connections makes the testing and deploy-
ment very flexible, as said pieces can be placed in the same
machine or in different ones. Finally, the student also devel-
oped the control application running in the replicas. This ap-
plication is composed of two PID controllers [5] that operate
in parallel. One of them regulates the angle and the other one
the position of the inverted pendulum.

At this point we were able to execute the simulated in-
verted pendulum and regulate it thanks to the control appli-
cation. However, this was not performed in real time. That
is why some modifications were carried out to accommodate
the implementation to the prototype. First, we transformed
the Simulink model so it ran in real time. This was done by
adding and replacing some blocks and by adjusting some op-
eration parameters. Second, we changed the communication
protocol used by the Replica interface. Specifically, now it
uses User Datagram Protocol (UDP) to communicate with the
inverted pendulum model and the replicas. This communi-
cation protocol is widely used in real-time environments as
its low overhead makes it very fast. Finally, the consolidator
inside the Replica interface was enhanced to be more fault-
tolerant. More precisely, now the consolidator is able to tol-
erate the faults we typically inject, for instance, omissions or
untimely messages.

Finally, we extended the Simulink model to accept com-
mands from a gamepad (see top of Fig. 6a). This device makes
it possible for a user to apply some force on the pendulum and,
thus, simulate a disturbance. This, in turn, allows us to check
the responsiveness of the system.

5 Testing
Here we present the most relevant tests we have carried out
to check that the implementation of the fault tolerance mech-
anisms was done properly and that they integrate correctly
with the rest of the already implemented fault tolerance mech-
anisms. Moreover, these tests also serve to check that the
design of the mechanisms was correct. Finally, we also ob-
tain some preliminary measurements of the time needed for a
replica to reintegrate.

5.1 Testing Tolerance to Permanent Faults
With these tests we assess the tolerance of the system to per-
manent faults in the channel. For this, we have carried out
two test campaigns in which we simulate the crash of the two
switches and the failure of the links of the control system.

5.1.1 Tests Conducted

In test 1 we assess the tolerance of the system to switch
crashes. Specifically, we carried out two experiments each
one involving the crash of one of the switches.

In test 2 we assess the tolerance of FTTRS and the node
replication to permanent faults affecting the links of the con-
trol system. More precisely, we provoke all the possible com-
binations of disconnections in the replicas’ links and in the
interlinks. Since the control system contains 8 links (2 links
for each of the three replicas and 2 interlinks) and each link
can be non-faulty or faulty, there are 28 = 256 different fault
scenarios. However, for the system to work correctly, some
assumptions were done in the design: at least one interlink
must be online and at least a majority of the replicas (2 in this
case) must have a non-faulty link with one of the switches.
Consequently, we test 162 scenarios of these 256 possible sce-
narios. Note that, in 81 of the tested scenarios both links of
one of the replicas were faulty, that is, these scenarios pro-
voked behaviours equivalent to the failure of said replica.

5.1.2 Results

In both test campaigns the system was able to continue its
operation normally. Moreover, no disturbances where noticed
in the control of the plant when provoking the switch crashes
and the link disconnections.

5.2 Testing Tolerance to Temporary Faults
With these tests we assess the fault-diagnosis and reintegra-
tion mechanisms when different types of temporary faults af-



fecting the links or the replicas do occur. Moreover, we get
some preliminary measurements of the reintegration time, that
is, the time elapsed since the fault stops provoking errors until
the operational state of the affected replica is consistent with
the ones of the other replicas.

It is important to mention that in each of the tests we pro-
voke errors in only one of the replicas. Moreover, for each
test we carry out several experiments in order to analyze the
effects of the provoked errors in each of the five phases of the
application (see Sec. 3.3). This represents a first step towards
a complete characterization of the reintegration time.

Next we describe each of the tests we conducted. To as-
sist in the explanation Table 1 summarizes the error injection,
that is, the type of error provoked and the instant in which it
is injected. We finish this section by presenting the reintegra-
tion times registered for each test and the conclusions we have
extracted from them.

S ES VS/C EA VA/A S ES VS/C EA VA/A
TM

TM DM
TM

TM DM
TM

Mem Mem Mem
Mem Mem

Mem
Mem Mem

Mem Mem Mem

Table 1: Error injection for tests 1, 2, 3 and 4.

5.2.1 Tests Conducted

In test 1 we simulate temporary link faults that prevent the
replica from receiving the TM of some of the phases (see top-
left part of Table 1). This causes the replica to not execute
the associated phases. In order to reintegrate, the replica uses
the TM resync mechanism, so that the subsequent phases can
be executed normally. In some cases, not executing a given
phase results in the replica not properly voting, which leads to
a loss of consistency with the other replicas. In these cases the
replica also uses the Voting Reint. Point. mechanism.

In test 2 we simulate temporary link faults that prevent
the replica from transmitting and/or receiving the applica-
tion messages, herein called Data Messages (DMs). This test
is composed of three sub-tests in which we analyze the be-
haviour of the replica when it is not able to receive them, trans-
mit them and receive nor transmit them, during one phase. It
is noteworthy that, as shown in the top-right part of Table 1,
we only inject these error during the ES and EA phases, that
is, when replicas exchange messages. In any other phase the
fault does not provoke errors. Communication problems in-
volving DMs result in the replica voting with a different subset
of messages, which leads to an inconsistent operational state.
When so, the replica uses the Voting Reint. Point. mechanism
to reintegrate.

In test 3 we simulate temporary node faults that corrupt the
operational state of the replica. Specifically, as shown in the
bottom-left part of Table 1, in each phase we inject an error
that modifies the values used and generated by the replica. As
a result, said replica uses the Voting Reint. Point. mechanism
to achieve consistency again.

In test 4 we simulate a replica crash that prevents said
replica from correctly voting until it is restarted by the DEC
mechanism. For this, as shown in the bottom-right part of Ta-
ble 1, we corrupt the voting values during several consecutive
voting phases. Every time the replica is not able to correctly
vote the DEC is increased and, once reached a threshold, the
replica resets itself. After this reset the replica uses the TM
resync and the Voting Reint. Point. mechanisms to reintegrate
in the time and in the value domain, respectively.

In test 5 we simulate a replica crash that prevents it from
executing any action until it is restarted by the YAA watchdog.
For this we force the replica to not receive several consecutive
TMs. This error injection is similar to the one carried out in
test 1 (see the top-left part of Table 1) but with the loss af-
fecting several phases. As in test 4, once the watchdog resets
the replica, the TM resync and the Voting Reint. Point. mech-
anisms make it possible to achieve consistency again in the
time and in the value domain, respectively.

5.2.2 Results

In each of the tests executed the faulty replica was able to
correctly reintegrate in a number of ECs shown in Table 2.
Each row corresponds to one of the tests and each of the first
five columns corresponds to one of the experiments conducted
for each of these tests. Specifically, each of these columns
refers to the phase in which the fault finishes. Finally, the last
two columns show, for each test, the maximum and average of
the reintegration time.

Note that the size of the EC for this test was 7 ms. However,
since these results are expressed in ECs they do not depend on
the size of the EC, as long as there is enough time in each EC
to carry out the required actions. Next we present the main
conclusions we extracted from the tests and Table 2.

Last phase affected by the fault Statistics
S ES VS/C EA VA/A max avg

1 2 3 2 0 0 3 1
2 - 3 - 0 - 3 1.5
3 2 3 2 0 0 3 1.4
4 - - 2 - 3 3 2.5
5 2 3 2 4 3 4 2.8

Table 2: Time to reintegrate (in ECs) for every test and exp.

As can be concluded, the time needed to reintegrate is the
time until the next successful voting. Specifically, according
to the Voting Reint. Point mechanism, this happens after re-
ceiving the DMs from the other replicas and voting on them.
In this sense, as can be seen in Table 2, the values for each
column are almost identical. The only difference occurs when
injecting errors after performing the control



More precisely, a temporary communication fault occurring
after the VS/C phase does not make the replica inconsistent.
This is because the actuation is already calculated and it must
be identical in all the replicas. In contrast, when a restart is
needed to stop the error, the initialization of the operational
state forces the replica to wait for the next reintegration point,
which occurs in the next application cycle.

6 Conclusions

We presented the implementation and testing of the node
replication scheme designed in the scope of the FT4FTT Ar-
chitecture. The implementation covered all those mechanisms
devised to add redundancy to the nodes performing critical
control tasks, as well as to diagnose permanently discoordi-
nated replicas and reintegrate them. For this, we extended
the previous FT4FTT prototype by adding new functionalities
mostly at the application level, but also at the communica-
tion level. One relevant contribution of this work is the devel-
opment of the experimental setup, using the hardware-in-the-
loop technique, used to test all these mechanisms. This setup
allowed us to test the behaviour of the system when nodes
have different real-time, dependability and flexibility commu-
nication requirements.

The testing performed validated the design of the replica-
tion scheme and verified its implementation and integration
with the rest of the fault tolerance mechanisms. Additionally,
we obtained some preliminary results of the time (measured
in ECs) needed to reintegrate a replica affected by temporary
faults.

As a future work, we propose some extensions that could
be carried out to improve some specific aspects of the im-
plementation. First, it would be interesting to implement the
YAA watchdog in hardware. With this the watchdog would
not depend on the replica it is attached to and, thus, it would
not suffer any fault affecting said replica. Second, incorpo-
rating the implementation of the hard reset would also be an
interesting improvement. Specifically, this reset would be able
to completely shutdown and restart the replica. This has two
benefits. On the one hand, it would allow to recover a replica
from a fault affecting the operating system or the hardware.
On the other hand, it would allow to improve the characteri-
zation of the reintegration time as we could also consider the
time needed to start the application and the time needed to
enter into the communication.

As a final remark, it is noteworthy that the construction of
the experimental platform was a hard work. This is because
it is quite difficult to achieve a real-time behaviour with the
current software implementation. Thus, to be able to con-
trol systems with more demanding real-time requirements it
would be necessary to improve the responsiveness of the con-
trol system. This would require to analyse and try to enhance
the implementation of the network stack and the FTT code.

Appendix A Publicacions of this work
The results of this work have been described in two papers
which were presented and published in the proceeding of peer-
reviewed international conferences.

First, [7] was presented in the 12th IEEE World Confer-
ence on Factory Communication Systems (WFCS 2016) and
described the implementation and testing of the basic replica-
tion scheme, as wells as the construction of the experimental
setup. This paper received the Best Work-in-Progress Award.

Second, [6] was presented in the 21st IEEE International
Conference on Emerging Technologies and Factory Automa-
tion (ETFA 2016) and described the implementation and test-
ing of the fault-diagnosis and reintegration mechansism.

Appendix B Other publications
During the development of this work the author was in-
volved in several final-year projects as a co-supervisor. These
projects reflect part of the work described in this dissertation:

• Maties Melià. Implementació i validació de mecanismes
per a l’intercanvi consistent d’informació entre nodes d’un
sistema encastat distribuït basat en HaRTES. Master thesis
for the Màster Universitari en Tecnologies de la Informa-
ció. Supervised by J. Proenza and A. Ballesteros.

• Andreu Adrover. Infraestructura d’injecció de fallades per
a Ethernet amb funcions específiques per a FTT. Final-
year project for the Enginyeria Tècnica de Telecomunica-
cions. Supervised by A. Ballesteros and J. Proenza.

• Adel Zendouh. Dependable Distributed infrastructures for
monitoring and automation in complex emerging applica-
tions. Bachelor thesis in Université Constantine 2, Algeria.
Supervised by A. Ballesteros and M. Barranco.

Additionally, the final-year project related to the construc-
tion of the simulated plant (see Sec. 4.1) is not listed here as it
still is an ongoing work.

Acknowledgements
This work was supported by projects DPI2011-22992 and
TEC2015-70313-R funded by the Spanish Ministerio de
Economia y Competitividad (MINECO) and by the Fondo Eu-
ropeo de Desarrollo Regional (FEDER).

References
[1] FT4FTT project. http://srv.uib.es/ft4ftt/.
[2] FT4FTT prototype demo. http://srv.uib.es/ft4ftt/.
[3] Hardware-in-the-loop. wikipedia.org/wiki/Hardware-in-

the-loop_simulation.
[4] Inverted pendulum. wikipedia.org/wiki/Inverted_pen

dulum.



[5] PID controller. wikipedia.org/wiki/PID_controller.
[6] Alberto Ballesteros, Sinisa Derasevic, Manuel Barranco,

and Julián Proenza. First Implementation and Test
of Reintegration Mechanisms for Node Replicas in the
FT4FTT Architecture. In Proc. 21st IEEE Int. Conf.
on Emerging Tech. and Factory Autom. (ETFA), Berlin,
2016.

[7] Alberto Ballesteros, Sinisa Derasevic, David Gessner,
Francisca Font, Inés Álvarez, Manuel Barranco, and
Julián Proenza. First Implementation and Test of a
Node Replication Scheme on top of the Flexible Time-
Triggered Replicated Star for Ethernet. In Proc. 12th
IEEE World Conf. on Factory Comm. Systems (WFCS),
Aveiro, 2016.

[8] Sinisa Derasevic, Manuel Barranco, and Julián Proenza.
Designing fault-diagnosis and reintegration to prevent
node redundancy attrition in highly reliable control sys-
tems based on FTT-Ethernet. In Proc. 12th IEEE World
Conf. on Factory Comm. Systems (WFCS), Aveiro, 2016.

[9] Sinisa Derasevic, Maties Melia, Alberto Ballesteros,
Manuel Barranco, and Julián Proenza. First experimen-
tal evaluation of the consistent replicated voting in the
hard real-time ethernet switching architecture. In Proc.
20th IEEE Int. Conf. on Emerging Tech. and Factory Au-

tom. (ETFA), Luxemburg, 2015.
[10] Sinisa Derasevic, Julián Proenza, and Manuel Barranco.

Using FTT-ethernet for the coordinated dispatching of
tasks and messages for node replication. In Proc. 19th
IEEE Int. Conf. on Emerging Tech. and Factory Autom.
(ETFA), Barcelona, 2014.

[11] David Gessner, Julián Proenza, and Manuel Barranco.
A Proposal for Master Replica Control in the Flexible
Time-Triggered Replicated Star for Ethernet. In Proc.
10th IEEE Int. Workshop on Factory Comm. Systems
(WFCS), Toulouse, 2014.

[12] David Gessner, Julián Proenza, Manuel Barranco, and
Luis Almeida. Towards a Flexible Time-Triggered
Replicated Star for Ethernet. In Proc. 18th IEEE Int.
Conf. on Emerging Tech. and Factory Autom. (ETFA),
Cagliary, 2013.

[13] Paulo Pedreiras and Luis Almeida. The Flexible Time-
Triggered (FTT) Paradigm: An Approach to QoS Man-
agement in Distributed Real-Time Systems. Proc. Int.
Parallel and Distributed Processing Symp., 2003.

[14] Rui Santos. Enhanced Ethernet Switching Technology
for Adaptive Hard Real-Time Applications. PhD thesis,

Universidade Aveiro, 2011.


