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Resumen

En los últimos años la industria ha mostrado un interés cre-
ciente en usar Ethernet como protocolo para desarrollar sis-
temas empotrados distribuidos, incluso en campos como la
automatización, la aviónica o la automoción. Esto coincide
con un interés creciente en el uso de aplicaciones multimedia
para el entretenimiento (streaming de vídeo) o la asistencia
(Sistemas Avanzados de Asistencia a la Conducción). Estas
aplicaciones deben coexistir con aplicaciones tradicionales de
control distribuido, lo que genera una gran diversidad en el
tráfico que atraviesa la red. Concretamente, el tráfico multi-
media se caracteriza por tener un gran tamaño, baja intensidad
(ocupación media del canal) y requisitos de tiempo real débil.
Por el contrario, el tráfico de control normalmente contiene
información de pequeño tamaño con una alta intensidad y req-
uisitos de tiempo real estricto. Además, muchas aplicaciones
modernas pueden ser lanzadas en cualquier momento por lo
que la red debe permitir la conexión y desconexión de par-
ticipantes en tiempo de ejecución. Sin embargo, Ethernet no
provee servicios de temporalidad adecuados para transmitir
tráfico de tiempo real, estricto o débil. Además, Ethernet no
permite modificar dinámicamente la Calidad de Servicio (QoS)
de la red y, por tanto, no soporta la conexión y desconexión de
participantes en tiempo de ejecución. Se han propuesto varios
protocolos basados en Ethernet para lidiar con estas limita-
ciones, como Flexible Time-Triggered (FTT) y, recientemente,
Audio Video Bridging (AVB). En este trabajo estudiamos la
relevancia de los mecanismos de Control de Admisión (CA) de
estos protocolos para la gestión dinámica de su QoS. Además,
hacemos una comparación cualitativa del CA de los protocolos
mencionados. También presentamos la implementación de los
mecanismos de CA sobre un modelo de simulación preliminar
de la versión HaRTES de FTT que está siendo desarrollado en
la Universidad de Banja Luka. Finalmente, presentamos un
análisis cuantitativo del desempeño del protocolo utilizando
el modelo mencionado. Los análisis presentados en este tra-
bajo constituyen un primer paso hacia una futura comparación
completa de los protocolos mencionados.

Abstract
In the last years industry has shown a growing interest in using
Ethernet as the protocol for developing distributed embed-
ded systems, even in the automation, avionics and automotive
fields. This coincides with a growing interest in the use of
multimedia-based applications for entertainment (e.g. video
streaming) as well as for assistance (e.g. Advanced Driver
Assistance Systems). These applications must coexist with
traditional distributed control applications, what generates a
great diversity in the traffic traversing the communication net-
work. More specifically, multimedia traffic is characterised by
having a large size, low intensity (average occupation of the
channel) and soft real-time requirements. Conversely, control
traffic usually conveys small amounts of information with high
intensity and hard real-time requirements. Furthermore, many
modern applications can be launched at any moment of the sys-
tem’s operation and thus, the network must support the on-line
connection and disconnection of participants. Nevertheless
Ethernet does not provide adequate timing services to support
the transmission of hard or soft real-time traffic. Moreover,
Ethernet does not allow to dynamically change the Quality of
Service (QoS) of the network and thus it does not support the
connection and disconnection of participants at run-time. Sev-
eral Ethernet-based protocols were proposed to cope with these
drawbacks, namely Flexible Time-Triggered (FTT) and more
recently Audio Video Bridging (AVB), among others. In this
work we study the relevance of the Admission Control (AC)
mechanisms of these protocols for the dynamic management of
their QoS. Moreover, we carry out a qualitative comparison of
the AC mechanisms of the aforementioned protocols. We also
present the implementation of the FTT’s AC mechanism over
a preliminary simulation model of the HaRTES implementa-
tion of FTT that is currently being developed in the University
of Banja Luka. Finally, we present a quantitative analysis of
the performance of the HaRTES’ AC using said model. The
analyses presented in this work constitute a first step towards a
future complete comparison of the mentioned protocols.
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1 Introduction

In recent years the industry has shown interest in using Eth-
ernet as the technology for developing distributed embedded
systems, including in the automation, avionics and automotive
areas. This coincides with a growing interest in deploying
novel multimedia-based applications for entertainment or as-
sistance over said systems. On top of that, in these areas mul-
timedia applications must coexist with traditional distributed
control applications, what leads to a wide diversity of types of
traffic traversing the network in terms of size, intensity (aver-
age occupancy of the channel) and timing requirements. More
specifically, traffic exchanged by multimedia applications is
characterised by having a large size, low intensity and soft
real-time requirements [9], while traffic exchanged by control
applications usually has small size, high intensity and hard
real-time requirements.

Many of these novel multimedia applications, such as Ad-
vanced Driver Assistance Systems (ADAS) and infotainment
applications, can be launched at any moment of the system’s
operation and therefore these systems require support for the
on-line connection and disconnection of participants.

Nevertheless, Ethernet does not provide the required services
to support real-time traffic conveyed by control and multimedia
applications. For instance, Ethernet does not prevent traffic
bursts from happening, which can lead to unbounded delays
in the transmission of packets and packet losses due to buffer
overflow. In this context, several protocols were proposed
to provide Ethernet with real-time capabilities by both indus-
try, such as Time-Triggered Ethernet [8] and academia, i.e.
Dynamic-TDMA Ethernet [5], among others.

However, full support for reconfigurability and adaptivity
has generally lacked. For instance, Ethernet does not support
the dynamic management of the Quality of Service (QoS) of
the network, which means that the network parameters (e.g.
number of participants, resources dedicated to each partici-
pant, etc.) can not be modified during the normal operation of
the system. This prevents nodes from entering or leaving the
network at run-time. These drawbacks led to the proposal of
several implementations of the Flexible Time-Triggered (FTT)
paradigm [11] based on switched Ethernet networks. FTT is
a master/multi-slave communication paradigm that provides
flexibility by supporting several types of traffic over the same
communication channel, namely hard real-time, soft real-time
and best effort traffic. Moreover, FTT also provides the net-
work with dynamic management of the QoS. Currently two
different approaches for FTT over switched Ethernet exist:
FTT Switched Ethernet (FTT-SE), with the slaves and mas-
ter connected through a Commercial Off-The-Shelf (COTS)
switch; and Hard Real-Time Ethernet Switching (HaRTES),

with the slaves connected to a custom switch that contains the
master.

More recently the IEEE published a series of technical stan-
dards known as Audio Video Bridging (AVB) [2] [3] [4] that
aims at providing Ethernet with soft real-time capacities and
adaptivity services. To this, AVB supports the transmission of
several types of traffic over the same network infrastructure and
allows for on-line changing the QoS that the network provides
to the participants. Each technical standard specifies different
mechanisms to achieve the desired timing guarantees and QoS
management. The IEEE Std 802.1AS-2011 implements syn-
chronization services, the IEEE Std 802.1Qav-2010 describe
frame forwarding policies for AVB traffic and the IEEE Std
802.1Qat-2010 implements Admission Control mechanisms
for the streams in the switches. All these mechanisms together
guarantee bounded maximum latency in the transport of audio
and video frames in a flexible manner.

As has been said before, both FTT and AVB implement
mechanisms to support the dynamic change of the QoS. One
of these mechanisms is the Admission Control (AC). AC al-
lows for the on-line reservation of resources in the network,
ensuring that enough resources are available along the path
that connects a transmitter with a receiver to carry out the com-
munication, preventing packet delays beyond predefined limits
and packet losses due to buffer overflow. When working in
dynamic environments that may change in unpredictable man-
ners AC is of great importance to guarantee timing constraints
while providing an adequate level of flexibility.

In this work we compare the Admission Control mechanism
implemented by each of the aforementioned protocols from
three different points of view: 1) reliability, paying special
attention to transient and permanent faults that may occur in
the communication network and those permanent that may
affect the nodes; 2) flexibility, studying the mechanisms imple-
mented and the services provided by the protocols to increase
the overall adaptivity of the system; and 3) performance, in
terms of the overhead generated by the AC mechanisms in the
communication and the nodes. These comparisons are done
assuming a mono-hop architecture for all protocols, which
means that the topology used has a single switch connected to
all the nodes of the network through direct links.

Furthermore, we present the implementation of a simulation
model of the Admission Control of the HaRTES implemen-
tation of FTT, to carry out a quantitative analysis of its per-
formance. This model was implemented over the OMNeT++
INET simulation framework. Simulation represents a suitable
option to study the AC in HaRTES, since it is usually faster to
carry out and facilitates the study of specific mechanisms when
compared to the implementation of a real prototype. As the
starting point for this work, we counted with a partial model of
HaRTES for the OMNET++ INET framework that is currently
being developed at the University of Banja Luka [7].

As indicated above, the platform chosen to carry out the
simulation is OMNeT++ that is an extensible and modular C++-
based discrete event simulation framework for the simulation of
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Figure 1: Mono-hop network architectures for FTT-SE, HaRTES and AVB.

networks and distributed systems [13]. Moreover, OMNET++
provides a series of libraries and frameworks, such as INET,
an open-source library containing a large number of wired,
wireless and mobile network models [1].

The structure of the remainder of the document is as follows,
Section 2 presents an overview of the protocols and the specific
Admission Control mechanisms they implement, Section 3
contains the qualitative comparison of the protocols in terms of
reliability, flexibility and performance, in Section 4 we describe
the simulation model of the AC of HaRTES, the experiments
carried out to study the performance and the results obtained,
finally Section 5 presents a summary of the most relevant
aspects of this work and points out to some of the future work
to carry out.

2 Related Work
In this section we will provide an overview of the communi-
cation protocols and the Admission Control mechanisms that
each one implements.

2.1 Overview of FTT over Ethernet
As already mentioned, FTT is a communication paradigm that
supports the transmission of hard and soft real-time traffic over
the same communication infrastructure and provides mech-
anisms for dynamically changing the QoS provided by the
network. FTT follows a master/multi-slave scheme, that is,
the master node manages and coordinates the communication
among the application nodes (slaves).

Figure 2: Structure of the Elementary Cycle.

In FTT the master organises the communication in slots of
fixed duration called Elementary Cycles (EC). Figure 2 shows
the structure of an EC. At the beginning of each EC the mas-
ter transmits the so called Trigger Message (TM), a special

message used to synchronize and trigger the communication
among several slaves. The TM contains the schedule of the
messages to be transmitted within that EC and its transmission
is done isolated from the rest of the traffic during the TM Win-
dow (TMW). The rest of the EC is divided into two different
phases, the Synchronous Window for time-triggered data mes-
sages and the Asynchronous Window for event-triggered data
and control messages.

The communication is carried out through virtual commu-
nication channels called message streams or streams for short.
Streams are defined by a series of parameters, depending
on whether they convey synchronous or asynchronous traffic.
These parameters are depicted by Equation 1 and Equation 2
respectively:

SMi ≡ {Ci, Di, Ti, Oi, P ri, Si, [R
1
i ..R

ki
i ]}, (1)

AMi ≡ {Ci,miti, P ri, Si, [R
1
i ..R

ki
i ]}, (2)

The expressions show the stream attributes. These attributes
determine how messages are transmitted through the stream.
Specifically, Ci is the transmission time of the messages sent
through the stream, Di is the relative deadline, which is the
time available to complete the transmission of a message since
it is requested by the master; Ti is the period with which a
synchronous message is transmitted and miti represents the
minimum inter-transmission time between two asynchronous
messages; Oi is the offset (for synchronous streams, only)
used to shift the transmission instants of a stream as shown
in Figure 3; Pri is the priority and Si contains the publisher
ID and R1

i ..R
ki
i contain the subscribers IDs. All information

related to the streams is stored in the System Requirements
Database (SRDB) in the master and in the Node Requirements
Database in the slaves (NRDB).

Figure 3: Example of two streams with the same period and
different offset.



Whenever an FTT slave wants to carry out a modification
in the communication requirements, be it adding, removing or
updating a stream (e.g. reducing the period of message trans-
mission for a synchronous stream), it issues a slave request to
the master. When receiving a slave request, the master executes
a schedulability analysis in order to determine if the resources
available in the network are sufficient to carry out the requested
modification. In case a stream is successfully created or modi-
fied the master sends an master command message to all the
slaves in the network with the stream information. Slaves use
the master command message to update their NRDBs. On the
other hand, when the master receives a slave request to delete
a stream it simply removes the stream from the SRDB and
notifies the slaves to update their NRDBs by means of a master
command. It is important to note that in FTT any slave can
request the modification of the communication requirements
of any stream, even if this node does not participate in the
communication. The application can decide which nodes can
request changes on which streams.

FTT was implemented over Ethernet according to two differ-
ent approaches, FTT-SE that uses COTS switches and HaRTES
that uses custom switches with the master node embedded.
Figure 1a depicts the FTT-SE architecture. By using COTS
switches FTT-SE preserves some of the Ethernet desirable fea-
tures, such as low cost, high availability of components and
general purpose LANs compatibility. Nevertheless, it requires
all nodes to be FTT-aware, since non-FTT-compliant nodes
could send their traffic at any moment of the EC, interfering
with the timeliness of the protocol.

Conversely to FTT-SE, the HaRTES architecture, shown in
Figure 1b, is based on a custom switch that contains the master
node embedded. This way, the master has a complete vision
of the communication and the traffic traversing the network,
which allows implementing traffic shaping, i.e., the master con-
fines the traffic sent by the nodes to the appropriate windows
of the EC. Thus, non-FTT-enabled nodes can be attached to
the network, since their traffic is only forwarded by the master
during the Asynchronous Window when enough bandwidth is
available after transmitting the FTT-compliant messages, pre-
venting best-effort traffic from interfering in the transmission
of real-time traffic.

2.2 Overview of Audio Video Bridging
AVB is a set of technical standards that provides synchronisa-
tion services, frame forwarding policies and Admission Control
mechanisms in the scope of Ethernet. Figure 1c depicts the ar-
chitecture of a one-hop AVB network. The Admission Control
is performed by the Stream Reservation Protocol (SRP), that
allows for the reservation of resources in the switches along
the path between two nodes willing to communicate. SRP con-
siders two classes of real-time traffic, A and B, with different
QoS, the former providing lower latencies and higher priority.

Similarly to FTT, nodes that want to transmit real-time traffic
must do it through virtual channels called streams. Neverthe-
less, the attributes used to describe a stream in AVB differ from

those used in FTT. Equation 3 depicts the attributes of AVB
streams.

Stmi ≡ {Idi,MACi, V LANi,Msizei,Minti, P ri, Rki},
(3)

The values assigned to the stream attributes determine the
way messages are transmitted through the stream. Concretely,
Idi is the identifier of the stream, MACi represents the des-
tination MAC address of the stream, V LANi is the Virtual
LAN identifier where the messages will be transmitted through,
Msizei is the maximum size of the messages to be transmitted
through the stream, Minti is the maximum number of frames
transmitted by the talker during the transmission interval as-
signed to its class by the the traffic shaper, Pri represents the
priority class of the stream and Rki indicates if the stream is an
emergency stream with higher priority than the rest of streams
of the same class.

A node can be attached to a stream whether as talker, the
node that generates the traffic, or as listener, nodes that con-
sume the traffic. When a node declares its intention to create a
stream this information is stored in the switches, called bridges
within AVB standards, to manage the Admission Control and
the communication.

More specifically, the creation of streams is triggered by
the talker by sending a talker advertise message. A bridge
that receives a talker advertise checks for the availability of
resources in all the output ports that support the transmission
of messages that belong to the stream class, except for the port
the talker advertise arrived to. If the required resources are
available in the port, the bridge forwards the talker advertise
and registers its transmission in the talker advertise table of the
port. Otherwise the bridge forwards a talker failed messageto
the talker and the listener connected to the port. The talker
failed message contains the reason for the failure. Thus, a node
only receives a talker advertise if there are resources available
along the path that connects it to the talker.

When a node different from the talker receives a talker ad-
vertise message, it will respond by sending a listener attribute
message. The listener attribute will be different depending on
the intention of the node to listen to the stream. If the node
wants to listen to the stream, it will respond with a listener
ready attribute message. If the node does not want to listen or
if it receives a talker failed message (no resources available) it
will respond with a listener asking failed attribute message.

When a bridge receives a listener ready message it checks
again for the availability of resources in the arriving port. If
resources are still available the bridge locks them, otherwise
it changes the listener attribute to a listener asking failed and
sends it to the affected listener.

The slave attributes received by the bridge are used to answer
to the talker. Nevertheless, bridges do not forward all the
slave attributes, instead they merge all the attributes to create a
unique response for the talker. This combination of attributes
is done as follows:



Figure 4: Transmission of a listener ready failed scenario.

• If all the attributes received by the bridge are listener
ready, the bridge forwards a listener ready to the talker,
indicating that the reservation of resources has been suc-
cessful for all the downstream listeners.

• If all the attributes are listener asking failed messages, the
bridge forwards a listener asking failed to the talker.

• Figure 4 shows an scenario in which the bridge receives
different attributes from the listeners. When at least one
listener ready and at least one listener asking failed are
received, the bridge forwards a listener ready failed back
to the talker, indicating that there is at least one path with
sufficient resources and at least another with insufficient
resources to carry out the communication.

When a bridge transmits the listener attribute through a port,
it registers its transmission in the listener ready table of said
port. When a talker receives a listener ready or a listener ready
failed it knows that the stream was successfully created for at
least one listener and can start the transmission.

It is important to note that talker and listeners must period-
ically transmit a talker advertise and a listener ready, respec-
tively, to announce their intention to keep communicating.

3 Qualitative comparison

In this section we will carry out the qualitative comparison of
the AC mechanisms of the protocols from three different points
of view, reliability, flexibility and performance.

Concerning reliability, we will study the effects derived from
temporary faults in the communication channel, paying spe-
cial attention to the loss of AC messages, i.e. slave requests
and master commands in FTT and talker advertise and listener
ready in AVB. We will also analyse the consequences of perma-
nent faults in the nodes and the communication channel, pay-
ing special attention to the presence of Single Points of Failure
(SPoF). Regarding flexibility, we will study the mechanisms
and services related to the AC that each protocol implements to
increase the overall adaptivity of the system. Finally, regarding
the performance comparison, we decided to study the overhead
caused by each protocol in terms of the number of messages
needed to complete the creation of a stream in a network with
a single transmitter and receiver.

Note that in these comparisons we consider both FTT imple-
mentations that have been mentioned above, namely FTT-SE
and HaRTES. Furthermore, these comparisons are done assum-
ing a mono-hop architecture for all protocols.

3.1 Comparing reliability

Faults can be classified by their persistence, that is, whether
they are temporary or permanent. Furthermore, we can also
differentiate faults that happen in the communication channel
from those happening in the nodes.

Networked systems are specially vulnerable to temporary
faults happening in the communication channel, called tran-
sient faults, since the probability of suffering said faults is high
when compared to permanent faults, due to electromagnetic
interference in the links. Nevertheless, none of the presented
protocols consider specific mechanisms to face the loss of mes-
sages caused by transient faults. The consequences derived
from message loss are different depending on the protocol
and its specific implementation (whether it is an FTT-SE or
a HaRTES implementation in the case of FTT) and on the
message that is affected by the fault.

In the FTT-SE implementation, the transmission of asyn-
chronous messages in the slaves is scheduled using a signalling
mechanism. This mechanism consist in the transmission of
a signalling message to the master at the beginning of each
EC informing of pending asynchronous messages. The mas-
ter uses the signalling message of every slave to schedule the
transmission of asynchronous messages. The transmission of
the asynchronous messages is also triggered by the TM. Thus,
if the signalling message that notifies a pending slave request
is lost, the master will not schedule its transmission. Thus,
the AC will be delayed until a signalling message reaches
the master. Note that the signalling message is not used in
the HaRTES implementation, since the master has a complete
view of the communication and can apply frame forwarding
policies as explained above. Thus, slave requests in HaRTES
are immediately transmitted when issued by the application.

In both FTT-SE and HaRTES if a slave request message is
affected by a fault the AC will not take place for said request
and, therefore, the slave that sent said request will not be able
to create, attach or modify the stream. Furthermore, since FTT
does not consider retransmissions for asynchronous messages,
the slave request will never be processed or applied.

Concerning the master command message, the effects de-
rived from its loss may be different depending on the specific
implementation of FTT. More specifically, in FTT-SE the mas-
ter is connected to the switch through a single link, therefore if
the master command is lost in that link none of the slaves will
receive the update information and the NRDBs will remain in-
consistent with the SRDB. On the other hand, in both FTT-SE
and HaRTES, the master command needs to reach the slaves
via their dedicated links. In case transient faults affect only a
subset of these links, it is possible that some nodes receive the
master command message while others do not receive it. This
situation would lead to inconsistencies between NRDBs and
SRDB. Again, since in FTT no retransmissions are considered
for asynchronous messages, the inconsistencies derived from
the master command loss will be irreversible.

Regarding AVB, both talker and listeners must periodically
send a message to announce their intention to keep communi-



cating. Thus, if a talker advertise is lost in the link that connects
the talker to the bridge the AC will be delayed until one of the
following transmissions reaches the destination.

Nevertheless, no retransmissions are considered for mes-
sages forwarded by the bridge. Therefore, if a talker advertise
message is lost in some of the links when forwarded by the
bridge only nodes receiving it will be able to attach to the
stream as listeners. If the message that is lost after being trans-
mitted by the bridge is the listener attribute, the talker will not
be able to initiate the communication even if the resources are
reserved along the path between the talker and the listeners.
Moreover, since the messages are lost after being registered
in the output ports of the switch, further talker advertise and
listener ready messages with the same stream identifier are not
forwarded through those ports, which makes it impossible for
nodes to later attach to the communication.

Temporary faults in nodes are not considered in any of the
presented protocols, and their analysis is left as future work.

With respect to permanent faults we looked in particular to
the possible presence of SPoF. Concerning FTT-SE, the com-
munication channel, the master node and the switch are SPoF
and no mechanisms are considered to deal with the failure of
any of those components. Therefore, a link affected by a per-
manent fault would lead to the isolation of the node attached to
it, preventing it from communicating. In case the link affected
by the fault connects to the master node, the whole communi-
cation would be affected, since the TM would not reach the
salves preventing them from communicating.

In case of a permanent fault in the master, again, the com-
munication among slaves would not take place due to the lack
of TM. Finally, in case of a permanent fault in the switch
the communication would be impossible, since the switch is
responsible for forwarding all messages.

Regarding the HaRTES architecture, both, the communica-
tion channel and the HaRTES switch represent SPoF. In the
project Fault Tolerance for Flexible Time-Triggered (FT4FTT)
several mechanisms were proposed to eliminate the existing
SPoF of the HaRTES architecture [6], by means of space, time
and information redundancy.

Finally, in AVB we can also find two SPoF, the communi-
cation channel and the bridge. No mechanisms to eliminate
those SPoFs are considered in AVB. Nevertheless the IEEE is
currently working on the definition of the second generation of
AVB, also known as Time Sensitive Networking (TSN) which
will provide support for space redundancy of the communica-
tion channel and for replication of critical messages.

3.2 Comparing flexibility
The AC is said to provide protocols with flexibility, since it
allows to dynamically change the QoS provided by the network.
Nevertheless, different levels of flexibility can be achieved
depending on the specific implementations and the services
considered by the protocols.

All three protocols allow for the creation and deletion of
streams. Regarding changes in streams, both FTT-SE and

HaRTES allow for slaves to dynamically change the QoS re-
quirements of an exiting stream by sending a slave request
message to the master. When the master receives the slave
request it evaluates whether the resources are sufficient to carry
out the change in all the necessary links and, if so, it broadcasts
the new QoS parameters to all slaves to update their NRDBs.
Conversely to FTT, in AVB nodes that want to change the
QoS provided for a given stream must first remove the existing
stream. Moreover, after removing the stream nodes must wait
an amount of time predefined by the protocol before request-
ing its creation with the new parameters. During this time
other nodes can perform the reservation of resources for other
streams and exhaust the resources, what would prevent the
creation of the updated stream.

On the other hand, in both FTT and AVB streams must be-
long to a class. Specifically, a stream in FTT-SE and HaRTES
can be synchronous or asynchronous, while an AVB stream can
belong to class A or B. All streams belonging to the same class
share resources and follow the same policies. Neither FTT-SE,
HaRTES nor AVB provide support for dynamically changing
the class a stream belongs to, instead the stream must be re-
moved, a new stream must be created and all nodes involved
must then attach to the new stream.

Regarding the responsibility for requesting the modification
of the network (be it adding, deleting or modifying a stream),
both FTT-SE and HaRTES allow for any slave, even if it is
not purporting to participate in the exchange of messages of
the stream, to send slave requests to the master to modify the
information of any stream. This way legacy applications can
be deployed in a transparent manner on top of FTT if there is
an FTT-node that performs the requests. Nevertheless, in AVB
this is not possible since the node sending the talker advertise
must be the same one to later transmit through that stream.

Finally, both FTT and AVB allow for the transmission of non-
compliant traffic through the network. This traffic is transmit-
ted in both cases as best-effort traffic when bandwidth is avail-
able after transmitting FTT synchronous and asynchronous
traffic or AVB class A and class B traffic.

3.3 Comparing performance
To compare the performance obtained by each approach we
decided to measure the overhead caused by the AC in terms of
the number of messages exchanged. We will consider a simple
scenario where only two nodes want to communicate, one as
transmitter and the other one as receiver of the information.

During the FTT AC, slaves send at least three slave requests,
one to request the stream creation, one for the publisher and
one for each subscriber to attach to the stream. Since in FTT
slaves can send several slave requests in the same message,
a slave that wants to create a stream can also request to be
attached to it in the same message. When the slave requests are
successfully completed, the master sends a master command
for each slave request announcing the result of the AC.

In FTT-SE, as has been mentioned before, slaves that want to
attach to a stream must first send a signalling message to inform
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Figure 5: Messages exchanged during the Admission Control.

the master about pending slave requests. The master schedules
the transmission of the asynchronous messages carrying the
slave requests and triggers it in the slaves by means of the TM.
Therefore, as seen in Figure 5a in FTT-SE the AC requires the
transmission of six messages per participant, that is, twelve
messages for our simple scenario. Note that the TM is not
considered in this calculation since it is not an AC-specific
message, but it is transmitted every EC.

Regarding HaRTES, as depicted in Figure 5b, just two mes-
sages are exchanged per participant during the AC, since the
signalling mechanism is no longer used. Thus, four messages
are exchanged in our simple scenario.

These calculations have been carried out considering that
each slave sends their own requests, nevertheless as mentioned
before, FTT allows for a single slave to transmit all the requests.
Therefore, in such a scenario it would be possible to further
reduce the number of messages needed.

With respect to AVB, as depicted in Figure 5c at least four
messages are exchanged during the AC. First, a talker that
wants to communicate sends a talker advertise message to the
bridge, that will in turn check for the availability of resources
in each output port and then forward the corresponding talker
attribute (talker advertise or talker failed) through them. Then,
nodes receiving a talker attribute transmit a listener ready or a
listener asking failed through the incoming port to the bridge,
that checks again for the availability of resources and sends the
corresponding listener attribute to the talker.

Table 1: Summary of the qualitative comparison.

Reliability Flexibility Perf.

Trans.
Faults

Perm.
Faults

QoS
changea

Class
change

Legacy
nodes

Overh.b

FTT-SE 7 7 3 7 3 12
HaRTES 7 3 3 7 3 4
AVB 7 7 7 7 7 4
a Dynamically changing the QoS of an already existing stream.
b Minimum number of massages exchanged during the Admission

Control.

Therefore, we can conclude that the overhead in the com-
munication introduced by FTT-SE during the AC is significant
when compared to HaRTES or AVB.

4 Quantitative study of HaRTES

In this section we describe a simulation model of the AC in the
HaRTES implementation of FTT and a further performance
analysis carried out using said model. The work described in
this Section is a first step of the quantitative comparison of the
ACs of these protocols, that would be completed in the future.

Taking a look at Table 1 we can see that the HaRTES im-
plementation of FTT has clear advantages when compared to
the FTT-SE implementation. For this reason we decided to
just study how the AC performs over HaRTES. Furthermore,
there is a growing interest on extending the HaRTES switch
specification in order to support AVB traffic [12]. This inter-
est is derived from the need to implement highly-dependable
and real-time architectures that are compatible with Internet
technologies. The model next described becomes the first step
towards a further comparison between HaRTES and AVB, in or-
der to establish the advantages and disadvantages presented by
each protocol and set the starting point for further integrations.

4.1 Modelling HaRTES
The AC model we present in this work is based on a preliminary
model of HaRTES built on top of the OMNeT++ INET frame-
work [7] that is being developed in the University of Banja
Luka. This preliminary version did not count with the required
AC mechanism, therefore all streams were statically defined
during the initialization phase and could not be modified or
removed at run-time.

(a) Model for the HaRTES switch (b) Model of a slave node

Figure 6: Simulation models for the HaRTES switch and the
slave nodes [7].

Figure 6a shows the model of the HaRTES switch, while
Figure 6b shows the model of a slave node. Each box in the
figures represents a module in OMNeT++. The modules of
the mentioned preliminary model that have been modified in
this work are represented in the figures using dashed lines.
Note that even though the initial model already included the
Admission module, this module did not implement any func-
tionalities and was there as a hook for future implementation,



only. Moreover, the transmission of asynchronous messages,
necessary for transmitting slave requests and master command
messages, was not fully supported by the model when this
work started. Next we will try to give an insight into the mod-
ules modified during this work and the implementation of the
associated messages required for the AC.

Concerning the model for a slave node, as depicted in Fig-
ure 6b three modules were modified during this work, the App
module that contains the application the slaves will execute
during the functioning of the system; the Dispatcher mod-
ule, responsible for the forwarding of application messages,
for the classification of messages coming from the network
between data or FTT control messages and the later forwarding
of data messages to the application and the processing of FTT
messages; and the NRDB module that contains the information
related to the state of the active streams in the network.

As already mentioned, in HaRTES slave nodes are respon-
sible for requesting the creation, modification and deletion
of streams, that is, any slave request must be triggered at the
application level. Thus, the App module in the slaves had to
be modified in order to support the creation and transmission
of slave requests.

Regarding the Dispatcher module, it was adapted to han-
dle the transmission of slave requests to the Ethernet module.
Moreover, it was also modified to support the processing of
master command messages received from the switch as a result
of the AC.

Typically, the processing of master command messages will
lead to the addition or the modification of information in the
NRDB module. Therefore, this module was extended to support
the deletion of existing streams. It is important to note that the
functions used to add streams to the NRDB were already im-
plemented in the preliminary model, even though this addition
was done off-line, during the initialization phase, due to the
lack of slave requests and schedulability analysis. Neverthe-
less, we did implement functions to allow for the deletion of
streams from the NRDB. Furthermore, since the modification
of streams can be easily achieved deleting the existing entry in
the table and creating a new one with the new parameters, it
was not necessary to implement a specific function to modify
the streams’ parameters.

Regarding the HaRTES switch model, four modules were
modified as depicted in Figure 6a. The Port Guardian
module is responsible for filtering and classifying the messages
coming from the network, sending them to the appropriate
queue or discarding them when necessary. The Forwarder
module is responsible for deciding whether each message must
be sent to the Admission module or to the Ethernet layer.
It also prepares each message to be transmitted through the
network by adding the corresponding header. In what concerns
the Admission module, it is responsible for accepting or
rejecting slave requests, by checking for the availability of
resources in the network through a schedulability analysis.
The SRDB module contains the information of the existing
streams used to carry out the schedule in every EC.

As already mentioned concerning the AC, the master that
is embedded inside the switch is responsible for processing
slave requests, checking for the availability of resources and
informing the slaves about the result. Since both slave re-
quest and master command messages are asynchronous mes-
sages the HaRTES switch model had to be adapted to sup-
port the reception and transmission of this type of messages.
More specifically, the Port Guardian module was adapted
to forward slave requests to the asynchronous queue,
while the Forwarder module was modified to send slave
requests to the Admission module and to broadcast master
commands carrying the result of the AC to the slaves.

The Admission module was adapted to process slave re-
quests and to carry out specific actions depending on the type
of request. Specifically, when receiving an addition or mod-
ification request, the Admission module executes the im-
plemented schedulability analysis. Conversely when it is a
deletion request, the module simply deletes the entry from the
SRDB table. Finally, whenever the master decides to actually
perform a modification in the network, after a slave request a
master command message is sent to inform the slaves about
the changes.

Concerning the SRDB module it is important to note that
this module is actually an instance of the same module used
for the NRDB in the nodes. Therefore, its functionalities within
this model are the same and all changes applied to the NRDB
were also applied to the SRDB.

Finally, all FTT-specific messages, such as the trigger mes-
sage, synchronous messages, etc. must be previously defined
in order to use them in the model. Thus, the definition of FTT
messages was extended to include slave request and master
command messages. The definition of these messages does not
affect any module in the switch nor the node models, but it is
orthogonal to both of them.

4.2 Schedulability Analysis
As already mentioned, the Admission module of the
HaRTES switch model was modified to include the schedu-
lability analysis responsible for deciding if there are enough
resources in the network to apply a requested change. More
specifically, during this work we implemented two different
policies for the schedulability analysis of the AC namely Rate
Monotonic (RM) and Earliest Deadline First (EDF) as de-
scribed in [10]. These schedulability analyses are utilisation-
based, that is, the sum of the utilisation ratio of the streams
in every link must be under a given limit. The utilisation
of a stream corresponds to the amount of resources that will
be needed to transmit its messages. Since FTT is based on
an EC-schedule, that is, the transmission of a message must
be completed within the EC it was scheduled, the utilisation
limit is scaled to account for the Synchronous Window and the
EC lengths, to ensure that there are enough resources in the
corresponding window of the EC.

Since HaRTES uses full-duplex links to connect the switch
to the slaves, the communication analysis must account for



the different loads of the links. More specifically, as shown in
Figure 7, the utilisation of the uplink (link through which the
node sends messages to the switch) of the transmitter may be
different from the utilisation of the downlink (link used by the
master to transmit messages to a node) of the receiver, depend-
ing on the number of nodes involved in the communication and
the messages transmitted by each of them.

Figure 7: Representation of the uplinks and downlinks of three
slaves during the transmission of several messages.

As seen in Figure 7 the utilisation in the uplink only depends
on the load generated by the slave in each EC. Therefore, for
each node and EC the analysis consists in adding the utilization
of all the streams to be transmitted by said node in said EC and
checking whether this sum exceeds the threshold. In contrast,
since the transmission of messages in the downlinks is affected
by several factors, the analysis is not so simple for said links.
Observing the transmission of Msg3 in Figure 7, we see that the
transmission instant of the message in the downlink does not
just depend on the load of the downlink, but also on the moment
it was transmitted through the uplink. Thus, the analysis must
account for the delay that the message may suffer in the uplink
due to the transmission of other messages, such as Msg1 in
our example. Also, the analysis must account for the link and
switch delay, represented in the Figure by the dashed lines.
Further discussion on the analyses is out of the scope of this
work, for more detail the reader can refer to [10].

4.3 Experiments and results
As mentioned above, we want to study the performance of the
AC in HaRTES. To this, we must first identify all the elements
that may have an impact on the performance. First, since the
communication in FTT is divided in ECs and the schedule
is done on an EC-basis, the duration of the EC may impact
the performance of the whole system, including the AC. It is
important to note that the duration of the EC is not fixed, but
it may change depending on several factors, like the type of
traffic or application. Since the duration of the EC limits the
number of messages that can be transmitted and processed,
the duration should vary depending on the dynamics of the
system and the specific application. Thus the experiments must
account for different durations of the EC.

Another element that may affect the performance of the AC

is the load of the network. This is because the load has a
direct impact on the time needed to complete the schedulability
analysis, and thus on the AC. This impact is due to the fact
that the analysis is utilisation-based, which means that it is
necessary to calculate the sum of the utilisation rate of all the
streams that transmit through a link and check if it is under a
certain limit. Since the information related to the streams is
saved in the SRDB, in order to perform the analysis the master
must read all the entries of the SRDB several times, searching
for the streams transmitted through the affected links. Thus,
when the load of the network increases so do the size of the
SRDB and the time required to compute the analysis.

Here we want to study the impact that these two parameters
have on the performance of the AC. To that end we measure
the time that takes to complete the AC from the instant a slave
sends a slave request until that slave finishes processing the
master command and updates its NRDB. In HaRTES slaves can
transmit their asynchronous messages at any moment of the EC,
as soon as they are produced by the application. Nevertheless,
the master only reads the received slave requests during the
Asynchronous Window to ensure the timeliness of the protocol.
Moreover, since the master command message is asynchronous,
its transmission is confined to the Asynchronous Window of
the first EC with enough bandwidth available after completing
the schedulability analysis. Thus, the master command may be
sent during the same EC as the slave request or in a later EC,
depending on the duration of the schedulability analysis.

Since in the normal operation of the system the load of the
network may change with time, we carried out several tests
simulating different network loads. Specifically, we consid-
ered three loads, labelled as low, medium, and heavy, which
correspond to durations of the schedulability analysis of 1, 50
and 100 ms respectively.

Note that OMNeT++ is an event-based simulator and there-
fore it only simulates the passage of time when events occur.
Moreover, events in OMNeT++ are represented by the trans-
mission of messages. Since the schedulability analysis is not
an event, simulated time does not pass during its execution.
Therefore, we modified the Admission module in order to force
the sequential processing of slave requests and to account for
the execution time of the analysis. This was done using a
queue and a timer. All slave requests arriving to the Admission
module are saved in the queue. Afterwards, the timer is set
with a predefined time that depends on the type of request, for
instance a delete request does not require the schedulability
analysis to be performed while a creation or modification re-
quest do; and the load of the network. When the timer expires
it triggers the instantaneous analysis of the first slave request
in the queue. This process is repeated as long as there are slave
requests in the queue pending to be processed.

On the other hand, we also want to study the impact that
concurrent slave requests may have on the duration of the AC.
In HaRTES the master processes as many slave requests as
possible every EC. To study the impact of concurrency we
considered two scenarios, one where slave requests are sent



and processed sequentially and a second scenario in which all
the requests are issued at the same time.

Table 2: Experiment parameters

Network load (ms) a Concurrency

Low Medium Heavy (# nodes)

Dataset 1 1 50 100 1
Dataset 2 1 50 100 10
a Time required to carry out the schedulability analysis

depending on the network load.

Table 2 shows an overview of the datasets used in the exper-
iments. We repeated the experiments using each dataset for
several durations of the EC, more specifically, we repeated the
experiments for EC durations of 1, 2, 5, 10, 20, 50 and 100 ms.
The results are grouped by the dataset used.

The network used in all the experiments is composed of one
HaRTES switch connected to ten slave nodes, labelled with
an ID that goes from 1 to 10. All the slaves in the network
are set to request the creation of a new stream. In the first
case (no concurrency) the transmission of slave requests is
sequential. To achieve that, we set an order for the transmission
of requests, that corresponds to the ID number assigned to
the slave. Each slave waits for the reception of the master
command of the previous request to trigger the transmission of
its own slave request, that is sent right after receiving the TM
of the following EC, during the Synchronous Window. In the
second scenario (with concurrent requests) all the slaves are
set to transmit their request at the same time, at the beginning
of the EC during the Synchronous Window.

Regarding the duration of each window of the EC, for the
sake of simplicity we considered the length of the Synchronous
and the Asynchronous Windows to be equal. Therefore, each
window represents the 50% of the EC time remaining after the
transmission of the TM.

Figure 8: Mean duration of the Admission Control for different
EC lengths and network loads, without concurrent requests.

Figure 8 shows the mean duration (the average of the dura-
tion for the requests of each slave) of the AC for different EC
lengths and considering different network loads. As we can
see, the mean duration of the AC grows as the length of the
EC increases, for all considered network loads. Having longer

EC lengths increases the number of frames that can interfere
with the slave requests, increasing the time required to carry
out the AC. In scenarios with medium and heavy loads the
processing of slave requests can be delayed in the switch by
the forwarding or processing of other frames.

Table 3: Mean duration of the AC for different EC lengths net-
work loads and no concurrent requests.

EC(ms) 1 2 5 10 20 50 100

Low 1.50 2.61 3.62 6.12 11.12 26.12 51.12
Medium 50.62 51.12 52.60 55.00 70.2 75.00 150.22
Heavy 100.50 101.12 102.62 105.12 110.12 125.12 150.12

In order to understand why the EC length has such an impact
even in networks with low load we can look at Table 3, that
presents the numerical results of the experiment. We can see
that in most cases the time to complete the AC corresponds to
the duration of the schedulability analysis plus half of the EC
length. As said before, slave requests are transmitted right at
the beginning of the Synchronous Window, while the process-
ing of requests by the master is delayed until the Asynchronous
Window starts, to protect the timeliness of the synchronous
traffic. Therefore, we can see that the size of the windows, and
thus the size of the EC, has a severe impact on the performance
of the AC.

Figure 9: Mean duration of the Admission Control for different
EC lengths and network loads, with concurrent requests.

Figure 9 shows the mean duration of the AC for different
EC lengths with concurrency. Since all the requests are issued
at the same time and they are processed sequentially, the last
request to be processed by the master must wait for the other
requests to be analysed. If we compare these results to the
ones obtained in the previous experiment, we can see that, as
expected, the concurrency of requests impacts the time needed
to complete the AC. Moreover, we can see that the impact is
worse when the load of the network increases. This is because
when the load is low and the size of the EC is large, several
requests can be completed within the same EC, while when
the load increases it is not possible to process more than one
request per EC.

Finally, to further analyse the impact of concurrency in the
performance of the AC, we observed the maximum duration



Table 4: Maximum duration of the AC for different EC lengths network loads
and concurrent requests.

EC(ms) 1 2 5 10 20 50 100

Low 11.01 13.23 16.39 23.38 30.01 60.01 110.01
Medium 501.01 502.01 505.01 510.01 531.234 550.01 655.67
Heavy 1001.01 1002.01 1005.01 1010.02 1020.01 1050.01 1100.01

of the AC, shown in Table 4 . Observing the results we can
conclude that it might not be possible for slaves to predict
the time that will take for the AC to be completed, since it
will vary depending on the concurrency level that is unknown
by the nodes. Although it could be possible to use a worst-
case approach for trying to bound the AC response time, the
fact remains that in the most general case without imposing
restrictions on the number of requests that each slave can send,
such bound will not be found. Additionally, even restricting the
number of requests, the bound that might be obtained would
be truly pessimistic, specially in the case of heavy loads. The
resulting lack of predictability in practice is particularly critical
since the AC in HaRTES does not consider the transmission
of any message to notify the slaves when a request to create or
modify a stream is rejected by the master. Therefore, it may be
impossible for slaves to know when a slave request has been
rejected, lost or simply delayed by the interference of other
frames. Furthermore, if slaves are set to retry the creation of
streams when no response is received from the master, this
could force the master to process several times a request that
has already been rejected, thus delaying the processing of
requests related to other streams. Hence, it is crucial to add
to the specification of the protocol the notification of rejected
requests by the AC to slaves.

5 Conclusions

In the last years there has been a growing interest in using
Ethernet as the technology for developing distributed embed-
ded systems, even in the automation, avionics and automotive
domains. Moreover, recently industry has shown interest in
developing multimedia-based applications in these fields, for
both entertainment and assistance. In these areas multimedia
applications coexist with traditional distributed control appli-
cations, generating a great diversity of traffic in the network.
On top of that, these novel applications can be launched at any
moment during the system’s operation, what means that the
number of participants may change dynamically.

Nevertheless, Ethernet only supports best-effort traffic, and
thus, control traffic can not be transmitted with adequate timing
guarantees. Moreover, Ethernet does not provide mechanisms
to dynamically change the network in runtime. Several pro-
tocols were proposed to overcome these drawbacks, such as
Flexible Time-Triggered and Audio Video Bridging.

In environments that may change in unpredictable manners
adaptivity and reconfigurability are of utmost importance to
provide adequate real-time guarantees. Admission Control

allows for the on-line reservation of resources along the path
between a transmitter and a receiver, providing real-time capac-
ities by preventing unbounded packet delays or packet losses.
Moreover, Admission Control provides flexibility by support-
ing the modification of the network’s parameters in runtime.

In this work we described the Admission Control mecha-
nisms implemented in three Ethernet-based communication
protocols, namely FTT-SE, HaRTES and AVB. Furthermore,
we presented a qualitative comparison of the AC mechanisms
from three different perspectives: reliability, flexibility and
performance. Table 1 presents an overview of said comparison.
Concerning reliability, we observed that none of the presented
protocols provides adequate an implementation that tolerates
transient faults in the channel, what can lead to the loss of
messages related to the AC. Moreover, HaRTES is the only
protocol that currently counts with mechanisms to tolerate per-
manent faults, both in the channel and the nodes. Nevertheless,
the IEEE is currently working on the specification of a new set
of standards to overcome some of the reliability problems of
the communication channel, but not of the nodes.

Regarding flexibility, we observed that both FTT implemen-
tations allow for on-line changing the QoS of the streams,
while AVB forces the deletion and redefinition of the affected
streams, reducing the reactivity of the system. Moreover,FTT
also allows for legacy nodes to send hard and soft real-time
traffic by delegating the definition of streams to a single slave,
conversely to AVB.

Finally, concerning the performance we concluded that FTT-
SE introduces a significant overhead in the communication
when compared to HaRTES and AVB, in terms of the number
of messages exchanged during the process.

On the basis of the results obtained we decided to further
analyse the HaRTES implementation of FTT, since it had ex-
hibit better results than FTT-SE. To that aim, we implemented
a simulation model in the OMNeT++ INET framework for the
Admission Control of HaRTES. This model is based on a pre-
liminary model of HaRTES that is currently being developed
in the University of Banja Luka and includes the models for
both the HaRTES switch and the slave nodes.

We used the model to study the impact that the length of the
Elementary Cycle has on the duration of the Admission Control.
We carried out several tests considering different EC lengths,
network loads and levels of concurrency of the slave requests.
The results obtained show that the duration of the EC and the
duration of each of its parts (Synchronous and Asynchronous
Windows) have an important impact on the performance of the
AC, since the time needed to complete the AC increases with



the length of the EC and the Synchronous Window. We also
observed that, as expected, the level of concurrency affects
the performance, that decreases as the number of concurrent
requests increases.

Moreover, with the obtained results we can conclude that it
may be impossible for slaves to determine the time that will
take for the AC to be completed. This is specially critical since
HaRTES does not count with mechanisms to notify slaves
when a slave request has been rejected and therefore it may
be impossible for slaves to differentiate when a request has
been lost, delayed or simply rejected by the master. We recom-
mended that this notification of rejected request is included in
the HaRTES specification.

Finally, as part of the future work we plan to extend this per-
formance analysis to include the Stream Reservation Protocol
implemented in the AVB standards, in order to complete the
comparison among the protocols discussed in this work.
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