
c©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Towards a Dynamic Task Allocation Scheme
for Highly-Reliable Adaptive Distributed

Embedded Systems
Alberto Ballesteros, Julián Proenza and Pere Palmer

Dept. Matemàtiques i Informàtica, Universitat de les Illes Balears, Spain
{a.ballesteros, julian.proenza, pere.palmer}@uib.es

Abstract—An adaptive distributed embedded system is able to
automatize some processes at the same time it modifies its be-
haviour autonomously and dynamically in response to changing
operating conditions. To support adaptivity it is necessary that
the underlying Distributed Embedded System (DES) is able to
dynamically change the assignment of the processing and network
resources. In this regard, the DFT4FTT project aims at providing
a complete DES that can support applications with real-time,
reliability and adaptivity requirements. This paper describes
the first steps towards the design of the task allocation scheme
used in the DFT4FTT architecture, responsible for dynamically
distributing the workload among the nodes of the DES, taking
into account the changes in the environment and in the system
itself. This allocation scheme not only provides flexibility from
a functional point of view, but also from a fault tolerance point
of view. Moreover, its modular design makes it possible to tune
the desired level of autonomy in the adaptivity, from a simple
support for application reconfiguration to a complete automatic
reconfiguration assisted with machine learning algorithms.

I. INTRODUCTION

An Adaptive Distributed Embedded System (ADES) is
a kind of Distributed Embedded System (DES) that, apart
from automatizing some processes, can modify its behaviour
autonomously and dynamically in response to unexpected
requirements or operational conditions [1]. Some examples of
these systems are: autonomous vehicles, exploration vehicles,
machinery in a smart factory and self-repairing devices.

Adaptivity is an interesting feature in terms of functionality,
efficiency and dependability. First, ADESs can dynamically
change their behaviour to cope with changing operational
requirements. Second, systems do not have to be dimensioned
to execute all the needed functionalities. Instead, ADESs can
load the necessary functionalities depending on the scenario.
Third, ADESs also enable the use of adaptive fault tolerance.
For instance, in a replicated system the ADES can dynami-
cally change the number of replicas to maintain the level of
reliability depending on the operational conditions.

To support adaptivity it is necessary that the underlying DES
is able to dynamically change the assignment of the processing
and network resources. The DFT4FTT (Dynamic Fault Toler-
ance for Flexible Time-Triggered Ethernet) project [2] aims
at providing a complete DES which can support applications
with real-time, reliability and adaptivity requirements, using
commercial off-the-shelf components. This project addresses
all these requirements both at the network and the node level.

At the network level, DFT4FTT is based on a switched
Ethernet implementation of the Flexible Time-Triggered (FTT)
communication paradigm [3]. FTT provides predictability and
flexibility in the communications of mixed-criticality systems.
Specifically, FTT ensures that messages are received before a
certain deadline, while it allows to change online their real-
time attributes. In this project we extend the work we already
started [4] to provide FTT with dynamic fault-tolerance fea-
tures. With this, we achieve a communication subsystem that
is adaptive in terms of real-time and reliability.

At the node level, DFT4FTT proposes a novel dynamic
task allocation scheme for DES, focused on providing high
reliability. More precisely, this scheme defines: how to monitor
the environment and the system itself, how to detect when
a reconfiguration is needed, and how to carry out said re-
configuration. The objective is to decide online which tasks
are allocated to each node of the DES while fulfilling the
requirements of the tasks. To achieve the real-time behaviour,
the allocation scheme ensures that each task has enough
computation resources in its destination node. Moreover, it
relies on the network level to ensure that its communication
also fulfils the real-time constraints. Reliability requirements
are fulfilled using fault tolerance mechanisms. Specifically, we
tolerate hardware faults affecting the nodes by means of a task
replication scheme based on one we already developed for
control applications [5]. Finally, note that, thanks to the online
allocation of tasks, we can provide adaptive fault-tolerance.

Some of the key features of this level are: the adaptivity
it provides in terms of the allocation of tasks; the mixed-
criticality support; the fault tolerance features that allows it
to seamlessly tolerate node faults and to recover lost replicas;
the dynamic fault tolerance provided by the adaptivity; the
modular design that allows to select the desired level of au-
tonomy in the adaptivity; and the possibility of using machine
learning algorithms to enrich the decision making.

In this paper we describe the ongoing work we are carrying
out to design the mechanisms responsible for the management
of the node level. Note that, although this work is defined in
the scope of the DFT4FTT project, here we present the main
ideas and we do not assume any specific technology. Conse-
quently, this dynamic task allocation scheme can be applied
in any ADES, as long as the underlying communication layer
provides the necessary flexibility services.



II. RELATED WORK

There have been several efforts to design architectures for
highly-reliable distributed embedded systems like DFT4FTT.
For instance, the Delta-4 [6] was a 5-nation collaborative
project that designed and implemented an open dependable
distributed computing architecture. In Delta-4 fault tolerance is
achieved by replicating the software components, or capsules,
on interconnected nodes. For this, the Delta-4 architecture
includes a software infrastructure called Deltase that allows
to generate the replicated capsules, as well as to coordinate
and manage them. Moreover, it contains a mechanism called
cloning to restore the level of replication in case of a failure.
That is, if a node fails, the capsule replicas executed in said
node are automatically migrated to other non-faulty node.

Nevertheless, Delta-4 presents some limitations. First of all,
although Delta-4 has mechanisms to start, stop and migrate
replicated capsules, it does not consider adaptivity. Moreover,
the migration of a given replica is restricted to the type of
node it was generated for.

There are also multiple middlewares focused on providing
adaptivity in the scope of the DES [7]–[9]. This kind of
middlewares, apart from providing the generic middleware
features, ensure the end-to-end QoS. In this context, the
attributes associated with the QoS could be the latency or
the throughput. These middlewares include mechanisms to:
monitor the resources used (memory, CPU and bandwidth),
monitor the QoS attributes, diagnose the cause of any violation
of the QoS and reallocate the resources to restore the QoS.

Middlewares for ADES are focused on managing the re-
sources of the system to achieve a specific QoS. With these
mechanisms they can restore the service if some node fails.
However, in systems with highly-reliable requirements this
could not be enough, as there is some downtime. The solution
here proposed, includes a task replication scheme that allows
it to seamlessly tolerate the hardware faults affecting the
nodes. Moreover, similarly to these middlewares, the level of
replication can be recovered by means of task migration.

Apart from the previous middlewares, there is a recent
middleware called iLand [10] based on FTT, that supports
time-deterministic reconfiguration in distributed soft real-time
environments. The characteristic feature of this solution is that
changes can be triggered by: a user action, or external request;
internal system decision, that is, an automatic request based
on system monitoring; and application decision, that is, an
automatic request based on application-specific conditions or
programmed events.

To the best knowledge of the authors, there is no solution
that integrates all the features presented in the current work.

• Dynamically allocation of tasks in a DES.
• Modular design that allows to select the level of auton-

omy in the adaptivity.
• Possibility to enrich the automatic reconfiguration with

machine learning algorithms.
• Inclusion of a task replication scheme that allows it to

seamlessly tolerate hardware faults affecting the nodes.

III. SYSTEM ARCHITECTURE

The DFT4FTT architecture is composed of various compo-
nents (see Fig. 1): a network, several sensors and actuators,
several computational nodes and an Node Manager.

Fig. 1. System architecture.

The central point of the DFT4FTT architecture is the
communication network, which interconnects all the other
components. In order to properly support the dynamic alloca-
tion of tasks, this network should provide services for online
managing the communications and their real-time attributes.

The Computational Nodes (CNs) are the components re-
sponsible for executing the tasks related to the purpose of the
system. These nodes do not decide the tasks they execute. In
contrast, is the Node Manager the one that determines online
which tasks have to be executed in each of the CNs. From the
point of view of the software, we implement a task replication
scheme that uses active replication with distributed majority
voting, in which critical tasks are replicated in different nodes
and executed in a parallel and coordinated manner.

The sensors and the actuators (SAs) are the components
responsible for providing information from the environment, as
well as for acting on it. In this sense, they provide the CNs with
the way to interact with the environment. It is noteworthy that,
unlike many DES where SAs are connected to the nodes doing
the processing, in this solution they are connected directly
to the network. This makes SAs independent from the CNs
which, in turn, makes the management of the tasks more
flexible and the architecture more fault tolerant. On the one
hand, now there is no restriction when allocating the tasks into
the CNs since SAs can be accessed from any CN. On the other
hand, SAs are now failure independent from the CNs.

The Node Manager (NM) is the component responsible
for dynamically allocating the tasks into the CNs. The NM
periodically monitors the environment and the system itself,
identifies the situations where a reconfiguration in the system
is needed, decides which tasks have to be started and/or
stopped in each of the node and carries out these actions. All
this operation will be further described in Sec. IV. Finally,
note that, although the NM is represented as an independent
physical component, it is possible to integrate it inside the
network, for instance, inside a switch, similarly as we have
done previously for other software components [4]. In fact,
by doing this it can take advantage of its privileged position
to better monitor the system.



IV. DESIGN OF THE TASK ALLOCATION SCHEME

As introduced previously, the core idea of this solution is
the dynamic allocation of tasks, with different real-time and
reliability requirements, into a set of available computational
nodes, in response to changes in the environment or the
system itself. The sources of changes we are interested in
are: environment, operational conditions outside the system;
architecture, operational conditions of the system; phase, part
of the mission with associated list of necessary functionalities;
and human demands, system requirements set by a human.

For this purpose, the task allocation scheme (TAS) provides
applications with three services: Monitoring, to obtain the
state of the system; Decision, to generate reconfiguration
commands; and Reconfiguration, to implement the changes.
As depicted at the bottom of Fig. 2, each of these services
is provided by several processes, carried out by both the NM
and the CNs in a distributed fashion.

Apart from that, we also propose the Knowledge and the
Wisdom Entities, that is, two optional active entities that use
and expand these services and processes to reconfigure the
system in an autonomous manner, depending on application-
dependent rules and with the assistance of machine learning
algorithms, respectively. Next we describe more in depth the
services provided by the TAS and the entities.

A. Task Allocation Scheme Services

The Monitoring service gives support to applications and
the aforementioned entities to detect the relevant changes. The
Monitoring service is provided by the NM and includes both
the Data Gathering and the Data Processing processes.

The Data Gathering is responsible for extracting relevant
data from the environment and the system itself. The sources
of data we have considered are four. First, the values of the
application sensors, that provide a view of the environment.
Second, the values of additional sensors, installed in the sys-
tem to complement the view provided by the application sen-
sors. Third, the network traffic, from which we can determine
the health of the hardware components conforming the system.
Finally, the votings performed by the CNs, which provide a
view of the health of the replicated software components.

Taking into account all these data, the Data Processing
provides the state of the system. This state is defined by means
of four different values. First, knowing the initial configuration
of the system and observing the messages transmitted by
the SAs and the CNs we can determine the status of the
architecture, that is, which SAs and CNs are non-faulty and
how they are interconnected. Second, sensor data allow us to
know the environment and, thus, determine the failure rate of
the hardware components. Third, by inspecting the network
traffic we can determine the set of tasks executed by each of
the CNs and their health, that is, if they are having problems
voting. Finally, knowing the status of the architecture, the tasks
being executed in each CN and the network traffic we can
determine the status of the resources, that is, the amount of
computational and network resources that are available.

The Decision service helps in analysing the state of the
system provided by the Monitoring service, determining the
changes to perform and, finally, instructing the proper recon-
figuration to the NM. To support applications in this regard, the
Command Generation process in the CNs allows to produce
well-defined reconfiguration commands and then send them
to the NM. Note that CNs must ensure that there are enough
resources. The processes related to the analysis of the state of
the system and the decision on the changes to perform will be
discussed later, when describing the entities.

The Reconfiguration service allows to implement the
changes and involves both the NM and the CNs. The Configu-
ration Updating process in the NM accepts the reconfiguration
commands and orchestrates the changes. The available opera-
tions are start or stop a given task in a specific CN, as well as
to modify the real-time and fault-tolerance attributes of a given
task. Note that, the modification of the real-time attributes
make it possible to change the quality of service (QoS),
or quality of control (QoC) in control systems, while the
modification of the fault-tolerance attributes make it possible
to change the number of task replicas. Note also that these
changes not only imply changing the assigned computational
resources, but also the associated communication resources.
This is achieved with the assistance of the underlying com-
munication network. The Configuration Updating process in
the CNs support all this process at the CNs side.

Fig. 2. Services provided by the task allocation scheme.



B. Knowledge Entity

The Knowledge Entity allows to carry out automatic recon-
figurations to fulfil the requirements of the applications and to
cope with predefined system changes like phase changes.

This entity extends the Data Gathering to also consider
human instructions. This makes it possible for the Data
Processing to automatically determine the phase of the mission
and, thus, the specific needed functionalities at every instant.

In the Decision service the System State Checking process
verifies that the operational requirements of the system are
met, considering the current state of the system. The opera-
tional requirements are defined as the list of tasks, with their
real-time and reliability requirements, that must be executed.
This list contains the indispensable tasks of each phase plus
the additional tasks triggered by the human instructions. In
case the operational requirements are not met, for instance,
due to a change in the phase, the Decision Making process is
triggered. This process decides the sequence of changes that
must be applied into the system to meet the new requirements.
If the resources are not enough to meet all the requirements the
process can decide to evict non-critical tasks. If this does not
solve the problem, the process can enable a degraded mode
in which the QoS or QoC of the tasks are reduced, upon a
certain threshold, to make room for all the critical tasks.

C. Wisdom Entity

The Wisdom Entity plays a similar role as the Knowledge
Entity but using machine learning mechanisms in order to
improve the decisions taken for the reconfigurations [11]. This
allows, for instance, to predict future needs of resources and,
thus, achieve a better reactivity by allocating them in advance;
or to infer the best configuration in situations beyond the ones
that can be faced by the Knowledge Plane.

In the Data Processing process the data provided by the
Data Gathering is further processed and stored to produce a
proper input for the machine learning algorithm implemented
in the Decision Making process.

The Decision Making process contains a self-supervised
machine learning algorithm that learns from the information
provided by the Monitoring service and the reconfiguration
commands generated by the applications and the Knowledge
Entity (if exists) [12], [13]. When the system starts running
this algorithm just observes and tries to characterize the task
allocation procedure. When its reconfiguration proposals start
fitting the reconfiguration commands issued, its trustworthi-
ness is considered to be high enough and, thus, they start be
taken into account. This algorithm continues learning from its
own proposals to permanently increase its trustworthiness.

Note at this point that the Configuration Updating process
has to be slightly modified to take into account trustworthiness
of the reconfiguration commands. More precisely, in case
of a conflict in the reconfiguration commands, this process
only implements the reconfiguration proposal of the learning
algorithm if its trustworthiness is high enough.

V. CONCLUSIONS

In this paper we have described the general design of a
dynamic task allocation scheme for highly-reliable adaptive
distributed embedded systems, that integrates interesting fea-
tures in terms of the fault tolerance and the adaptivity. On
the one hand, this solution provides: a task replication scheme
that allows to seamlessly tolerate permanent faults affecting
the nodes; self-recovering mechanisms to reallocate tasks
when a node fails; and support for adaptive fault tolerance
to dynamically change the level of replication of the tasks
in response to environmental changes. On the other hand,
this solution is constructed following a modular design that
allows to select at design time the desired level of autonomy
in the adaptivity. Moreover, it enables the possibility of using
machine learning algorithms to enrich the decision making.

As future work we will provide fault tolerance to the Node
Manager by means of replication. Moreover, we will also
study how to implement the algorithms for processing the data,
checking the need for a reconfiguration and deciding on the
reconfiguration. Finally, we plan to construct a prototype to
prove the feasibility of this solution.

ACKNOWLEDGMENTS

This work was supported by project TEC2015-70313-R (Spanish
Ministerio de economı́a y competividad) and by FEDER funding.

REFERENCES

[1] F. D. Macı́as-Escrivá, R. Haber, R. del Toro, and V. Hernandez, “Self-
adaptive systems: A survey of current approaches, research challenges
and applications,” Expert Systems with Applications, 2013.

[2] J. Proenza and et al., “DFT4FTT Project.” [Online]. Available:
http://srv.uib.es/dft4ftt/

[3] P. Pedreiras and L. Almeida, “The flexible time-triggered (FTT)
paradigm: an approach to QoS management in distributed real-time
systems,” in Proc. Int. Parallel and Distributed Processing Symp., 2003.

[4] D. Gessner, J. Proenza, M. Barranco, and L. Almeida, “Towards a
Flexible Time-Triggered Replicated Star for Ethernet,” in Proc. 18th
IEEE Int. Conf. on Emerging Tech. and Factory Autom. (ETFA), 2013.

[5] S. Derasevic, M. Barranco, and J. Proenza, “Appropriate consistent
replicated voting for increased reliability in a node replication scheme
over FTT,” in Proc. 19th IEEE Int. Conf. on Emerging Tech. and Factory
Autom. (ETFA), 2014.

[6] D. Powell, Ed., Delta-4: A Generic Architecture for Dependable Dis-
tributed Computing. Berlin, Heidelberg: Springer Berlin Heidelberg.

[7] N. Shankaran and et al., “Design and performance evaluation of an
adaptive resource management framework for distributed real-time and
embedded systems,” Eurasip Journal on Embedded Systems, 2008.

[8] B. Ravindran, L. Welch, and B. Shirazi, Resource Management Mid-
dleware for Dynamic, Dependable Real-Time Systems. Boston, MA:
Springer US, pp. 69–82.

[9] Y. Zhang, C. Wandong, and Y. Wang, “Adaptive safety critical middle-
ware for distributed and embedded safety critical system,” Proc. 4th Int.
Conf. on Netw. Comp. and Adv. Inf. Manag. (NCM), 2008.

[10] M. Garcia Valls, I. R. Lopez, and L. F. Villar, “iLAND: An Enhanced
Middleware for Real-Time Reconfiguration of Service Oriented Dis-
tributed Real-Time Systems,” IEEE Trans. on Ind. Inf., 2013.

[11] J. Davis, J. Hoffert, and E. Vanlandingham, “A Taxonomy of Artificial
Intelligence Approaches for Adaptive Distributed Real-Time Embedded
Systems,” in Int. Conf. on Electro Information Tech. (EIT), 2016.

[12] J. Hoffert, D. C. Schmidt, and A. Gokhale, “Evaluating Timeliness and
Accuracy Trade-offs of Supervised Machine Learning for Adapting En-
terprise DRE Systems in Dynamic Environments,” International Journal
of Computational Intelligence Systems, 2011.

[13] P. Vienne and J.-L. Sourrouille, “A Middleware for Autonomic QoS
Management Based on Learning,” in Proc. 5th Int. Workshop on Soft-
ware Engineering and Middleware, 2005.


