Current research on dependability aspects of TSN at UIB

Inés Álvarez Vadillo

Julián Proenza, Manuel Barranco, Alberto Ballesteros

Outline of the presentation

Work on TSN

Time redundancy of frames

Mixing time and spatial redundancy

Design a dependable network architecture

Model checking of AVB's SRP using Uppaal

Work on FTT to be adapted to TSN Dynamic fault-tolerance in the system Dependability evaluation

Outline of the presentation

Work on TSN

Time redundancy of frames

Mixing time and spatial redundancy

Design a dependable network architecture

Model checking of AVB's SRP using Uppaal

Work on FTT to be adapted to TSN Dynamic fault-tolerance in the system Dependability evaluation

Introduction

- TSN devises the use of spatial redundancy to increase reliability
- IEEE 802.1Qca amendment to Path Control and Reservation. Creation of multiple paths.
- IEEE 802.1CB standard for Frame Replication and Elimination for Reliability. Send frames through multiple paths in parallel.

- Time redundancy to tolerate temporary faults
- We proposed the Proactive Transmission of Replicated Frames mechanism
- Transmit several replicas in a preventive manner
- We proposed three different approaches

End-to-end estimation and replication

End-to-end estimation, link-based replication

State of the work

- Compared with OMNeT++
 - Exhaustive fault injection
 - Case study
- Want to carry out a reliability analysis
- Want to implement a real prototype

Outline of the presentation

Work on TSN

Time redundancy of frames

Mixing time and spatial redundancy

Design a dependable network architecture

Model checking of AVB's SRP using Uppaal

Work on FTT to be adapted to TSN Dynamic fault-tolerance in the system Dependability evaluation

Starting point

Starting point

Detect spatial redundancy

Detect spatial redundancy

Next steps

- We want this to be dynamic and autonomous.
- Design the mechanisms to extract information from the network and make decisions.
- Mix both mechanisms using simulation to measure the gain in reliability and bandwidth consumption.
- Develop a real prototype.

Outline of the presentation

Work on TSN

Time redundancy of frames

Mixing time and spatial redundancy

Design a dependable network architecture

Model checking of AVB's SRP using Uppaal

Work on FTT to be adapted to TSN Dynamic fault-tolerance in the system Dependability evaluation

Add redundant paths

Restrict the failure semantics

What should we do if we want a CNC?

Introduce CNC in Switches

Introduce CNC in Switches

Include interlinks for the CNCs to communicate

Include interlinks for the CNCs to communicate

Outline of the presentation

Work on TSN

Time redundancy of frames

Mixing time and spatial redundancy

Design a dependable network architecture

Model checking of AVB's SRP using Uppaal

Work on FTT to be adapted to TSN Dynamic fault-tolerance in the system Dependability evaluation

Introduction

- We are modelling the AVB version of SRP using Uppaal.
- SRP operation in talker, bridges and listeners.
- Through the development we detected consistency and reliability issues.
- How will the issues detected affect TSN's SRP?

Outline of the presentation

Work on TSN

Time redundancy of frames

Mixing time and spatial redundancy

Design a dependable network architecture

Model checking of AVB's SRP using Uppaal

Work on FTT to be adapted to TSN

Dynamic fault-tolerance in the system

Dependability evaluation

Introduction

- In our previous project we built a highly dependable distributed architecture based on FTT-Ethernet.
- We implemented fault-tolerance for the network and the nodes to increase the overall reliability of the system.
- GOAL: We want to build a self-reconfigurable infrastructure for critical adaptive distributed embedded systems.
- Include dynamic fault-tolerance mechanisms that can adapt

At the **node level**, our architecture is composed of **various components**

At the **node level**, our architecture is composed of **various components**

Tasks can be dynamically assigned to the nodes

At the **node level**, our architecture is composed of **various components**

Tasks can be dynamically assigned to the nodes E.g. any set of nodes can be configured for TMR

Potential change triggers

- Human commands
- Phase of the mission
- Environment
- State of the architecture

Potential change triggers

- Human commands
- Phase of the mission
- Environment
- State of the architecture

• ...

Potential change triggers

- Human commands
- Phase of the mission
- Environment
- State of the architecture

Phases in a commercial flight

- Engine start and warm-up
- Taxi
- Takeoff
- Climb to 45 kft
- Cruise

- Descent
- Landing
- Taxi
- Shutdown

Potential change triggers

- Human commands
- Phase of the mission
- Environment
- State of the architecture

More hostile environment more replication

Potential change triggers

- Human commands
- Phase of the mission
- Environment
- State of the architecture

Potential change triggers

- Human commands
- Phase of the mission
- Environment
- State of the architecture

When one node is faulty it can be replaced for **redundancy preservation**

Potential change triggers

- Human commands
- Phase of the mission
- Environment
- State of the architecture

When one node is faulty it can be replaced for **redundancy preservation**

Potential change triggers

- Human commands
- Phase of the mission
- Environment
- State of the architecture

When one node is faulty it can be replaced for **redundancy preservation**

This seriously increases reliability

Changing the configuration

Performing changes

Performing changes

Performing changes

Next steps

• Extend this work to TSN-based systems.

• We would like to integrate the node manager operation with the Centralised Network Configurator.

Outline of the presentation

Work on TSN

Time redundancy of frames

Mixing time and spatial redundancy

Design a dependable network architecture

Model checking of AVB's SRP using Uppaal

Work on FTT to be adapted to TSN

Dynamic fault-tolerance in the system

Dependability evaluation

Introduction

- Explore the design space for the communication subsystem of FTTRS.
- Graph-based modelling of the network.
- Generate all networks that meet a set requirements.
- Find the one with the highest reliability for the given requirements.

Introduction

Next steps

- Complete the implementation of the algorithms.
- Extend the work to support the dependability evaluation of TSN networks.
- Extend the work to support temporary faults.

Current research on dependability aspects of TSN at UIB

Inés Álvarez Vadillo

