

Verification of the Schedule Consistent Update
Mechanisms of FTTRS with UPPAAL

Daniel Bujosa, Sergi Arguimbau, Patricia Arguimbau, Julián Proenza, Manuel Barranco
 [daniel.bujosa, sergi.arguimbau, patricia.arguimbau, julian.proenza, manuel.barranco]@uib.es
Dept. de Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma de Mallorca, Spain

ABSTRACT

 Critical Adaptive Distributed Embedded Systems (ADESs)
are nowadays the focus of many researchers. ADESs are real-
time and dependable control systems that are expected to play
a key role to appropriately interact with physical systems
whose operational conditions change at runtime, even in
unpredictable manners. To provide ADESs with an adequate
communication infrastructure, our research group proposed the
Flexible-Time-Triggered-Replicated Star (FTTRS) [1], which
is the most reliable implementation of the Flexible-Time-
Triggered (FTT) paradigm [2] on top of Ethernet.

 FTT is a master multi-slave publisher-subscriber paradigm
that supports adaptivity by means of real-time flexibility (holds
periodic and aperiodic traffics with different real-time
constraints) and operational flexibility (allows updating the
traffic schedule at runtime). On the one hand, the so-called
FTT master organizes the communication as a sequence of
rounds called Elementary Cycles (ECs). The EC starts by the
FTT master broadcasting what is called the Trigger Message
(TM). The TM allows slaves to synchronize with the master
and polls the periodic messages to be transmitted in that EC
according to the current traffic schedule. The TM is followed
first by the Synchronous Window (SW), in which the
appropriate slaves transmit the polled periodic messages and,
second, by the Asynchronous Window (AW), where slaves
transmit aperiodic messages. On the other hand, a slave can
request the FTT master for an update in the schedule. When so
the master subjects the update to admission control; notifies the
slaves about its decision; and if it has accepted the update, it
also reflects the new schedule in the TMs from then on.

 FTTRS basically consists of a duplicated full-duplex
Ethernet star in which each switch embeds an FTT master.
Each slave connects to each switch by means of a link
composed of a separated uplink and downlink. Both switches
are interconnected by means of several full duplex interlinks,
through which they exchange the TMs and all the traffic they
receive from the non-faulty slaves.

 FTTRS deals with permanent and temporary non-malicious
operational hardware faults [3]. First, thanks to its redundant
paths, FTTRS tolerates permanent faults affecting the switches
and the links. Second, in FTTRS each critical message can be
pro-actively retransmitted to timely tolerate temporary faults
affecting the links. In particular, each FTTRS master always
proactively retransmits several replicas of the TM to guarantee
its successful broadcast.

 Faults can manifest arbitrarily, however each switch/master
is internally duplicated to exhibit crash failure semantics. Also,
each switch/master includes a Port Guardian (PG) per port to

contain errors. In this way, faults affecting a slave or its link
are perceived by the rest of the system as that slave omitting or
sending messages with an incorrect (application) payload.

 To appropriately provide fault tolerance, both
masters/switches of FTTRS must act as if they were a single
one, i.e. they must be replica determinate [4]. FTTRS includes
several mechanisms to enforce this replica determinism [1].
For instance, both masters isochronously broadcast several
replicas of the same TM in lockstep.

 replica determinism mechanisms, in
this poster we are interested in the ones that FTTRS includes to
consistently update the traffic schedule at runtime. This is so
because these later mechanisms are fundamental for FTTRS to
provide high reliability while keeping the most distinguishing
advantage of FTT, i.e its real-time operational flexibility. In
this sense note that [1] argues for the correctness of these

since these mechanisms are quite complex, the use of formal
methods provides a more reliable way to check their
correctness. Thus, in this poster we model and formally verify
these complex mechanisms by using a model checker called
UPPAAL [5], which is specially suited for real-time systems.

 First, the presented poster explains e
consistent update mechanisms. Afterwards it provides a brief
introduction to the UPPAAL model checker that, then, allows
showing how we modeled the master/switches, the slaves and
the update mechanisms. Finally, it shows how we verified the
correctness of these mechanisms by checking some properties
with UPPAAL and, then, draws some conclusions.

ACKNOWLEDGEMENTS

This work is supported in part by the Spanish Agencia Estatal
de Investigación (AEI) and in part by FEDER funding through
grant TEC2015-70313-R (AEI/FEDER, UE).

REFERENCES
[1] D. Gessner, J. Proenza, M. A. Barranco. Adding Fault Tolerance To a

Flexible Real-Time Ethernet Network for Embedded Systems . PhD
thesis, University of the Balearic Islands, 2017.

[2] L. Almeida, P. Pedreiras, J.A. Fonseca. -CAN Protocol: Why
In: IEEE Transactions on Industrial Electronics 49.6 (2002),

pp. 1189 1201.

[3] Algirdas Avi ienis et al. Basic Concepts and Taxonomy of Dependable
In: IEEE Transactions on Dependable and

Secure Computing 1.1 (2004), pp. 11 33.

[4] S. Poledna. Fault-Tolerant Real-Time Systems. The Problem of Replica
Determinism . The Springer International Series in Engineering and
Computer Science, Springer US, 1996.

[5] G. Behrmann A Tutorial on Uppaal In:
Formal Methods for the Design of Real-Time Systems. Lecture Notes in
Computer Science, vol 3185. Springer, Berlin, Heidelberg, 2004.

