
c©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Towards a Fault-Tolerant Architecture based on
Time Sensitive Networking

Inés Álvarez, Manuel Barranco, Julián Proenza
DMI - Universitat de les Illes Balears, Spain

{ines.alvarez, manuel.barranco, julian.proenza}@uib.es

Abstract—The Time Sensitive Networking (TSN) Task Group
has been working on describing a set of standards that will
provide enhanced capabilities to standard Ethernet. Specifically,
they work to provide Ethernet with real-time, reliability and
reconfiguration capacities. Nevertheless, this set of standards
(commonly referred to as TSN) does not cover some reliability
aspects that are relevant for the correct operation of critical
distributed control systems. Thus, in this work we present a
first proposal of a highly reliable architecture and a set of
mechanisms based on TSN to support the real-time and reliability
requirements of these critical systems.

I. INTRODUCTION

The Time Sensitive Networking (TSN) Task Group from the
IEEE is developing a set of technical standards. These standards,
commonly referred to as TSN, aim at providing Ethernet with
real-time, reconfiguration and reliability services in the layer 2
of the network architecture. TSN is devised to provide adequate
services to a great variety of systems. Among them, we can
find critical distributed control systems. The interaction of
these systems with the environment in which they are deployed
usually imposes hard real-time and reliability requirements.
Moreover, more and more these systems are expected to adapt
to unpredictable changes in the environment. To this end,
the network subsystem must support reconfiguration without
jeopardising the correct system operation.

There has been a growing interest in using Ethernet as the
network technology for critical distributed control systems,
due to its high bandwidth, low cost and Internet compatibility.
Nevertheless, Ethernet does not have adequate support for
these systems. For this reason some Ethernet-based solutions,
such as Time-Triggered Ethernet (TTE) [1], Flexible Time-
Triggered (FTT) [2] or Fault Tolerance for FTT (FT4FTT) [3],
have been proposed to provide these systems with real-time
and highly reliable communication services. However, these
solutions either do not fully fulfill the real-time and reliability
requirements of critical systems, or present some limitations
regarding their compatibility with Internet. Moreover, although
all these solutions are interesting, they are not receiving enough
support from the Industry, which in contrast is clearly investing
in the development of the TSN standards in general and of
TSN standards related to reliability in particular.

Specifically, TSN includes several mechanisms to increase
the reliability of the network. First, they described mechanisms
to support spatial redundancy. Amendment IEEE Std 802.1Qca
Path Control and Reservation [4] enables the creation of
multiple paths in the network; whereas standard IEEE Std

802.1CB Frame Replication and Elimination for Reliability [5]
allows to replicate streams and deploy them through the paths
created using Qca. Second, the standard IEEE 802.1Qci Per-
Stream Filtering and Policing [6] enables error containment by
discarding frames that are received out of time or that exceed
the allocated bandwidth for a given stream.

Unfortunately TSN does not propose a complete highly
reliable communication infrastructure and, in fact, it lacks
additional mechanisms to build up such an infrastructure.
Moreover, to the best of the author’s knowledge no one has
proposed any mechanism to provide nodes with high reliability
on top of TSN. This last limitation is fundamental, as nodes
are known to be the most unreliable elements of a system.

Therefore, our goal is to design a highly reliable architecture
based on TSN networks, using the services provided by TSN
and extending them when needed. We will start this work by
focusing on a mono-hop network that could meet the needs
of part of a federated architecture. Studying the vulnerabilities
and finding solutions for the rest of the network architecture
is left as future work.

The remainder of the document is structured as follows.
Section II briefly describes TSN features that are relevant for
this work. Section III presents the system architecture and
the mechanisms we propose and Section IV further discusses
some of the most fundamental of those mechanisms. Finally,
Section V concludes the document.

II. TSN OVERVIEW

In this section we will provide an overview of the TSN
mechanisms relevant for this work. On top of the afore-
mentioned reliability standards, TSN includes standards to
increase the real-time response of the network and to enable
its reconfiguration.

TSN relies on clock synchronization, IEEE 802.1AS-rev [7],
and the time-aware shaper, IEEE 802.1Qbv [8], to configure
and coordinate the different elements of the network, e.g.
the switches, to enforce a given schedule that guarantees the
timeliness of the hard real-time traffic. Moreover, the IEEE Std
802.1Qbu Frame Preemption [9] allows high priority frames to
interrupt the transmission of certain frames and later resume
their transmission, increasing bandwidth efficiency.

The time aware shaper divides the communication in time
windows, as shown in Figure 1. Hard real-time traffic is
transmitted during the Protected Window, isolated from the
rest of the traffic. To do so, Qbv defines the Guard Band, a



Fig. 1: Division of the communication in windows to separate
Scheduled traffic from Class A, B and Best Effort traffic.

period of time during which no frames can be transmitted to
prevent them from blocking hard real-time traffic. Finally, soft
real-time is transmitted in the Unprotected Window and best
effort traffic is transmitted at the end of this window if there is
enough space. We used the cyclic nature of the communication
to simplify the fault tolerance mechanisms we designed, as we
will describe in Section IV.

Another key piece of TSN networks is the Stream Reser-
vation Protocol (SRP), originally standardised in IEEE Std
802.1Qat [10] and amended in P802.1Qcc [11]. This protocol
provides TSN with real-time and operational flexibility. First,
SRP describes streams with different real-time and reliability
guarantees (classes of traffic), enabling real-time flexibility.
On the other hand, SRP allows for the on-line creation and
elimination of the streams, enabling operational flexibility.

In order to allow for this flexibility while meeting the de-
manding requirements of critical applications, Qcc proposes to
use a Centralised Network Configuration (CNC) approach [12].
This approach devises the use of a central element, to which we
will refer as CNC element (CNCe). The CNCe has a complete
view of the network that allows it to reconfigure the network
in runtime. The specification of the CNCe is out of the scope
of the standard but it is clear that it will be a key element to
guarantee the correct operation of critical networks, specially
in dynamic environments.

At the time of writing this work, it is still not clear which
will be the configuration capacities of the CNCe. Nevertheless,
we can deduce some of them by taking a look into the standards
that are being developed to describe YANG data models
for the different mechanisms proposed by TSN. P802.1Qcw
describes YANG data models for Scheduled Traffic, Frame
Preemption and Per-Stream Filtering and Policing, which will
allow to modify the traffic in runtime; P802.1ABCU Link Layer
Discovery Protocol YANG model for topology discovery and
P802.1CBcv Frame Replication and Elimination for Reliability
YANG data model [13] for spatial redundancy. Still, the CNCe
potential reconfiguration capabilities are not just limited to the
models previously described and could be extended to support
new mechanisms.

III. ARCHITECTURE PROPOSAL

To design our highly reliable architecture on top of TSN,
we took advantage of the knowledge acquired by our group in
the design of a highly dependable system based on the FTT
protocol [14]. Next we describe the proposed architecture and
the fault tolerance mechanisms used.

Fig. 2: From a simplex to a replicated star.

A. Architecture

Figure 2 shows the proposed architecture. As we mentioned,
in this work we will focus on a mono-hop architecture that
could be a subnetwork of a larger federated architecture. On the
left hand of Figure 2 we can see a mono-hop architecture, used
as the starting point for our design. As seen, it is conformed by
a bridge directly connected to each node through full-duplex
links and to a CNCe. The dashed line between the CNCe and
the bridge represents a logical connection, as the CNCe may
be placed in the bridge or in a different component.

The right hand of the Figure shows our proposed topology.
As we can see, it consists in a replicated star topology, where
each bridge has a CNCe embedded. We will refer to these
bridges as CNCe-bridges. Moreover, we can see that, by
replicating the bridges we can easily replicate the links that
connect them to the nodes, providing with replicated paths
connecting any pair of nodes. Finally, note that we placed two
links between the CNCe-bridges. We will refer to these links
as interlinks and their main function is to establish a direct
connection between the CNCes inside the bridges.

Next we will explain our design decisions and we will further
describe additional mechanisms needed to guarantee the correct
operation of our replicated architecture.

B. Design Rationale

In order to understand the proposed architecture and the
additional mechanisms we need to explain our fault model. The
fault model describes the type of faults we want to tolerate with
our solution. Specifically, our fault model covers permanent
and temporary non-malicious operational hardware faults [15].
Moreover, we need to describe how the faults manifest in each
component and how we prevent them from affecting the rest
of the system. How faults manifest in a component is called
the failure semantic of the component.

We see that in a star topology the bridge represents a Single
Point of Failure (SPoF). That is, if the bridge fails the whole
system fails as nodes will no longer be able to communicate.
Thus, by duplicating the bridge we can tolerate one non-
concurrent permanent or temporary fault. Furthermore, the
CNCe is a SPoF too. Thus, we duplicated it and we placed one
replica in each bridge. This way not only we eliminate the SPoF,



but we increase the reliability of the communications between
the CNCe and the bridge, as internal communications are less
prone to faults than the communication channel. Moreover, we
use active replication since we are considering hard real-time
systems and we want the fail-over time of the network to be 0.

CNCe-bridges exhibit arbitrary failure semantics, which
means that a fault can result in an arbitrary behaviour that
could interfere with the correct operation of the network. One
example of such an interference are two-faced behaviours; e.g.
a fault in one of the ports could cause the bridge to forward a
different message through different ports. Two-faced behaviours
can also happen in the time domain, with a port transmitting a
message in the correct time while other delays its transmission.

There are several ways to prevent a faulty bridge from
interfering with the network operation. Tolerating arbitrary
faults requires a higher number of components, exchanging
messages and voting on the adequate action; which is costly
and time consuming. Since CNCe-bridges are key for the
communication and we want to keep the network architecture
as simple as possible, we will choose to restrict their failure
semantics. Thus, to be able to use a simplified topology, such as
the one shown in the Fig. 2, we enforce crash failure semantics
in the bridges; i.e. bridges produce the correct output or no
output at all. This can be achieved with internal duplication
and comparison.

Regarding permanent faults in the links that connect the
nodes to the bridge, we can take advantage of the replication
of the bridge to connect each node to both CNCe-bridges.
This way, we can now tolerate the permanent faults of the
links. Note that, as we mentioned in Section I, TSN already
provides support for spatial redundancy by means of the IEEE
Std 802.1Qca and IEEE Std 802.1CB standards. We use these
standards to keep full compatibility and allow the extension of
our proposal to multi-hop networks.

Moreover, the addition of the interlink allows to increase
the number of permanent faults that can be tolerated. Let us
consider the architecture depicted in Figure 2. Let us assume
that the link that connects N3 to B2 suffers a permanent
fault; N3 can still communicate through B1. Let us now
assume that the link between N2 and B1 suffers a permanent
fault; without interlink N3 and N2 can not communicate any
more. Nonetheless, if bridges exchange data traffic through the
interlink, N3 and N2 will be able to communicate through the
path N3–B1–B2–N2.

Furthermore, as we explained, the interlink represents a
direct communication channel between the CNCes. Thus,
if the interlink suffered a permanent fault, CNCes would
no longer be able to coordinate their actions, which would
result in the partition of the network into two networks with
uncoordinated CNCes. Uncoordinated CNCes could, in turn,
result in inconsistencies among the nodes and the failure of
the system. Therefore, we replicate the interlink to eliminate
the SPoF it represents.

Regarding temporary faults in the links, we consider them
to manifest as omissions. This is so as Ethernet uses frame
check sequence to detect errors in frames upon reception. We

assume that Ethernet’s frame check sequence has a perfect
error detection and, so, all erroneous frames are discarded.

It is important to note that we do not use the spatial
redundancy provided by the architecture to tolerate temporary
faults in the links. This is so because temporary faults in the
links have a high probability compared to permanent ones.
Thus, using spatial replication to tolerate both permanent and
temporary faults would result in an inefficient use of spatial
redundancy. Thus, we proposed a time redundancy mechanisms
to tolerate temporary faults in the links.

The time redundancy mechanism is called Proactive Trans-
mission of Replicated Frames (PTRF). PTRF consists in
sending several copies of each critical frame in a preventive
manner, to ensure that at least one copy reaches its destination
even in the presence of temporary faults. PTRF was first
presented in [16] and further details can be found there.

Regarding the nodes, just like CNCe-bridges nodes exhibit
arbitrary failure semantics. Thus, we restrict the nodes failure
semantics to incorrect computation using error-containment.
That is, any node fault will manifest as a frame omission
or as a frame with incorrect payload. To tolerate errors in
the payload we use active replication. Critical nodes will be
replicated using the mechanisms presented in [3].

TSN already devises several mechanisms to enforce error
containment. As mentioned, the IEEE Std 802.1Qci standard
allows to discard frames that are transmitted in an untimely man-
ner and frames that exceed the bandwidth allocated for a given
stream. Nevertheless, to the best of the author’s knowledge
there are no specific mechanisms devised to deal with two-faced
behaviours or impersonations. Thus, we will further analyse
the TSN standards to identify which mechanisms can support
or help in supporting further error-containment mechanisms.

IV. REPLICA DETERMINISM

If we want our system to work correctly both CNCe-bridges
must act as one, i.e. they must be replica determinate [17].
Otherwise, it could result in inconsistencies in both, the nodes
and the network. Next we describe how to enforce replica
determinism in our network.

Regarding the forwarding of data traffic in the bridges, we
need to ensure that both bridges issue the same frames in the
same window in each cycle. With the adequate scheduler, TSN
already provides this guarantee for scheduled traffic, supported
by clock synchronisation and the time-aware shaper.

As we mentioned, CNCes carry out the configuration of
the network. The changes could be triggered by a node that
requests the modification of part of the traffic using SRP or by
a topological change in the network due to faults. To us, the
network status is composed by the resources available in the
network and the requests transmitted by nodes at a given point
in time. The network status is used by CNCes to calculate an
adequate configuration and to enforce it in the network.

As CNCes exhibit crash failure semantics, we can assume
that as long as both CNCes have the same vision of the network
status they produce the same configuration. Therefore, we have
to ask ourselves, 1) how do we ensure that both CNCes have



the same vision of the network status at a given point in
time?, 2) how do CNCes decide when to start recalculating
the network configuration?, and 3) how do CNCes know when
to trigger the changes? Before answering these questions note
that we assume that when the system starts, both CNCes are
non-faulty and share a common view of the network status.

To answer question 1) we need to take into account that SRP
requests are not replicated in time and, thus, can be lost due to
temporary faults. Moreover, once a permanent fault affects the
link between a node and a CNCe-bridge, said CNCe-bridge
will no longer receive the node’s requests. Thus, to ensure that
both CNCes have the same vision of the network status, even
in the presence of faults, CNCes have to exchange the SRP
requests they receive. As we mentioned, the information is
exchanged through the interlinks.

Now that we stated how CNCes achieve the same vision of
the network status we can move to question 2). To decide when
to start calculating a new configuration we can take advantage
of the existence of a common knowledge of time and the
division of the communication into cycles. Let us assume that
the network reconfiguration is done every n cycles.

During the first n cycles the CNCes gather information from
the network. In the nth cycle, both CNCes exchange the new
information of the network status through both interlinks and
they compare the information received to their own information.
If they have the same information, they start the reconfiguration;
otherwise they both choose the state with the highest amount
of information and discard the other one.

Now that both CNCes can calculate the new configuration
we can move to question 3). To decide when CNCes finish
calculating the new configuration we will use the worst
computation time. This time, to which we will refer as w,
is the longest time it can take for a CNCe to calculate
the new configuration. Note that this time will depend on
the reconfiguration approach, but we assume that w < n.
Thus, CNCes transmit the configuration to all the components,
including the other CNCe, in cycle n+w. They also send
information about the instant of time when the components
must actually perform the changes. This process will be
repeated every n cycles.

V. CONCLUSIONS

TSN is an IEEE Task Group that is currently working to
provide Ethernet with hard real-time, reliability and reconfigu-
ration capacities. To that end, they developed a set of standards
commonly referred to as TSN. TSN is attracting the interest
of industry, as it represents an appealing technology for the
networks of a great variety of systems. In this work we proposed
a highly reliable network architecture based on TSN, that could
be suitable for critical distributed control systems. We focused
on a mono-hop network that could be part of a bigger federated
architecture. We proposed to use a replicated star topology
where the bridges have enhanced reconfiguration capacities.
Moreover, we described mechanisms to support replication and
to further increase the reliability of the network.

ACKNOWLEDGEMENTS

This work is supported in part by the Spanish Agencia
Estatal de Investigación (AEI) and in part by FEDER funding
through grant TEC2015-70313-R (AEI/FEDER, UE).

REFERENCES

[1] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer, “The Time-
Triggered Ethernet (TTE) Design,” in 8th IEEE International Symposium
on Object-oriented Real-time distributed Computing (Seattle, Washington:
TU Wien), May 2005, p. 2233.

[2] P. Pedreiras and L. Almeida, “The Flexible Time-Triggered (FTT)
paradigm: an approach to QoS management in distributed real-time
systems,” in Proc. Int. Parallel and Distributed Processing Symposium.
IEEE Computer Society, 2001.

[3] A. Ballesteros, S. Derasevic, D. Gessner, F. Font, I. Alvarez, M. Barranco,
and J. Proenza, “First Implementation and Test of a Node Replication
Scheme on top of the Flexible Time-Triggered Replicated Star for
Ethernet,” in 2016 IEEE World Conference on Factory Communication
Systems (WFCS), May 2016.

[4] “IEEE Standard for Local and metropolitan area networks– Bridges
and Bridged Networks - Amendment 24: Path Control and Reservation,”
IEEE Std 802.1Qca-2015 (Amendment to IEEE Std 802.1Q-2014 as
amended by IEEE Std 802.1Qcd-2015 and IEEE Std 802.1Q-2014/Cor
1-2015), March 2016.

[5] “IEEE Standard for Local and metropolitan area networks–Frame
Replication and Elimination for Reliability,” IEEE Std 802.1CB-2017,
Oct 2017.

[6] “IEEE Standard for Local and metropolitan area networks–Bridges and
Bridged Networks–Amendment 28: Per-Stream Filtering and Policing,”
IEEE Std 802.1Qci-2017 (Amendment to IEEE Std 802.1Q-2014 as
amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015, IEEE
Std 802.1Q-2014/Cor 1-2015, IEEE Std 802.1Qbv-2015, IEEE Std
802.1Qbu-2016, and IEEE Std 802.1Qbz-2016), Sept 2017.

[7] “IEEE Draft Standard for Local and Metropolitan Area Networks -
Timing and Synchronization for Time-Sensitive Applications,” IEEE
P802.1AS-Rev/D6.0 December 2017, Jan 2018.

[8] “IEEE Standard for Local and metropolitan area networks – Bridges
and Bridged Networks - Amendment 25: Enhancements for Scheduled
Traffic,” IEEE Std 802.1Qbv-2015 (Amendment to IEEE Std 802.1Q—
as amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015, and
IEEE Std 802.1Q—/Cor 1-2015), March 2016.

[9] “IEEE Standard for Local and metropolitan area networks – Bridges
and Bridged Networks – Amendment 26: Frame Preemption,” IEEE Std
802.1Qbu-2016 (Amendment to IEEE Std 802.1Q-2014), Aug 2016.

[10] “IEEE Standard for Local and Metropolitan Area Networks—Virtual
Bridged Local Area Networks Amendment 14: Stream Reservation
Protocol (SRP),” IEEE Std 802.1Qat-2010 (Revision of IEEE Std 802.1Q-
2005), Sept 2010.

[11] “IEEE Draft Standard for Local and metropolitan area networks–Media
Access Control (MAC) Bridges and Virtual Bridged Local Area Networks
Amendment: Stream Reservation Protocol (SRP) Enhancements and
Performance Improvements,” IEEE P802.1Qcc/D2.2, March 2018, Jan
2018.

[12] W. Steiner, P. G. Peon, M. Gutierrez, A. Mehmed, G. Rodriguez-Navas,
E. Lisova, and F. Pozo, “Next generation real-time networks based on IT
technologies,” in 2016 IEEE 21st International Conference on Emerging
Technologies and Factory Automation (ETFA), Sept 2016, pp. 1–8.

[13] IEEE802—Time-Sensitive Networking (TSN) Task Group. [Online].
Available: https://1.ieee802.org/tsn/

[14] D. Gessner, J. Proenza, and M. Barranco, “A proposal for managing
the redundancy provided by the flexible time-triggered replicated star
for ethernet,” in 2014 10th IEEE Workshop on Factory Communication
Systems (WFCS 2014), May 2014, pp. 1–4.

[15] A. Avižienis, J.-C. Laprie, B. Randell, and L. Carl, “Basic Concepts and
Taxonomy of Dependable and Secure Computing,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, 2004.

[16] I. Alvarez, J. Proenza, M. Barranco, and M. Knezic, “Towards a time
redundancy mechanism for critical frames in Time-Sensitive Networking,”
in Proceedings of the 22nd IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), Sept 2017, pp. 1–4.

[17] S. Poledna, Fault-tolerant Real-Time Systems. The Springer International
Series in Engineering and Computer Science, Springer US, 1996.


