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ABSTRACT Recent studies have shown evidence of a significant decline of the Posidonia oceanica (P.O.)
meadows on a global scale. The monitoring and mapping of these meadows are fundamental tools for mea-
suring their status. We present an approach based on a deep neural network to automatically perform a high-
precision semantic segmentation of the P.O. meadows in sea-floor images, offering several improvements
over the state-of-the-art techniques. Our network demonstrates outstanding performance over diverse test
sets, reaching a precision of 96.57% and an accuracy of 96.81%, surpassing the reliability of labeling the
images manually. Moreover, the network is implemented in an autonomous underwater vehicle, performing
an online P.O. segmentation, which will be used to generate real-time semantic coverage maps.

INDEX TERMS Deep learning, online semantic segmentation, Posidonia oceanica, autonomous underwater
vehicle.

I. INTRODUCTION
Posidonia oceanica (P.O.) is an endemic seagrass species
of the Mediterranean waters that forms dense and exten-
sive meadows, offering many benefits to the marine and
coastal ecosystems [1]. Recent studies have shown evidence
of a decline at alarming rates of P.O. meadows on a global
scale [2], [3]. For these reasons, the European Commission
directive 92/43/CEE identifies P.O. as a priority natural habi-
tat.

A very important part of P.O. control and recovery comes
through monitoring and mapping of its meadows. These are
fundamental tools for measuring their status, helping to detect
decline trends early on, or address the effectiveness of any
protective or recovery initiative.

Nowadays, monitoring tasks are mainly carried out by
divers, who measure manually meadows descriptors such as
extension, shoot density or lower limit depth [4]. Neverthe-
less, these processes tend to be slow, imprecise and very
resource-consuming.

Other approaches to monitor P.O. include the use of
multi-spectral satellite imagery [5], acoustic bathymetry [6]
or Autonomous Underwater Vehicles (AUV) equipped

with different sensors, to extract information of P.O.meadows
[7], [8]. However, these techniques suffer from lack of effec-
tiveness in deep areas, in segregating P.O. from other algae
types or are not able to perform a fully autonomous detection.

Recently, Bonin-Font et al. [9] have achieved a fully
autonomous detection by means of combining traditional
image descriptors alongside Machine Learning (ML) using
Support Vector Machines (SVM). Also, Gonzalez-Cid
et al. [10] have explored the idea of using Convolutional
Neural Networks (CNN) for P.O. detection with considerable
success rates. An inconvenience of these approaches is that
the classification is not made over the image as a whole,
instead, the image is sub-divided into patches, which are later
classified as P.O. or background. This approach may lead to
information loss, as the classification of a patch is imposed to
all its pixels.

The innovations that this work represents with respect to
recent techniques in automatically identifying P.O. are: 1) the
usage of a more complex deep neural network architecture
that, alongside with 2) a classification by means of semantic
segmentation, allows a 3) full-image pixel wise segmentation
instead of a patch-based one, with no information loss or post
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FIGURE 1. Neural network architecture. Encoder: convolutional (blue), pooling (red) and dropout (black) layers. Decoder: skip (purple), transposed
convolutional (green) and softmax (orange) layers. The numbers under and above the layers indicate the number of feature maps and its size,
respectively.

processing needed. Finally, as a result of the aforementioned
features, 4) a better accuracy is achieved in the classification
task.

Our goal is to automatically perform a high-precision P.O.
meadow segmentation in sea-floor images gathered by a
bottom-looking camera mounted on an AUV, to assess its
state and evolution over time. Also, we aim to execute the
neural network on an AUV, passing the segmented images to
an algorithm to generate real-time semantic coverage maps
of P.O. areas. These maps can be used in a dynamic path
planning context to adapt the vehicle trajectory, in order
to optimize the mission, in terms of duration, quality and
quantity of the gathered data.

This document is structured as follows. Section II exposes
the deep network architecture used and its characteristics.
Following, Section III describes the different study cases,
containing the data acquisition, processing, model tuning
and validation process. Classification results are presented in
Section IV. Finally, Section V explains the network imple-
mentation in the AUV.

II. DEEP LEARNING APPROACH
In the last few years, the new deep learning approaches have
offered major improvements in accuracy in many computer
vision tasks [11]. Causes of this are: the existence of more
data, increased computation power and the development in
the network architectures, making deep learning [12] one of
the leading approaches in the field of computer vision.

In this work we use a semantic segmentation algorithm,
based on a deep neural network, in order to achieve a seg-
mentation of the P.O. meadows. The following subsections
explain the network architecture and the training details.

A. NETWORK ARCHITECTURE
The architecture can be divided into two main blocks,
the encoder and the decoder.

1) ENCODER
The encoder purpose is to extract features and spatial infor-
mation from the original images. For this task, wemake use of
the VGG16 architecture [13], taking out the last classification
layer. This architecture uses a series of convolutional layers
to extract the features, along with max pool layers to reduce
the feature maps dimension. Additionally, the last two fully
connected layers of the VGG16 architecture are converted
into convolutional layers, in order to preserve the spatial
information and obtain a first low resolution segmentation.

2) DECODER
For the decoder, we use the FCN8 architecture [14]. The
decoder takes the output from the last convolutional layer of
the encoder and up-samples it using transposed convolutional
layers [15]. Also, skip layers are utilized to combine low level
features from the encoder with the higher coarse information
of the transposed convolutional layers. Finally, a softmax
layer is applied to obtain the prediction probability for our
two classes, background and P.O. The network architecture
is shown in Figure 1.

This architecture, henceforth referred as VGG16-FCN8,
has already presented great results in other segmentation
tasks, like class segmentation of the PASCAL VOC 2011-2
dataset in [14], or road segmentation for autonomous drive
in [16].

B. TRAINING DETAILS
The VGG16-FCN8 architecture can be trained on a single
forward-backward pass. The training of the encoder is per-
formed by readjusting the kernel values in the convolutional
layer filters. The decoder is trained by means of the trans-
posed convolutional and skip layer filters.

In order to train the network we need a set of images con-
taining P.O., and the corresponding label map of each image,
where P.O. and background areas are marked in different
color codes, acting as ground truth.
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FIGURE 2. Images from different missions showcasing different P.O. and
water conditions.

We use a cross-entropy loss function to train the net-
work [17], which loss increases as the predicted probabil-
ity diverges from the actual label, along with the Adam
optimizer [18]. Also, dropout layers with a 0.5 probability
are applied to both fully connected layers of the encoder,
to prevent overfitting [19].

The encoder is initialized using pretrainedVGGweights on
ImageNet [20]. For the decoder, the transposed convolution
layers are initialized to perform bilinear upsampling. For the
skip connections we apply a truncated Gaussian initialization
with low standard deviation. These configuration parameters
and initialization methods have already been tested, present-
ing great results in [16].

III. EXPERIMENTAL FRAMEWORK
This section exposes the whole experimental framework.
First, it explains the acquisition and labelling of the images
conforming the different datasets, along with its organization
and usage. Next, the different study cases and hyperparame-
ters used are presented. Finally, it describes the validation and
evaluation details.

A. DATASETS
1) ACQUISITION
The images are extracted from several video sequences
obtained using three different cameras mounted alternately
on the Turbot AUV: a GoPro, a stereo pair composed by two
Manta G283 cameras perfectly synchronised and a Bumble-
bee2 firewire stereo rig, always facing downwards and with
the lens axis perpendicular to the vehicle horizontal axis.
The original image resolution is normalized and decimated
to 480 × 360 pixels for the tests presented in this work.
This reduction of the image size accelerates the segmentation
process considerably, permitting its execution online. The
AUV specifications and the online implementation are further
developed in Section V.
Several missions were conducted on P.O. colonized coastal

areas of the west and north-west of Mallorca. The objective
was to obtain datasets under different P.O. conditions such as
meadow density, coloration (it changes with the season and its

FIGURE 3. (a) Original image. (b) Corresponding manually generated
ground truth label map, P.O. is marked in white and background in black.

TABLE 1. Dataset managing.

life cycle) and health state; or water illumination, depth and
turbidity, in order to build varied datasets to train and test the
neural network. In all missions, the robot was programmed to
move at a constant navigation altitude.

Figure 2 shows sample images from different missions
showcasing different P.O. and water conditions.

2) LABELING
Label maps are built, manually, from the images gathered
by the AUV. These label maps act as ground truth, in which
the areas where P.O. is present are marked in white and the
background areas in black. Figure 3 shows an original image
along with its ground truth label map. It should be noticed
that the boundary of the P.O. meadows is not well defined,
making it hard to exactly determine the boundaries between
the background and P.O. classes.

3) DATASET MANAGING
We dispose of six datasets, each one built with images
extracted from video sequences recorded during the immer-
sions, selecting sufficient images that are representative of all
the aforementioned hardware and environmental conditions.
We gathered one dataset from the Palma Bay, containing
164 images; another from Cala Blava, with 30 images; and
four more from the Valldemossa port, of 157, 68, 41 and
23 images, respectively.

From all these datasets, two main sets of images are gen-
erated, the mix set, including 460 and the extra set with
23 images. Table 1 indicates the location, camera used, num-
ber of images and the corresponding set of each dataset.

The mix set (460 images) is used to train and test the
network, offering a wide range of diverse and different tex-
tures containing Posidonia and thus assuring robustness in
the training and model selection process and also in later
classification stages.
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TABLE 2. Study cases.

The extra set (23 images) was grabbed with a camera
different from the others used to grab the videos that form
the mix set, it can be used as an additional test set, allowing
us to detect overfitting during the training and to assess
how well the trained network generalizes on images acquired
with a different camera and distinct unseen environmental
conditions.

B. STUDY CASES
When training a neural network, there are parameters which
can be tuned, changing some of the features of the net-
work or the training process itself. These are the so called
hyperparameters. In order to find the values of these hyperpa-
rameters that offer the best performance, we train the network
with different values and combinations, which are shown
in Table 2.

Firstly, we train our network with and without implement-
ing data augmentation. Data augmentation is a technique
used to reduce overfitting. It consists of applying contrast
and brightness changes to the training images. Therefore,
the network trains over more diverse data, being able to
perform better on unseen conditions. On the other hand, data
augmentation may cause some accuracy loss on training-like
images, due to the fact that the network losses specificity
during the training process [21].

Secondly, we set up two different learning rates. The learn-
ing rate value affects the size of the steps the network takes
when searching for an optimal solution. Higher learning rates
are able to converge more quickly, but may overshoot the
optimal point. In opposition, lower learning rates converge
more slowly, and may not be able to get to the optimal
point [22].

Finally, we stipulate two different values for the number
of iterations. This parameter sets the number of times the
network backpropagates and trains. A higher number of iter-
ations may get a better result over the training data, but also
can overfit it, while fewer iterations may not be enough to
reach the optimal point [22].

C. VALIDATION
1) VALIDATION PROCESS
We conduct eight different experiments, each one assessing
the performance of a study case.

For each experiment, the network is trained using the cor-
responding study case hyperparameters. To do so, we make
use of the k-fold cross validation method [23]. It consists of
splitting our mix set into five equally sized subsets and train
the network five times, each one using a different subset as
test data and the remaining four subsets as train data. This
method reduces the variability of the results, as these are less
dependent on the selected test and training data, obtaining a
more accurate performance estimation.

From the network training, five models are generated,M i
K

where K = 1..8 represents the experiment number and i =
1..5 the model index. We run the five output models with
their corresponding test subset and also the whole extra set,
obtaining the P.O. predictions of all the models on both
sets, PiK . From these predictions, each model is evaluated in
order to assess its segmentation performance, RiK . The details
of this process and the evaluation metrics are explained in
Subsection III-C.2. Finally, the segmentation performance
RK of each experiment is computed as the mean of its five
models performance, RiK .

From the obtained results, we generate a Receiver Operat-
ing Characteristic (ROC) curve [24]. ROC curves represent
the recall against fall-out values (see equations 3 and 4)
of a binary classifier at various threshold settings over the
probabilistic output. We also analyse the Area Under the
Curve (AUC) of the ROC curve, which gives a quantitative
measure of the classifier performance. This value ranges from
0.5 to 1.0, and grows as the ROC curve is shaped to the left
(low fall-out) top (high recall) corner [25].

The workflow of the validation process of the experiments
is shown in Figure 4.

2) MODEL EVALUATION DETAILS
In order to evaluate the performance of a model, we convert
the probabilistic output of the softmax layer, into a binary
classification image (Figure 5). The output of the model is
binarized at nine equally distributed threshold values, j=1..9.

The binarized outputs of the model are compared with the
corresponding ground truth label maps. For this task, we pro-
pose a simple pixel wise comparison, analysing for each pixel
if the model classification output is equal or different to its
corresponding ground truth label.

From this comparison, a confusion matrix is generated,
indicating the number of pixel correctly identified as P.O.,
True Positives (TP) and as background, True Negatives (TN);
and the number of pixels wrongly identified as P.O., False
Positives (FP), and as background, False Negatives (FN).

The TP, TN, FP and FN values are used to calculate the
accuracy, precision, recall and fall-out of the model, defined
as:

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(1)

Precision =
TP

TP+ FP
(2)

Recall =
TP

TP+ FN
(3)
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FIGURE 4. Experiment ‘‘K’’ validation process. For each one of the eight study cases, the network is trained five times using the k-fold crossvalidation
method, outputting five models. These models are run and evaluated over the mix and extra test sets. Finally, the ROC curve and AUC value are
calculated from the five models mean performance.

FIGURE 5. (a) Probabilistic output and (b) its corresponding binarized
image.

Fall-out =
FP

FP+ TN
(4)

Accuracy is defined as the percentage of correct pixel
classifications over all classes. Precision represents the per-
centage of TP classifications with respect to all the pixels
classified as positives. Recall refers to the percentage of TP
classifications with respect to all the truly positive pixels.
Fall-out denotes the percentage of FP classifications with
respect to all the truly negative pixels.

The process followed in order to determine the
segmentation performance of a model is represented
in Figure 6.

IV. CLASSIFICATION RESULTS
This section shows the results obtained for each experiment in
both test sets (mix and extra), along with the hyperparameters
selection process to build our finalmodel. Finally, we perform
a comparison of the selected model with other classification
methods and analyse where and why the classification errors
occur.

The notation used to name each experiment makes use of
three numbers. The fist one refers to the data augmentation,
0 if it is not applied, and 1 if it is. The second one indicates
the learning rate value, 1 if it is 1e-05, and 5 if it is 5e-
04. The third one expresses the number of iterations, 8 for
8000 and 16 for 16000. For instance, the ‘‘0_1_8’’ experiment
refers to the experiment in which data augmentation is not
applied, the learning rate is 1e-05 and the network is trained
for 8000 iterations.

FIGURE 6. Model ‘‘i’’ of experiment ‘‘K’’ evaluation process. For each
model, the output prediction is binarized at j=1..9 threshold values. From
every binarization ‘‘j’’, a confusion matrix is constructed and the accuracy,
precision, recall and fall-out values are calculated.

A. EXPERIMENTS PERFORMANCE
1) MIX SET RESULTS
First we analyse the results obtained over the test images of
the mix set. Figure 7(a) represents the ROC curve along with
the correspondingAUCvalue of each experiment. Figure 7(b)
shows the precision and accuracy values obtained for each
experiment at its optimal binarization threshold, selected as
the one with the best (higher) trade-off between recall and
fall-out, calculated as:

Trade-off =
Recall + (1− Fall − out)

2
(5)

All ROC curves have an AUC over 95%, reaching a maxi-
mum of 98.7% for the 1_1_16 experiment. Following the cri-
teria established in [26], these AUC values represent excellent
classifiers.

The results show that the precision and accuracy values
at optimal thresholds are greater than 90% for all the experi-
ments. For the precision, the highest point is 96.5%, achieved
in experiment 1_1_16, while the lowest one is 91.0%,
obtained in experiment 0_5_8. For the accuracy, the highest
point is 97.5%, achieved in experiment 1_1_8, while the
lowest one is 92.2%, obtained in experiment 1_5_16.

Experiments with the higher learning rate present slightly
worse precision, accuracy and AUC values than the experi-
ments with the lower one. On the contrary, neither the number
of iterations nor the application or not of data augmentation
have a significant impact on the performance.

Qualitative results of the segmentation over the mix set are
shown in Figure 8.
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FIGURE 7. Results obtained from evaluating the test images of the mix
set. (a) ROC curves along with their AUC values, the optimal binarization
threshold for each curve is marked with an ‘‘X’’. (b) Precision and
accuracy values at the optimal binarization thresholds.

2) EXTRA SET RESULTS
While the results over the test data of the mix set are promis-
ing, as mentioned in Subsection III-A.3, the test images are
from the same immersions as the images used for the training
and thus, the environmental conditions are similar. In order
to assess the performance of the classifiers on unseen con-
ditions, we analyse the results over the extra set, which are
shown in Figure 9.

TheAUCvalues are significantly lower for the experiments
with the higher learning rate, around 92%, independently of
the data augmentation state or the number of iterations. Other-
wise, the experiments with the lower learning rate are able to
maintain similar results as the previous test, reaching values
around 97.7% when performing 16000 iterations and 97.0%
when 8000. This means that these experiments do not overfit
the training data, generalizing their training well enough to
still perform a good classification even on images obtained
with a different camera and environmental conditions that
have not been trained on.

FIGURE 8. Visualization of the results obtained for images from the mix
set. The results of the segmentation are superimposed, in green, to the
original images.

This can also be noticed by looking at the precision and
accuracy values, calculated at the optimal binarization thresh-
old for each experiment. The experiments with the higher
learning rate achieve values around 85% for both metrics. For
the experiments with the lower learning rate, the precision
and accuracy values are around 96% and 95%, respectively.
Again, the experiments performed with 16000 iterations have
a slightly higher precision and accuracy values, while the
effect of applying data augmentation or not is negligible.

Qualitative results of the segmentation over the extra set
are shown in Figure 10.

B. HYPERPARAMETERS AND MODEL SELECTION
1) HYPERPARAMETERS SELECTION
As a result of evaluating all experiments on both test sets,
we can select the hyperparameters that show better perfor-
mance.

Firstly, we select a learning rate of 1e-05. The results
obtained on both mix and extra tests clearly show that the
experiments with the lower learning rate obtain better AUC,
precision and accuracy values.

Secondly, we decide to train with 16000 iterations. In the
mix results we can observe that, among the lower learning rate
experiments, those with a larger number of iterations have a
slightly better performance.

Finally, we opt to apply data augmentation in order to
generalize the training to future immersions with new unseen
environmental conditions. The results show that applying it
does not incur in a worse classification over the test data.

2) MODEL SELECTION
We make an in-depth study of the performance variabil-
ity for the aforementioned selected hyperparameters by re-
conducting ten times the validation process exposed in
Subsection III-C, obtaining a total of fifty output models.
After evaluating all models, we carry out an statistical anal-
ysis, computing the mean and standard deviation (std) of the
precision and accuracy over both test sets altogether.
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FIGURE 9. Results obtained from evaluating the test images of the extra
set. (a) ROC curves along with their AUC values, the optimal binarization
threshold for each curve is marked with an ‘‘X’’. (b) Precision and
accuracy values at the optimal binarization thresholds.

FIGURE 10. Visualization of the results obtained for images from the
extra set. The results of the segmentation are superimposed, in green,
to the original images.

For the precision, the mean is 96.95% with a std of 0.97%.
For the accuracy, the mean is 96.08% with a std of 0.49%.
Such low std’s indicate that all fifty models show a very

FIGURE 11. Images from the croatian test set.

similar performance around the mean, meaning that our net-
work architecture and validation process are robust.

Afterwards, the model with best performance is selected
from the previous fifty. This final model has a precision
of 96.57% and an accuracy of 96.81%. This is the selected
model to perform the online segmentation in the AUV.

3) COMPARISON
In this section we present a comparison of the VGG16-FCN8
architecture with the classification methods mentioned in
Section I, the Burguera et al. method [9] (henceforth ML-
SVM) and the Gonzalez-Cid et al. method [10] (henceforth
CNN), as well as to other state-of-the-art semantic segmenta-
tion architectures such as the U-Net [27] and the SegNet [28].
The performance comparison is conducted using the evalua-
tion metrics defined in Section III-C.2, which are obtained
from the classification of the images pertaining to three test
sets.

The first test set is the already known extra set, which con-
tains images with new and unseen water and P.O. conditions
for the classifiers.

The second test set (henceforth, croatian set) was provided
by the ‘‘Laboratory for Underwater Systems and Technolo-
gies’’ research group, at the University of Zagreb. It consists
of 23 images extracted from video sequences recorded using
a lightweight AUV by Ocenascan-MST and a Lumenera
Le165 camera during different immersions in the Peljesac
peninsula, Croatia. Figure 11 shows images from this test set.

Finally, the third test set (henceforth, islands set) was
provided by the ‘‘Ecología Interdisciplinaria’’ research
group, at the University of the Balearic Islands. It consists
of 27 images extracted from video sequences recorded by
scuba-divers using a GoPro camera during different immer-
sions in the Mediterranean islands of Ibiza, Formentera and
Menorca. Figure 12 shows images from this test set.
The croatian and islands test sets represent a challenge for

the classifiers, as they were taken in new locations, following
different recording procedures and using different cameras,
thus, the images of these new test sets contain distinct water
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FIGURE 12. Images from the islands test set.

and P.O. conditions. Besides, the images were taken at a
different distance to the P.O. meadows and with a different
angle respect the sea-floor, facts that also may condition the
classifiers performance.

These three sets allow us to further test the robustness of
the classifiers and check their capability to be used in external
applications.

For the ML-SVM method, we use the model trained over
color images downsampled to 160x120 pixels and using
32x24 pixels patches, which was one of the parameter com-
binations that showed best results.

For the CNN method, we select the model trained using a
learning rate of 1e-03 for 10 epochs with a batch size of 100.

Finally, for all semantic segmentation methods (VGG16-
FCN8, U-Net and SegNet) we train them using the selected
hyperparameters in Section IV-B.1 and the data from the mix
set.

Tables 3, 4 and 5 show the figures of the evaluation metrics
of all compared classification methods over the extra, croat-
ian and islands test sets, respectively.
We can notice that the CNN method is the worst one in all

test sets, mainly due to the patch-wise classification.
The ML-SVM method seems to have been designed to be

conservative when classifying the P.O. As a result, when it
classifies a pixel as P.O., it is highly likely it is P.O., but the
Recall and Fall-Out values denote that several pixels that truly
are P.O. will be classified as background.

Consequently, it can be noticed that the ML-SVM method
has a slightly better Precision than the VGG16-FCN8 when
classifying the croatian and islands test sets, but the Recall
and Fall-Out values are significantly worse. On the contrary,
VGG16-FCN8 presents good figures in the four metrics,
which implies that it is a better classifier for both P.O. and
background pixels.

On the other hand, considering the three semantic seg-
mentation classifiers, the U-Net and SegNet methods have a
similar performance when classifying extra and croatian test
sets, while U-Net shows better results when classifying the
island test set. VGG16-FCN8 presents the best results of the

TABLE 3. Classification performance comparison over the extra test set.

TABLE 4. Classification performance comparison over the croatian test
set.

TABLE 5. Classification performance comparison over the islands test set.

three, suggesting again being the best semantic segmentation
classifier.

To sum up, after comparing 5 different classifiers over 3
different sets of P.O. underwater images, the classifier that
presents better figures in terms of the four evaluation metrics:
Precision, Accuracy, Recall and Fall-Out, is the one presented
in this paper VGG16-FCN8, indicating that it is the most
robust and the best option for P.O. classification in underwater
images.

C. ERROR ANALYSIS
To train and evaluate the VGG16-FCN8 network we have
made use of labelled images, manually generating the ground
truths. This is a tedious task, subject to errors. Being aware
that the evaluation of the results of the VGG16-FCN8method
could depend on the small errors present in the ground truth
images, this section aims to analyse where and why the
classification errors occur.

In order to do carry out this analysis we evaluate the
mix set test images with the selected final model from
Section IV-B.2. The error analysis is conducted from the
binarization of the probabilistic output at the optimal
threshold.

Firstly, we perform a comparison between the binarized
output and the corresponding ground truth images. The areas
where these two images do not match are the FP and FN
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FIGURE 13. Superposition of an original test image with the computed
error, generated by comparing the network output with the image ground
truth label map. FN are marked as blue and FP as green.

FIGURE 14. (a) Mean of the manually marked label map and. (b) Area of
uncertainty of the hand labelled ground truth, obtained as the area where
not all ground truths match.

classifications. Figure 13 shows a superposition of an original
image with the aforementioned comparison, marking the FN
in blue and the FP classifications in green.

The majority of the errors are located on the boundaries of
the P.O. meadows. As stated in Subsection III-A.2, the bound-
ary of the P.O. meadows is not well defined and hard to
determine exactly, even during the manually ground truth
generation process.

In order to determine if these FN and FP are really classi-
fication errors or a ground truth labelling issue, we decide to
calculate the area of uncertainty of the hand labelled ground
truth and see if the errors are included in it.

To do so, we ask ten people to generate the label maps
of the testing images (without including the one who has
generated the ground truth used to assess the network clas-
sification). Then, we compute the mean grey level for each
pixel of these label maps. The areas where not all ground truth
match, are marked as areas of uncertainty.

Figure 14(a) shows the computed mean label map, and
14(b) shows the obtained area of uncertainty for the original
image shown in Figure 13.
For this image, a 94.6% of the misclassified pixels fall into

the area of uncertainty of the hand labelled ground truth. From
this, we can infer that most of the network errors do not come

FIGURE 15. (a) Probabilistic output of the network. (b) Area of
uncertainty of the neural network, obtained as the classification
difference when using a very high and a very low threshold.

from misclassified pixels, but from the ground truth labelling
process.

Finally, we also calculate the area of uncertainty of the neu-
ral network output as the difference in classification between
using 1% and 99% threshold values. This means that the
uncertainty area is conformed by the pixels that the network
is not entirely sure if they belong to the P.O. or background
class.

Figure 15(a) shows the probabilistic output of the net when
evaluating the case study image, and 15(b) shows its corre-
sponding area of uncertainty of the neural network.

For this image, the area of uncertainty presented by the net-
work represents an 18.9% of the whole image, while the one
from the hand labelled ground truth is bigger, representing
a 28.5%. As can be seen, both areas of uncertainty present
a very similar shape, located on the boundaries of the P.O.
meadows.

These factors, along with the fact that most FN and FP
are included in the uncertainty area, means that the network
output is more reliable than the manually generated ground
truth label map.

V. AUV IMPLEMENTATION
The objective of this section is to describe the implementation
of the semantic segmentation network in the AUV and its
online execution, using it to generate real-time semantic cov-
erage maps of P.O. meadows. This is carried out by surveying
the area of interest with an AUV and recording images and
their geolocalization, then, these images are processed and
segmented online and passed to the coverage map generation
algorithm.

In this section we present an overview of the used AUV
characteristics and navigation, and the implementation of the
neural network in the AUV used to perform online segmen-
tation during the robot operation.

A. TURBOT AUV
The Turbot AUV (Figure 16), property of the University of
the Balearic Islands, is a SPARUS II model unit [29]. It is
equipped with three motors which grant it three degrees of
mobility (surge, heave and yaw). Also, it has a navigation
payload, composed by: 1) a DVL (Doppler Velocity Log)
to get linear and angular speeds and altitude, 2) a pressure
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FIGURE 16. Turbot AUV: SPARUS II.

sensor to get high frequency depth measurements, 3) an IMU
(Inertial Measurement Unit) to measure accelerations and
angular speeds, 4) a Compass for heading, 5) a GPS to be
geo-referenced during surface navigation, and 6) an USBL
(Ultra Short Baseline) acoustic link used for localization and
data exchange between the robot and a remote station.

Furthermore, a stereo pair of Point Grey CM3-U3-31S4
cameras facing downwards provides the robot with images
of 2048x1536 pixels resolution. These images are mainly
used for three purposes: a) getting visual odometry (altitude
and linear and angular speeds), b) performing online P.O.
segmentation, and c) mapping the surveyed area.
The robot has two computers. One is dedicated to capturing

and processing the navigation sensor data and running the
main robot architecture, which is developed under the ROS
middleware [30]. The second computer is where the image
grabbing and online segmentation processes are executed, its
specifications are: Intel i7 processor working at 2.5 GHz,
4 cores, 8GB of RAM and Ubuntu 16.04 O.S.

To perform a survey mission the vehicle must have a good
estimation of its localization -Where am I?-, a well defined
mission -Where should I go?-, and a proper path planning
approach -How do I get there?-.

The localization of the vehicle is obtained through the
fusion of multiple state estimations produced by the DVL,
IMU, Compass, GPS, USBL, visual odometry and a naviga-
tion filter [31]. The survey mission is defined with a series of
waypoints programmed to cover all the desired region, and
with a given altitude, usually ranging between 2 and 4 meters,
conditioned by the water turbidity, lighting conditions and
the vehicle cruise speed. Finally, for the sake of simplicity,
the strategy used by the AUV to get to the planned waypoints
is a Line Of Sight (LOS) method applied to control the
horizontal position using two lateral thrusters, and an altitude
control using the vertical motor located at its gravity center.

B. ONLINE IMAGE SEGMENTATION
1) IMPLEMENTATION
To perform the online segmentation we implement a pipeline
based on ROS. It loads a frozen inference graph of a trained
model and executes two threads; one for the image gathering
and another for the image segmentation.

The image gathering thread codifies every input image to
RGB and then rectifies and decimates them to 480x360 pixels.
The image segmentation thread receives the images and feeds
them into the frozen inference graph, which generates the
online P.O. segmentation.

2) EXPERIMENTS
The experiments were conducted on the north coast of Mal-
lorca, in shallow waters of 6m depth. The AUV operated at a
velocity v = 0.4m/s and a navigation altitude a = 2.5m.
In order to perform the segmentation of the images, it was

used the frozen inference graph of the model that has shown
the best performance (selected in Subsection IV-B.1). The
obtained segmentation framerate was 0.42 FPS.

An illustrative video showing the online segmentation can
be seen on the SRV group web page [32]. The video shows,
at the left of the screen, the video sequence captured from
the camera, and at the right, the results of the segmentation
superimposed in green to the original frames.

3) VALIDATION
The performance is analysed in terms of the obtained framer-
ate of the output segmentation stream. The only requirement
is that, in order to avoid gaps in the generation of semantic
coverage maps, the successive segmented images need to
overlap.

This overlap depends on the camera displacement between
two consecutive keyframes dKF , and on the height of the
image footprint hFP. Then, the overlap can be expressed as:

overlap = (hFP − dKF ) · h
−1
FP (6)

where:

hFP = (a · himage) · f −1 (7)

dKF = v · framerate−1 (8)

Being a the navigation altitude, himage the image height in
pixels, f the focal length and v the AUV velocity.

Using the aforementioned vehicle speed and navigation
altitude, along with an image height resolution of himage =
360 pixels, a focal length of f = 623.3 pixels, and the
obtained segmentation framerate. The resulting overlap is
34.0%. Thus, the framerate is high enough to get images
overlap.

VI. CONCLUSION
This section enumerates the main conclusions of this work.
We have used a semantic segmentation deep network archi-
tecture to automatically perform P.O. classification in under-
water images. The obtained results showed (1) very high
levels of accuracy for diverse hyperparameters configura-
tions, the highest one was achieved when data augmentation
was applied and the network was trained with a learning rate
of 1e-05 for 16000 iterations. Also, the low std of the evalua-
tion metrics indicates that (2) our architecture and evaluation
process are robust.
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The error analysis showed that most misclassified pix-
els fall into the uncertainty area of the manually generated
ground truth label maps. This is due to the ground truth issues
caused by the fuzzy boundaries of P.O., inferring that the
classification performance might be even better than the one
shown on the results of the validation process.

This, along with the fact that the uncertainty area of the
network is smaller than the one from the hand labelled ground
truth, means that (3) the reliability of the network was higher
that the manually labelling process.

Finally (4), we have implemented the segmentation pro-
cess running online in an AUV operating in real environ-
ments. From the validation we obtained that the framerate of
the segmented images was high enough to get images overlap,
permitting an adequate semantic mapping of P.O. meadows.

Further developments will focus on lightening the online
segmentation computational load while maintaining high
accuracy levels. The aim is to provide more computa-
tional power to forthcoming autonomous exploration tech-
niques like online mission replanning. Also, we will consider
a multi-class classification, differentiating between diverse
algae types and backgrounds such as rocks or sand.

The code containing the network architecture and its train-
ing process, along with the used datasets and the codes to
perform the images preprocess, the output validation and the
error analysis, are available on a GitHub repository [33].
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