

DOCTORAL THESIS
2018

NODE FAULT TOLERANCE FOR DISTRIBUTED EMBEDDED

SYSTEMS BASED ON FTT-ETHERNET

Sinisa Derasevic

DOCTORAL THESIS
2018

Doctoral Programme of Information and Communications

Technology

NODE FAULT TOLERANCE FOR DISTRIBUTED

EMBEDDED SYSTEMS BASED ON FTT-ETHERNET

Sinisa Derasevic

Thesis Supervisor: Dr. Manuel Barranco
Thesis Supervisor: Dr. Julián Proenza

Thesis Tutor: Dr. Manuel Barranco

Doctor by the Universitat de les Illes Balears

v

Declaration of Authorship
I, Sinisa Derasevic, declare that this thesis titled, “Node fault tolerance for distributed
embedded systems based on FTT-Ethernet” and the work presented in it are my
own. I confirm that:

• This work was done wholly or mainly while in candidature for a doctorate
degree in Tecnologies de la Informació i les Comunicacions at Universitat de les Illes
Balears.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date: 05.10.2018

vii

Supervisors’ Agreement
Manuel Barranco Ph.D. in Computer Science and Profesor Contratado Doctor at the
Department of Mathematics and Computer Science, Universitat de les Illes Balears and
Julián Proenza, Ph.D. in Computer Science and Profesor Titular de Universidad at the
same department.

DECLARE

that the thesis titled “Node fault tolerance for distributed embedded systems based
on FTT-Ethernet”, presented by Sinisa Derasevic, to obtain the degree of Doctor en
Tecnologías de la Información y las Comunicaciones, has been completed under our su-
pervision and meets the requirements to opt for a Doctorate.

For all intents and purposes, we hereby sign this document.

Signed:

Date: 05.10.2018

ix

Universitat de les Illes Balears

Abstract

Doctor of Philosophy

Node fault tolerance for distributed embedded systems based on FTT-Ethernet

by Sinisa Derasevic

Distributed embedded systems are systems composed of a set of interconnected
nodes working towards achieving some common goal and that form a part of a
larger mechanical or electrical system. Nodes are usually interconnected by means
of a communication network.

As regards communication networks, in the recent decades Ethernet has become
one of the most popular technologies due to its many advantages such as simplicity,
ever increasing bandwidth, and inexpensiveness, among others.

When distributed embedded systems form a part of larger systems that execute
critical applications, there is often a need to provide a support for both real-time
response requirements and for the achievement of a very high reliability. Ethernet’s
original technology does not provide any such support.

Therefore, in this dissertation we make use of the recently proposed Flexible Time-
Triggered Replicated Star (FTTRS) communication subsystem as a means of intercon-
necting the nodes of distributed embedded systems executing critical applications.
FTTRS takes Ethernet networking technology as basis and then additionally pro-
vides mechanisms to support both real-time response and high reliability. Real-time
response is provided by the use of the Flexible Time-Triggered (FTT) communication
paradigm implemented on top of the Ethernet protocol that, besides the provision of
real-time guarantees, also supports flexibility, more specifically, the ability to modify
the network behaviour at runtime while maintaining the established real-time guar-
antees. The high reliability in FTTRS is achieved by mechanisms that deal with the
faults that could affect the communication among nodes.

However, providing fault tolerance to the communication subsystem only is not
enough to satisfy the most demanding reliability requirements of critical applica-
tions. In order to attain high levels of reliability, faults in the nodes of the distributed
embedded system must also be dealt with.

Consequently, we have designed various fault tolerance mechanisms to deal
with faults affecting the correct functioning of the nodes. These mechanisms take
advantage of the characteristics of the FTTRS communication subsystem and of the
underlying FTT communication paradigm.

Concluding, in this thesis we will see how we can, with the addition of specific
mechanism for tolerating the faults of the nodes of a distributed embedded system
based on FTTRS, achieve very high levels of reliability for the system as a whole. In
addition to designing fault tolerance mechanisms addressing the nodes’ faults, we
will also show how the achieved reliability can be assessed, and we will establish
what is the obtained benefit by comparing said reliability with that of a non fault-
tolerant version of the same system.

Summary in Spanish

Los sistemas empotrados distribuidos son sistemas compuestos por un conjunto
de nodos interconectados que trabajan para lograr un objetivo común y que forman
parte de un sistema mecánico o eléctrico más grande. Los nodos suelen estar inter-
conectados por medio de una red de comunicación.

En cuanto a las redes de comunicación, en las últimas décadas Ethernet se ha
convertido en una de las tecnologías más populares debido a sus muchas ventajas
tales como simplicidad, anchos de banda siempre crecientes y bajo coste, entre otras.

Cuando los sistemas empotrados distribuidos forman parte de sistemas más
grandes que ejecutan aplicaciones críticas, a menudo existe la necesidad de propor-
cionar un soporte para requisitos de respuesta en tiempo real y para la consecución
de una muy elevada fiabilidad. La tecnología original de Ethernet no proporciona
ningún soporte de este tipo.

Por lo tanto, en esta disertación usamos el recientemente propuesto subsistema
de comunicación que recibe el nombre de Flexible Time-Triggered Replicated Star (FT-
TRS) como medio para interconectar los nodos de los sistemas empotrados distribui-
dos que ejecutan aplicaciones críticas. FTTRS toma la tecnología de red Ethernet
como base y sobre ella proporciona mecanismos para soportar respuesta en tiempo
real y elevada fiabilidad. La respuesta en tiempo real es proporcionada por el uso
del paradigma de comunicación Flexible Time-Triggered (FTT) implementado sobre
el protocolo Ethernet el cual, además de la provisión de garantías de tiempo real,
también proporciona flexibilidad, en concreto, la capacidad de modificar el com-
portamiento de la red en tiempo de ejecución mientras se mantienen las garantías
de tiempo real comprometidas. La elevada fiabilidad en FTTRS se logra mediante
mecanismos que toleran los fallos que podrían afectar a la comunicación entre no-
dos.

Sin embargo, proporcionar tolerancia a fallos únicamente al subsistema de co-
municación no es suficiente para satisfacer los requisitos de fiabilidad más exigentes
de las aplicaciones críticas. Para alcanzar altos niveles de fiabilidad, los fallos en los
propios nodos del sistema empotrado distribuido también deben ser tratados.

En consecuencia, hemos diseñado varios mecanismos de tolerancia a fallos para
tratar los fallos que puedan afectar al correcto funcionamiento de los nodos. Estos
mecanismos aprovechan las características del subsistema de comunicación FTTRS
y del paradigma de comunicación FTT subyacente.

Concluyendo, en esta tesis veremos cómo podemos, con la introducción de mecan-
ismos específicos para tolerar los fallos de los nodos de un sistema empotrado dis-
tribuido basado en FTTRS, lograr muy elevados niveles de fiabilidad para el sistema
en su conjunto. Además del diseño de los mecanismos de tolerancia a fallos de los
nodos, también mostraremos cómo se puede evaluar la fiabilidad resultante y es-
tableceremos cuál es el beneficio obtenido, comparando dicha fiabilidad con la de
una versión no tolerante a fallos del mismo sistema.

Summary in Catalan

Els sistemes encastats distribuïts són sistemes composts per un conjunt de nodes
interconnectats que treballen per aconseguir un objectiu comú i que formen part
d’un sistema mecànic o elèctric més gran. Els nodes solen estar interconnectats mit-
jançant una xarxa de comunicació.

Quant a les xarxes de comunicació, en les últimes dècades Ethernet s’ha convertit
en una de les tecnologies més populars a causa dels seus molts avantatges tals com
a simplicitat, amples de banda sempre creixents i baix cost, entre d’altres.

Quan els sistemes encastats distribuïts formen part de sistemes més grans que ex-
ecuten aplicacions crítiques, sovint existeix la necessitat de proporcionar un suport
per a requisits de resposta en temps real i per a la consecució d’una molt elevada fi-
abilitat. La tecnologia original d’Ethernet no proporciona cap suport d’aquest tipus.

Per tant, en aquesta dissertació usem el recentment proposat subsistema de co-
municació que rep el nom de Flexible Time-Triggered Replicated Star (FTTRS) com a
mitjà per interconnectar els nodes dels sistemes encastats distribuïts que executen
aplicacions crítiques. FTTRS pren la tecnologia de xarxa Ethernet com a base i sobre
ella proporciona mecanismes per suportar resposta en temps real i elevada fiabilitat.
La resposta en temps real és proporcionada per l’ús del paradigma de comunicació
Flexible Time-Triggered (FTT) implementat sobre el protocol Ethernet el qual, a més
de la provisió de garanties de temps real, també proporciona flexibilitat, en concret,
la capacitat de modificar el comportament de la xarxa en temps d’execució mentre
es mantenen les garanties de temps real compromeses. L’elevada fiabilitat en FTTRS
s’aconsegueix mitjançant mecanismes que toleren les fallades que podrien afectar a
la comunicació entre nodes.

En qualsevol cas, proporcionar tolerància a fallades únicament al subsistema de
comunicació no és suficient per satisfer els requisits de fiabilitat més exigents de
les aplicacions crítiques. Per aconseguir alts nivells de fiabilitat, les fallades en els
propis nodes del sistema encastat distribuït també han de ser tractades.

En conseqüència, hem dissenyat diversos mecanismes de tolerància a fallades
per tractar les fallades que puguin afectar al correcte funcionament dels nodes. Aque-
sts mecanismes aprofiten les característiques del subsistema de comunicació FTTRS
i del paradigma de comunicació FTT subjacent.

Concloent, en aquesta tesi veurem com podem, amb la introducció de mecan-
ismes específics per tolerar les fallades dels nodes d’un sistema encastat distribuït
basat en FTTRS, aconseguir molt elevats nivells de fiabilitat per al sistema en el seu
conjunt. A més del disseny dels mecanismes de tolerància a fallades dels nodes,
també mostrarem com es pot avaluar la fiabilitat resultant i establirem quin és el
benefici obtingut, comparant aquesta fiabilitat amb la d’una versió no tolerant a fal-
lades del mateix sistema.

Publications resulting from this dissertaion

In the text that follows I will give a chronological overview of all the publications
that constituted a part of the work presented in this dissertation.

The first publication gives some ideas of how dynamic fault tolerance can be
added to Distributed Embedded Systems as a means of increasing their reliability.
Note that the ideas presented therein did not become a part of the present disserta-
tion and are left for the future work.

• Sinisa Derasevic, Julián Proenza, and David Gessner (2013). “Towards dy-
namic fault tolerance on FTT-based distributed embedded systems”. In: Emerg-
ing Technologies & Factory Automation (ETFA), 2013 IEEE 18th Conference on.
IEEE, pp. 1–4

Following two publications are one of the first contributions related to this dis-
sertation:

• Sinisa Derasevic, Julián Proenza, and Manuel Barranco (2014). “Using FTT-
ethernet for the coordinated dispatching of tasks and messages for node repli-
cation”. In: Emerging Technology and Factory Automation (ETFA), 2014 IEEE.
IEEE

• Sinisa Derasevic, Manuel Barranco, and Julián Proenza (2014). “Appropri-
ate consistent replicated voting for increased reliability in a node replication
scheme over FTT”. in: Emerging Technology and Factory Automation (ETFA), IEEE

The first one illustrates how to use the underlaying network protocol, the FTT-
Ethernet, to coordinate all the system activities. The second one introduces the ini-
tial idea of achieving consistency among replicated nodes of Distributed Embedded
Systems with regards to the locally performed majority voting. As will be explained,
this idea will only be implemented and used partially.

The following set of publications is related to the simulation and implementation
of the mechanisms presented in this dissertation:

• Sinisa Derasevic et al. (2015). “First experimental evaluation of the consistent
replicated voting in the hard real-time ethernet switching architecture”. In:
Emerging Technologies & Factory Automation (ETFA), 2015 IEEE 20th Conference
on. IEEE, pp. 1–4

• Sinisa Derasevic, Manuel Barranco, and Julián Proenza (2015). “An OMNET++
model to asses node fault-tolerance mechanisms for FTT-Ethernet DESs”. In:
Emerging Technologies & Factory Automation (ETFA), 2015 IEEE 20th Conference
on. IEEE

• Alberto Ballesteros et al. (2016b). “First implementation and test of reintegra-
tion mechanisms for node replicas in the FT4FTT Architecture”. In: Emerging
Technologies and Factory Automation (ETFA), 2016 IEEE 21st International Confer-
ence on. IEEE

xvi

• Alberto Ballesteros et al. (2016a). “First implementation and test of a node
replication scheme on top of the flexible time-triggered replicated star for eth-
ernet”. In: Factory Communication Systems (WFCS), 2016 IEEE World Conference
on. IEEE

Finally, the last publication presents the latest set of fault tolerance mechanisms
that were devised in this dissertation as a means to diagnose faults and reintegrate
the recoverable faulty node replicas:

• Sinisa Derasevic, Manuel Barranco, and Julián Proenza (2016). “Designing
fault-diagnosis and reintegration to prevent node redundancy attrition in highly
reliable control systems based on FTT-Ethernet”. In: Factory Communication
Systems (WFCS), 2016 IEEE World Conference on. IEEE, pp. 1–4

xvii

Acknowledgements
First of all I would like to thank my supervisors Julián Proenza and Manuel Barranco
without whom it would have been impossible to complete this dissertation.

When I first came to the University of Balearic Islands, I came from a background
of software development and programming of web applications which were my
main fields of interest at the time being. I had no idea what research was all about.

I would like to express my gratitude to Julián Proenza who devoted a lot of time
and effort to introduce me to the field of dependability which was completely new
to me and to gradually get me to grow my interest in this topic.

Both Julián and Manuel welcomed me to their team and helped me countless
number of times through my struggle to realize how the research should be done.
They gave me their unconditional guidance, and encouragement throughout six dif-
ficult years.

Next, I would like to thank my colleagues Alberto Ballesteros, David Gessner
and Inés Álvarez whom I worked with very closely. We all went through the same
difficulties and struggles and helped each other out endless number of times. We be-
longed to a small group dedicated to dependability under the supervision of Julián
and Manuel within the Systems, Robotics and Vision (SRV) Research Group.

Another important person from whom I learnt about OMNeT++ is Mladen Knezic
from University of Banja Luka. I feel grateful to him for passing his knowledge and
experience about network simulation.

I would also like to show my appreciation by thanking the leader of SRV group,
Gabriel Oliver, for allowing me to work in his laboratory, and Alberto Ortiz, who
helped me with all the administrative issues.

Finally, I would like to thank my father and my mother for all of their love and
support throughout my entire life, and Marija who always stayed with me and sup-
ported me during both good and bad times.

Funding

This dissertation was supported by the Spanish Ministerio de Economía y Com-
petividad through the FT4FTT project, grant DPI2011-22992 (MINECO/FEDER, UE)
and also by the Spanish Agencia Estatal de Investigación and the Fondo Europeo de De-
sarrollo Regional through the DFT4FTT project, grant TEC2015-70313-R (AEI/FEDER,
UE). My research stay at the Universitat de les Illes Balears was supported by the EU-
ROWEB Project funded by the Erasmus Mundus Action II programme of the Euro-
pean Commission.

xix

Contents

Declaration of Authorship v

Supervisors’ Agreement vii

Abstract ix

Acknowledgements xvii

1 Introduction 1
1.1 Problem statement . 1
1.2 Aim of the study and thesis statement 2
1.3 Main contributions . 2
1.4 Thesis organization . 4

I Background 5

2 Basic dependability concepts 7
2.1 Fault Tolerance . 11
2.2 Replica Determinism . 13

3 Foundations 19
3.1 FTT paradigm and HaRTES . 19

HaRTES input area . 21
HaRTES output area . 21
FTT Slave architecture . 21

3.2 FTTRS . 21
3.2.1 Fault model . 23
3.2.2 Architecture . 23
3.2.3 FT mechanisms . 26

4 Similar active node replication proposals 31

II Main Contribution 35

5 Node Fault Tolerance 37
5.1 Overall System Description . 37
5.2 Fault Model and Failure Semantics . 39
5.3 Node Fault Tolerance Mechanisms . 42

5.3.1 Error compensation . 42
CVEP details . 43

5.3.2 Forward Error recovery . 46
5.3.3 Reintegration . 46

xx

5.3.4 Fault Diagnosis . 51
5.4 Overview of the applied FT mechanisms 55

6 Realization of the proposed Active Node Replication for the case of control
applications 57

7 Verification and Characterization via Simulation 63
7.1 Description of the simulation model . 63
7.2 Fault-injection experiments . 68

8 Prototype implementation and Fault-Injection experiments 75
8.1 Description of the first prototype . 75
8.2 Fault-injection experiments with the first prototype 77
8.3 Description of the second prototype . 77
8.4 Fault-injection experiments with the second prototype 78
8.5 Conclusion . 80

9 Dependability Evaluation 81
9.1 PRISM model checker . 82
9.2 Dependability Models . 83

9.2.1 Probabilities calculation . 86
9.2.2 Auxiliary VCR Model . 88
9.2.3 Auxiliary Reset Model . 90
9.2.4 Main Model . 92

9.3 Property verification . 95
9.4 Results . 97

III Conclusions and Future Work 109

10 Conclusions and future work 111
10.1 Thesis validation, contributions and conclusions 111
10.2 Future Work . 118

IV Appendices 121

A PRISM source code 123
A.1 Main model . 123

A.1.1 Node Replica module . 127
A.1.2 Switches module . 158
A.1.3 Interlinks module . 159
A.1.4 Evaluate system failure module 160

A.2 Auxiliary models . 160
A.2.1 Auxiliary VCR model . 160
A.2.2 The output of the auxiliary VCR model 168
A.2.3 Auxiliary reset model . 171
A.2.4 The output of the auxiliary reset model 176

Bibliography 179

Alphabetical Index 187

xxi

List of Figures

2.1 Dependability Tree . 8
2.2 Fault classes (reproduced as it appears in (Avizienis et al., 2004)) 8
2.3 The matrix representation of the combined fault classes (reproduced

as it appears in (Avizienis et al., 2004)) 9

3.1 Elementary cycle . 20
3.2 HaRTES (reproduced as it appears in (Santos, 2010)) 22
3.3 The classes of faults considered for FTTRS (source (Avizienis et al.,

2004)) . 24
3.4 FTTRS architecture . 25
3.5 Replica Radiation in FTTRS (reproduced as appears in (Gessner, 2017)) 26

5.1 Complete system architecture . 37
5.2 DCMV following the NVP strategy . 39
5.3 The classes of faults considered for the overall system (source (Avizie-

nis et al., 2004)) . 40
5.4 CVEP . 43
5.5 cc-vector exchange without switches . 45
5.6 DCMV complemented with CVEP . 45
5.7 Message exchange illustration . 49
5.8 CC-vector exchange between 3 node replicas 52
5.9 MS vector . 53
5.10 VSUA conflict example . 54

6.1 Control Application Architecture . 58
6.2 Control Application Phases . 58
6.3 PID controller . 59

7.1 OMNeT++ model of enhanced HaRTES protocol (source (Knezic, Balles-
teros, and Proenza, 2014)) . 64

7.2 General architecture of the system modeled in (Knezic, Ballesteros,
and Proenza, 2014) . 66

7.3 OMNeT++ model for node replication (source (derasevic2015OMNeT++)) 67
7.4 Error Injection Tests . 69
7.5 OMNeT++ results for TM reception failures 70
7.6 OMNeT++ results for Cc-vector transmission/reception failures and

sense/actuation value corruption . 71

8.1 Implementation Architecture (source (Ballesteros et al., 2016a)) 76
8.2 Prototype (source (Ballesteros et al., 2016a)) 77
8.3 Implementation Architecture (source (Ballesteros et al., 2016b)) 78
8.4 Error Injection Tests . 79
8.5 Time to recover/reintegrate (reproduced from the source (Ballesteros

et al., 2016b)) . 80

xxii

9.1 PRISM steps . 85
9.2 Possible configuration for calculating TM probability loss 87
9.3 Possible configuration for calculating cc-vector probability loss 87
9.4 VCR PRISM model . 89
9.5 reset PRISM model . 91
9.6 main PRISM model . 93
9.7 Merged phases of ECAC . 100
9.8 Reliability comparison between proposed fault-tolerant and non-replicated

system . 101
9.9 Experiment 1 - Varying the TM redundancy level 103
9.10 Experiment 2 - Varying the cc-vector redundancy level 104
9.11 Experiment 3 - Varying the coverage values 105
9.12 Experiment 4 - Varying the ratio with which transient faults manifest

as permanent ones . 106
9.13 Experiment 5 - Varying the component transient failure rate 107
9.14 Experiment 6 - partial disabling of reintegration 108

A.1 Evaluate messages lost in the VCR . 144
A.2 The output of the VCR experiment . 169
A.3 The output of the VCR experiment for a single replica 170
A.4 Reset model experiments . 177

xxiii

List of Tables

4.1 Comparison of systems using active replication 33

5.1 Fault classification according to persistence 41
5.2 Applied fault tolerance mechanisms according to persistence of faults 56

7.1 Processed EC results . 66

9.1 The output of the VCR model . 90
9.2 The output of the reset model . 92
9.3 Automotive applications failure rates and BER 98
9.4 The coverages used by the model of our system 98
9.5 The parameter used by the model of our system 99

A.1 Main model parameters . 123
A.2 Main model probabilities calculation . 126
A.3 Node replica module sequential step constants 127
A.4 Node replica module local variables . 130
A.5 Switches module local variables . 158
A.6 Interlinks module local variables . 159
A.7 Evaluate system failure module local variables 160
A.8 VCR module sequential step constants 160
A.9 VCR model parameters . 161
A.10 VCR model probabilities calculation . 163
A.11 Node replica module of the VCR model local variables 163
A.12 Reset module sequential step constants 171
A.13 Reset model parameters . 171
A.14 VCR model probabilities calculation . 173
A.15 Node replica module of the reset model local variables 174

xxv

List of Abbreviations

A Actuate
BER Bit Error Ratio
C Control
CAN Controller Area Network
CDF Cumulative Distribution Function
CEC Communication Error Counter
CVEP Cc-Vector Exchange Protocol
DCMV Distributed Consistent Majority Voting
DEC Discrepancy Error Counter
DES Distributed Embedded Systems
DTMC Discrete Time Markov Chains
EAV Message Exchange of Actuation Values
EC Elementary Cycle
ECAC Extended Control Application Cycle
ESV Message Exchange of Sensor Values
FER Forward Error Recovery
FCS Frame Check Sequence
FT Fault Tolerance
FTT Flexible Time-Triggered
FTTRS Flexible Time-Triggered Replicated Star
FTU Fault Tolerant Unit
HaRTES Hard Real-Time Ethernet Switch
IC Internal Counter
MFA Maximum Fault Assumption
NRDB Node Requirements Data Base
NVP N-Version Programming
PG Port Guardian
PID Proportional-Integral-Derivative
RT Real-Time
S Sense
SEU Single Event Upset
SIFT Software Implemented Fault Tolerance
SRDB System Requirements Data Base
TDMA Time-Division Multiple Access
TLLFL Transient Long Lasting Faults affecting Links
TM Trigger Message
TMSN Trigger Message Sequence Number
TMW Trigger Message Window
TNFP Transient Faults affecting the Nodes manifesting as Permanent ones
VCR Voting Communication Round
VS Voting on Sensor values
VSUA Voting Set-Up Algorithm
YAA You Are Alive

xxvii

Dedicated to my parents and Marija

1

Chapter 1

Introduction

We shall start this chapter by defining the problem that we are going to solve with
this dissertation. Next, we shall define the thesis statement which will serve as the
aim of this study. After that, we will describe what are the main contributions, and
finally, we shall give an overview of the rest of the thesis.

1.1 Problem statement

When Distributed Embedded Systems (DES) operate in evolving environments, chang-
ing requirements might be imposed on the system. The ability of the system to ad-
just its behaviour accordingly to the change in requirements is called adaptivity and
requires flexibility at all system levels.

Moreover, when such systems are employed for real-time (RT) critical applica-
tions, support for both satisfying stringent RT requirements and attaining a high
level of reliability must be provided.

The previously proposed Flexible Time-Triggered (FTT) paradigm (Pedreiras and
Almeida, 2003) provides support for network adaptivity and stringent real-time re-
quirements that RT DES require. Adaptivity is provided in the form of operational
flexibility, i.e. the ability of the network to modify its behaviour at runtime. More-
over, FTT does this without jeopardizing the specified RT guarantees. However, it
does not provide specific means to guarantee a high reliability.

A system can be provided with a high reliability by using fault prevention and/or
fault tolerance (FT) (Laprie, 1992). Fault prevention refers to design methodologies
and construction rules of entire systems including both hardware and software.
Fault prevention includes best-practice software implementation techniques, rigor-
ous design rules, component shielding and radiation hardening, etc. But, in spite of
the use of fault prevention, faults may still occur. Thus, when truly high levels of
reliability are needed, it is commonly accepted that it is necessary to use fault tol-
erance. Fault tolerance is focused on providing a correct service in the presence of
active faults. In this dissertation, fault prevention is out of the scope and our focus
is put on fault tolerance.

Since faults can appear in any part of a distributed embedded system, it is neces-
sary to analyze how to tolerate them in each part. For distributed embedded systems
based on the FTT paradigm there have already been some efforts to achieve toler-
ance to faults in the communication subsystem. More specifically, for the original
implementation of FTT over the Controller Area Network (CAN) a number of fault
tolerance mechanisms were developed that were intended to make FTT-CAN more
suitable for critical applications (Ferreira et al., 2006; Barranco et al., 2006; Barranco,
Proenza, and Almeida, 2009; Proenza et al., 2012).

The mechanisms for tolerating faults in communication subsystems based on
FTT-CAN that are mentioned above are specially adapted to this specific technology

2 Chapter 1. Introduction

and thus, are not applicable to others. For later implementations of FTT, mechanisms
for tolerating faults in the communication subsystem have also been proposed. In-
deed, the FTT paradigm has been implemented over other protocols. In the recent
years, due to its simplicity and low price-to-bandwidth ratio, Ethernet has become
a ubiquitous networking technology in all domains, from household to industry.
Thus, the FTT paradigm has also been applied to Ethernet and resulted in protocols
such as FTT-Ethernet (Pedreiras, Almeida, and Gai, 2002), FTT-SE (Marau, 2009)
and HaRTES (Santos, 2010). In the context of Ethernet, fault tolerance mechanisms
which are specific for the FTT paradigm have been also designed. More specifically,
the Flexible Time-Triggered Ethernet Star (FTTRS) (Gessner et al., 2013; Gessner, 2017)
has been recently proposed to add channel fault tolerance mechanisms as a means
to increase the reliability of critical RT DES that use the above mentioned HaRTES
protocol (Santos, 2010).

Despite the improvement that FTTRS represents, it is known that in order to
reach high levels of reliability, in addition to providing FT to the underlaying net-
work, faults in the nodes of the DES must be tolerated as well (Barranco, Proenza,
and Almeida, 2011). Therefore, node FT has to be addressed and suitable node FT
mechanisms need to be designed.

1.2 Aim of the study and thesis statement

For the creation of an adaptive critical RT DES on top of an Ethernet-based imple-
mentation of the FTT paradigm, it is necessary to provide this system with a high
reliability. This is done by ensuring the ability of the system to tolerate its own faults.
We will assume that we count with the ability of FTTRS to tolerate faults at the com-
munication subsystem level but we realize that the ability to tolerate node faults still
needs to be added.

Therefore, the aim of this dissertation is to prove the following thesis statement.
“It is possible to attain high levels of reliability of adaptive critical RT DES that rely on

a reliable and flexible RT communication subsystem based on an FTT implementation on
Ethernet by providing FT mechanisms for the nodes.”

1.3 Main contributions

This section identifies the main contributions of the present thesis.
To fulfill the aim of the study described in the previous section we design dif-

ferent FT mechanisms to tolerate hardware faults in the nodes and hardware faults
in the channel connecting them that may jeopardize their operation and/or com-
munication. These mechanisms take advantage of the underlaying FTTRS commu-
nication subsystem (Gessner et al., 2013; Gessner, 2017) that was chosen due to the
provision of network reliability, real-time guarantees and operational flexibility, the
latter two inherited from the use of the FTT communication paradigm.

The FT mechanism that will serve as a basis for providing node FT is active node
replication (Powell, 2012). Active node replication assumes that the critical nodes
are identically replicated (same hardware and software), thus, if the replicas are pro-
vided with the same input, they will produce the same output, as long as their soft-
ware does not include any non-deterministic programming constructs. Providing
the replicas with the same input is called external replica determinism enforcement
(Poledna, 2007) and will be explicitly addressed in this dissertation. Active node
replication is best suited for RT systems since it requires no delay in the delivery

1.3. Main contributions 3

of the response. Moreover, this approach is fully transparent to the users in case of
replica failures.

To compensate potential errors produced by the faulty node replicas we propose
a solution we call Distributed Consistent Majority Voting (DCMV). DCMV consists of
each node replica producing a result which is then reliably exchanged with the other
node replicas. Once each replica has its own result and the results from the other
node replicas, it locally votes on them to obtain a consensus result. All replicas then
use this consensus result, so that the system compensates potential erroneous results
produced by faulty replicas. Moreover, by using this consensus result instead of its
own erroneous result, a transiently faulty replica may easily recover itself from the
erroneous result it proposed. In some particular cases, however, transient hardware
faults can manifest in a way that the affected replica cannot easily recover from. To
handle these faults we provide a more sophisticated set of recovery mechanisms
we call reintegration mechanisms. Moreover, some transient hardware faults may
even lead a replica to behave as if it was permanently faulty as long as it is not
reset. To cope with these situations, we further propose additional mechanisms for
diagnosing when a replica is affected by this kind of faults and, then, to force it to
resume and reintegrate. Note that without reintegration and fault diagnosis, some
transient faults may unnecessarily lead to loss of node redundancy (redundancy
attrition), since replicas affected by these faults may remain unable to participate in
later votes.

Note that the adaptivity of the nodes themselves and the adaptivity of the fault
tolerance techniques applied are not addressed and are beyond the scope of the
present dissertation.

All the activities executed by our fault-tolerant system have to be synchronized,
e.g. node replicas have to first execute certain application tasks in order to pro-
duce the results, then exchange the produced results by transmission/reception of
messages using the underlaying network protocol, and lastly execute application
tasks that vote on the locally produced result and the results received through the
channel. We do this by taking as a starting point a previously proposed network-
centric approach (Calha and Fonseca, 2002; Silva et al., 2005) and then modifying it
by proposing our own approach for coordinated dispatching of tasks and messages
using the underlaying protocol of the FTTRS.

Besides completing the development of all particularities of our system, we demon-
strate the feasibility of our design on a particular case of control applications. We
show how to apply all of the aforementioned mechanisms and techniques in this
concrete case.

We have assessed our system using simulation, implementation and dependabil-
ity evaluation.

Simulation was done using OMNeT++, an object-oriented discrete-event net-
work simulation framework (Varga, 2001), and the INET framework (Varga, 2007)
which is an open-source library for OMNeT++ that contains models for wired and
wireless link layer protocols. The goal was to simulate a control system provided
with our FT mechanisms and, then, inject different faults to verify via simulation
that these mechanisms work as intended.

Next, some of my colleagues at the Universitat de les Illes Balears implemented
a series of prototypes (Ballesteros et al., 2016a; Ballesteros et al., 2016b) that include
our FT mechanisms. The goal of these implementations was twofold. One of the
objectives was to experimentally demonstrate that the FT mechanisms proposed in
this dissertation can be integrated with the ones FTTRS already provides. The other
objective was to inject faults to further corroborate in an experimental manner that

4 Chapter 1. Introduction

our FT mechanisms work as expected. My contribution was to supervise that the
implementation of the FT mechanisms proposed in this dissertation correspond to
their design, to partially implement some of them, and to help in the design of the
fault-injection experiments.

Lastly, we built up a dependability model of a DES relying on our FT mecha-
nisms and FTTRS. We used this model to quantify the reliability that the system can
achieve depending on several aspects. In this way we demonstrated that our FT
mechanisms do indeed increase the system reliability. For building up the model
and quantitatively measure the system reliability we used PRISM (Kwiatkowska,
Norman, and Parker, 2011), a probabilistic model checker tool.

1.4 Thesis organization

The remainder of the dissertation is organized as follows. Chapter 2 introduces the
basic concepts and terminology used to describe and design a dependable system.
Special attention has been paid to describing the specific fault tolerance techniques
used in this dissertation. After that, in Chapter 3 we present the foundations on top
of which we develop our node FT mechanisms. In particular, we present the com-
munication paradigm and protocol being used by the FTTRS, and then, the details
of the FTTRS itself. Chapter 4 summarizes the previous works that use active node
replication as a means to tolerate node faults and that are most similar to the design
of our system.

Chapters 5 to 9 are devoted to the main contributions of this dissertation.
Specifically, Chapter 5 focuses on the node fault tolerance mechanisms. It starts

with the general description of the overall system, followed by the specification of all
the faults that we consider (fault model). Ensuing the fault model, we concentrate
on describing the proposed FT mechanisms based on active node replication and
FTTRS. Chapter 6 is dedicated to the realization of the designed FT mechanisms
having particular applications in mind, more specifically, control applications.

Chapter 7 and Chapter 8 describe the simulation and real implementation of our
system as a means to test and verify the correctness of our design. This is done by in-
jecting different faults and then inspecting if the implemented mechanisms function
as intended in a simulated and a real environment respectively.

Chapter 9 shows how we measure the reliability achieved by our system. Here,
we specify a dependability model of our system and then demonstrate how we use
it to numerically quantify the achieved reliability.

Lastly, Chapter 10 sums up this dissertation by giving a list of obtained conclu-
sions and indications of possible future endeavors.

5

Part I

Background

7

Chapter 2

Basic dependability concepts

We begin this chapter by defining what dependability is. Then, we describe the
general concepts in the field of dependability and identify the specific concepts that
we use in this dissertation.

The terminology we use to refer to dependability and the concepts related to
dependability is taken from the work of Jean-Claude Laprie (Laprie, 1992). In this
work the definition of dependability is formulated as follows:

“Dependability is defined as the trustworthiness of a computer system such that reliance
can justifiably be placed on the service it delivers”(W. Craig, 1982)

The constitutional dependability concepts are described by the dependability
tree depicted in Figure 2.1.

The attributes of dependability allow the different properties of the system to be
expressed. The reliability is the ability of the system to provide its intended service
continuously. The availability is the readiness of the system to provide its service. The
safety is the ability of the system to not cause the effects that can have catastrophic
effects on the environment and human lives. The security is the ability of the system
to prevent an unauthorized access.

The impairments to dependability are “undesired circumstances causing or result-
ing from un-dependability” (Laprie, 1992). A fault is a defect in a system resulting
from a deformity in its design or operation. A fault occurrence might provoke an
error. An error is an improper state in the system deviating from the intended one,
e.g. an unexpected value. An error can further cause a system failure. A system fail-
ure is a deviation from the intended service, i.e. an incorrect behaviour that does not
conform to the one specified for the system.

As shown in Figure 2.2, the work done by (Avizienis et al., 2004) classifies all
faults according to eight basic viewpoints. Each of these eight classes is called an
elementary fault class.

Combining the presented elementary fault classes there can be 256 distinct com-
bined fault classes. However, not all the combinations make sense (Avizienis et al.,
2004). Therefore, the author of (Avizienis et al., 2004) identifies 31 likely combina-
tions presented by Figure 2.3.

One of the prerequisites when designing a dependable system is to specify the
fault model, i.e. to specify the expected classes of faults that the system can exhibit
during its lifetime. The specification of the fault model usually consists of identify-
ing from the above described combinations of faults (see Figure 2.3) which ones are
to be expected to occur.

When a fault provokes an error that in turn causes a system to fail, the system
and its constituting components can fail in different ways classified as failure modes.
Failure modes are specified using the effects observed by the user of the system
service. The classification of different failure modes presented next is taken from
(Poledna, 2007; Proenza, 2007).

8 Chapter 2. Basic dependability concepts

FIGURE 2.1: Dependability Tree

FIGURE 2.2: Fault classes (reproduced as it appears in (Avizienis et
al., 2004))

Chapter 2. Basic dependability concepts 9

FI
G

U
R

E
2.

3:
T

he
m

at
ri

x
re

pr
es

en
ta

ti
on

of
th

e
co

m
bi

ne
d

fa
ul

tc
la

ss
es

(r
ep

ro
du

ce
d

as
it

ap
pe

ar
s

in
(A

vi
zi

en
is

et
al

.,
20

04
))

10 Chapter 2. Basic dependability concepts

• Byzantine or arbitrary failures (Lamport, Shostak, and Pease, 1982). This failure
mode is distinguished by the absence of any assumption of how the system
might behave. The user of the system cannot have any expectation on the per-
ceived effects on the system service that are caused by faults. Alternatively, this
failure mode is referred to as malicious or fail-uncontrolled. This failure mode in-
cludes some undesired behaviours such as “two-faced” behaviour, i.e. a failed
system can send a message “fact ϕ is true” to one user and a message “fact ϕ is
false” to another user, and message forging, i.e. a system may falsify messages
so that is appears as if the fabricated messages belong to another system.

• Authentification detectable byzantine failures (Dolev and Strong, 1983). This fail-
ure mode is same as the previous one with one exception, a system is unable
to forge messages of another system, i.e. the failed system cannot lie about the
facts that are sent by other systems. Typically, this is accomplished by authen-
ticated messages.

• Incorrect computation failures (Laranjeira, Malek, and Jenevein, 1991). In this
failure mode if a system fails, it can only fail by delivering incorrect results in
either the value or the time domain.

• Performance failures (Cristian et al., 1986; Powell, 1992). This failure mode is
similar to the previous one, but more benign. Particularly, if a system fails, it
can fail only by delivering incorrect results in the time domain. Results may
be delivered early or late.

• Omission failures (Perry and Toueg, 1986; Powell, 1992). Omission failures are
a special case of performance failures. Specifically, results are never delivered,
or in other words, they are delivered infinitely late.

• Crash failures (Lamport, Shostak, and Pease, 1982; Powell, 1992). In this fail-
ure mode a system fails by not responding to the current and any subsequent
service request. If this is the case, it is said that the system has crashed.

• Fail-stop failures (Laprie, 1992). When a system presents this failure mode, it
can only manifest as a crash failure, but additionally, this failure is assumed to
be detectable by the other systems. This is done by assuming that the failed
system maintained a stable storage which reflects the last correct service. The
stored value can then be read by anyone even though the system maintaining
it has crashed.

If a dependable system behaviour conforms to a specific failure mode, we can say
that the system exhibits a failure semantics of the conformed failure mode. A more
formal definition is given by (Poledna, 2007):

“ A system exhibits a given failure semantic if the probability of failure modes which are
not covered by the failure semantic is sufficiently low ”

The restriction of failure semantics is usually done at the design stage of the sys-
tem by using adequate design techniques. Depending on the targeted failure seman-
tics to be achieved different mechanism can be used (Barborak, Dahbura, and Malek,
1993). Restricting a failure semantics of a dependable system can significantly facil-
itate its later design.

The means for dependability are methods and techniques used to ensure that
reliance can be placed on the services that the system provides. These methods are
grouped into four classes that are often combined to provide dependability:

2.1. Fault Tolerance 11

• fault prevention methods prevent faults from occurring or being introduced in
the system.

• fault tolerance methods focus on providing a service conforming to the specifi-
cation in spite of faults.

• fault removal methods aim at reducing the seriousness and number of faults
after their occurrence.

• fault forecasting methods assess the presence of faults, their frequency and the
effects they might cause.

In this dissertation we devise the fault tolerance methods as a means to provide
dependability. Specifically, the attribute that we provide is reliability. Therefore, the
next section elaborates more on fault tolerance in general, and the specific techniques
used in this dissertation in particular.

2.1 Fault Tolerance

As already explained, the goal of fault tolerance is to provide a correct system service
in spite of faults. Fault tolerance is realized by means of error processing and/or fault
treatment. Error processing purpose is to remove errors from the computational state,
preferably before they can cause a failure. Fault treatment purpose is to prevent faults
from causing any further errors.

Error processing may be realized by using the following two methods:

• Error recovery. It is done by restoring an error-free state starting from the erro-
neous state. This can be achieved using two different approaches:

– backward recovery is done by restoring the system to a prior error-free state
using the pre-saved points in time, called the recovery points, that were
established before the error has occurred.

– forward recovery is done by transforming an erroneous state with a new
state in which the system may resume to provide its service, but possibly
in a degraded mode.

• Error compensation. It is done by employing enough redundancy to allow the
system to provide its service in spite of the erroneous internal state.

Fault treatment is accomplished by the execution of two subsequent steps. The
first step is called fault diagnosis and it involves discovering what are the cause(s) of
error(s) covering their location and nature. The next step is called fault passivation
and its aim is to realize the prime goal of fault treatment which is to prevent faults
from causing any further errors, i.e. to passivate them. This step is accomplished by
excluding the identified faulty component(s) from the rest of the system execution.
If this exclusion causes the system not to be able to preserve the delivery of intended
service, then a reconfiguration of the system might be realized.

In this dissertation we make use of both error processing and fault treatment. As
regards error processing, we use the error compensation approach in general and
the replication approach in particular. As will be described later, we complement
the node replication with error recovery in the form of forward error recovery.

When error recovery is being used, the first step is to identify the erroneous state
before replacing it with an error-free one. This process is called error detection and
always precedes error recovery.

12 Chapter 2. Basic dependability concepts

It is important to note that if errors are compensated without using error detec-
tion, a phenomenon called redundancy attrition can manifest. Redundancy attrition
occurs when faulty components are not detected and as a result the available redun-
dancy is decreased without being noticed by the system.

Next, we list the different replication techniques according to the degree of syn-
chrony among replicas in the time domain.

• Lock-step. All replicas execute exactly the same operation, at the same time.
The same time for the replicas is provided by using a common hardware clock
source. The examples of systems using this replication technique are Stratus
(Taylor and Wilson, 1989) and Sequoia (Bernstein, 1988).

• Active. All replicas execute exactly the same operation, but without using a
common hardware clock source. Some of the examples are CIRCUS (Cooper,
1984), Clouds (Ahamad et al., 1987), active replication in Delta-4 (Chérèque et
al., 1992), MAFT (Keichafer et al., 1988), MARS (Kopetz et al., 1989) and SIFT
(Wensley et al., 1978).

• Passive. Only one replica, called primary, makes all the decisions, and sends
updates to the other replicas, called backups, which then apply the changes.
An example of a system using passive replication is Tandem GUARDIAN
(Bartlett, Gray, and Horst, 1987).

• Semi-active. Same as active replication concerning deterministic decisions, i.e.
the decisions that have to produce exactly the same (identical) outcome in each
replica, but with the exception that one of the replicas, called leader, can take
non-deterministic decisions, i.e. the decisions that are taken independently
from the other replicas and can yield an arbitrary outcome. Then, this non-
deterministic decision has to be propagated to the other replicas, called follow-
ers. Examples of semi-active replication systems are XPA if Delta-4 (Barret et
al., 1990) and ISIS (Birman et al., 1985).

The node FT mechanisms designed by this dissertation and the communication
subsystem that these mechanisms are built on use active and semi-active replication.
The reasons why we chose to use these two strategies are explained in the text that
follows.

Active and semi-active replication are fully transparent to the users of the sys-
tem if some of the replica(s) fail, which is not the case for passive replication. With
passive replication, the failure of a primary replica would enlarge the response time,
thus making it ineffective for real-time systems.

In lock-step replication technique the correct execution of replicas’ operation is
strongly dependent on the provision of common hardware clock source. This source
has to provide a clock signal that has to reach all the replicas thus limiting the speed
and distance among replicas as well as the number of replicas. These limitations
are not in line with distributed systems in general. On the other hand, both ac-
tive and semi-active replication require no common hardware clock source and the
aforementioned limitations are not present.

Active and semi-active replication exhibit the so called group failure masking se-
mantics. This means that if one of the replicas is faulty, the group as a whole can mask
the fault quasi-instantaneously, which is in line with the critical real-time DES re-
quirements. These techniques were successfully applied in avionics systems (Wens-
ley et al., 1978), and dependable computer architectures such as MAFT (Keichafer
et al., 1988) and Delta-4 (Barret et al., 1990).

2.2. Replica Determinism 13

Therefore, we can conclude that active and semi-active replication are the most
appropriate for critical real-time DES.

The main drawback of both active and semi-active replication is that they require
a great effort in order to enforce replica determinism (Poledna, 2007; Wiesmann et al.,
2000), i.e. to ensure that the non-faulty replicas exhibit a consistent behavior in the
absence of faults. Therefore, in the section that follows we will define what replica
determinism problem is, and how to deal with it.

Once all the fault tolerance mechanisms have been designed, an evaluation of the
overall fault-tolerant system is usually performed to verify the correctness and the
effectiveness of its design. There are two kinds of evaluation techniques, qualitative
and quantitative (Proenza, 2007).

The qualitative evaluation is fitting to verify the correctness of the system design
that includes all the FT mechanisms which are necessary to cope with the expected
fault model, i.e. the expected classes of faults the system can exhibit, which was
explained at the beginning of this chapter. The work described in (Avizienis, 1995)
proposes structured guidelines for qualitative evaluation.

The quantitative evaluation, also called numerical evaluation, is done to verify if the
system meets its numerical requirements with regards to designated attributes of
dependability. Quantitative evaluation is typically done by building a dependability
model of the system which is then analyzed to obtain the numerical value for the
desired dependability attribute.

A quantitative evaluation of a fault-tolerant system is usually performed to ob-
tain the coverage of error processing and fault treatment mechanisms (Bouricius,
Carter, and Schneider, 1969; Arnold, 1973). The coverage can be defined as a propor-
tion of faults from which the system can recover using the designed error processing
and fault treatment mechanisms. The estimation of coverage includes methods such
as estimates, analyses, simulations, and experimentation with prototypes of critical
elements under fault conditions. One of the most widely used method for obtaining
coverages is called fault injection (Arlat, Crouzet, and Laprie, 1989; Gunneflo, Karls-
son, and Torin, 1989) and is done by provoking different faults and then testing the
designed mechanisms.

As mentioned before, the dependability attribute of interest for this dissertation
is reliability. In Chapter 9 we will elaborate more of which specific quantitative eval-
uation techniques we use and how we use them to measure the reliability achieved
by our system.

2.2 Replica Determinism

When replication is being used as a means to provide fault tolerance, even in case
some of the replicas fail, assuming that no more than a given number of replicas
have failed, the correct service should still be provided. However, it can happen
that due to some undesirable side effects the non-failed replicas disagree and make
it difficult to provide the intended service.

Consider the following example. There are two replicas that are in charge of
controlling an emergency valve. In case excess pressure is detected, both replicas
have to issue a command to close the emergency valve. However, the pressure is
being read from an analogue sensor and it can happen that each of the replicas re-
ceive a marginally different reading as a result of limited accuracy when reading
the sensor. This can lead to a scenario when one replica issues a command to close
the emergency valve while the other concludes that the valve should be left open.

14 Chapter 2. Basic dependability concepts

As a consequence, even though both replicas are non-erroneous, they disagree on
the result. On the other hand, the similar scenario can happen even if both replicas
read exactly the same input from the sensor. Concretely, if the decision to close the
valve also depends on the duration of time in which the excess pressure lasts, it can
happen that due to a small divergence in clock speeds one replica issues a command
and the other one does not. Again, replicas disagree on the result even though they
are non-erroneous.

Replica determinism problem deals with the aforementioned issue. Particularly,
it has to ensure that disagreement among non-erroneous replicas does not occur
even in the presence of undesired side effects.

Consequently, the replica determinism is intended for assuring that all the non-
faulty replicas belonging to the same group behave in a deterministic manner (Poledna,
2007), i.e. that they do not disagree on the produced results. The more formal defi-
nition of the problem is as follows:

“Correct servers show correspondence of server outputs and/or service state changes un-
der the assumption that all servers within a group start in the same initial state, executing
corresponding service requests within a given time interval”(Poledna, 2007)

In the general scope of replication, the term server from the above definition is
identical with the term replica. This definition is quite generic and is covering a
wide spectrum of applications and replication strategies. Therefore, in the scope
of a specific application and replication strategy the correspondence of outputs and
service requests as well as time interval from the above definition would have to be
defined more accurately.

Note that the replica outputs do not have to be equivalent. They need to show
correspondence in the value and time domain that is specific to the application be-
ing executed. For example, as regards the correspondence of outputs in the value
domain, for the applications that use floating point number values, correspondence
requirement allows the outputs to differ by a given maximum deviation, whereas,
for the applications that use boolean values, correspondence requirement needs the
outputs to be identical.

Concluding, replica determinism needs to be defined within the scope of a spe-
cific application. When this is done, the next step is to pinpoint what are the sources
that lead to non-deterministic behaviour, i.e. cause replica non-determinism, and
then define techniques to prevent them.

There are many sources of replica non-determinism, e.g., when using hardware
generators of random numbers, different replicas may yield different random num-
bers due to the difference in hardware, or if the decisions taken by the replicas de-
pend on time, each replica uses its own clock to measure time, and, if the clocks are
not synchronized, non-deterministic behaviour can easily occur.

Poledna (Poledna, 2007) made an attempt to characterize all the sources of replica
non-determinism. The result of this characterization are the following three classes:

• The real world abstraction limitation - this source is caused by the abstraction that
computer systems make when trying to quantify real world continuous pro-
cesses by using a finite set of discrete numbers (discretization). It can happen
that different replicas end up using different values for the quantification of
the same real world continuous process.

One example from Poledna’s work (Poledna, 2007) of this source is when two
temperature sensors measure the same temperature of exactly 100◦ C, and as-
suming that the discrete number 99 represents the temperature range [99, 100[◦

C, and the discrete number 100 represents the temperature range [100, 101[◦ C,

2.2. Replica Determinism 15

it can happen that due to the limited accuracy used by the sensors devices, one
sensor outputs 99 and the other one outputs 100.

Another example of this source is the non-determinism introduced by the arith-
metic operations. If replicas are not identically implemented, they can pro-
duce different outputs even if the inputs are identical, e.g. if one replica can
represent up to 20 decimal points and the other one can represent up to 40,
inconsistencies may emerge when these replicas are doing the same arithmetic
operations and these inconsistencies can lead to replica non-determinism.

Note that in the second example the replica non-determinism can be prevented
by using the identically implemented replicas, whereas in the first one the
replica non-determinism cannot be avoided even when using the identical
replicas. Therefore, this source can never be entirely avoided.

• Impossibility of exact agreement - we saw from the previous source that the replica
non-determinism is always present at the interface between a computer system
and the observed environment. Therefore, this source deals with the problem
of impossibility to eliminate or mask the replica non-determinism in a system-
atic manner once it has been introduced (Poledna, 2007). It will be seen that
in order to enforce replica determinism, the application semantics has to be
considered. The following two approaches can be followed to cope with the
previously described replica non-determinism:

– Application semantics analysis: guarantee by analysis of the application se-
mantics that non-deterministic observations have no effect on the correct-
ness of the system’s function (Poledna, 2007). Since the non-deterministic
observations tend to be similar, replicas can take advantage of this simi-
larity to make sure that the service responses of each replica correspond
to each other. If this is the case, there is no need for the replicas to ex-
change information of their individual observations. However, only for
very trivial systems it is possible to guarantee that the application seman-
tics allows the inconsistent observations. As soon as we have more com-
plex systems, it is very difficult to deal with replica non-determinism at
the application level and this calls for quite complicated analysis and sys-
tem design.

– Information exchange: reach an agreement upon the observation of a real
world continuous process by replicas exchanging information on their
individual observations. Using this approach, the application complexity
is significantly reduced and is shifted towards a protocol that has to reach
an agreement among replicas, i.e. to reach a consensus. The first work on
consensus was done by (Pease, Shostak, and Lamport, 1980).

Concluding, the first approach is an application-specific and unstructured so-
lution than can only be applied to a limited number of applications whereas
the second one is a systematic solution that can be widely applied to deal with
replica non-determinism and therefore is frequently utilized.

However, it has to be noted that even with the second approach it is still impos-
sible to completely eliminate the replica non-determinism and reach a perfect
agreement among replicas. The actual kind of agreement strongly depends on
the requirements of applications.

16 Chapter 2. Basic dependability concepts

• Intention and missing coordination - This is the last class of replica non-determinism
sources and is characterized either by the “intentional” or by the “non-intentional”
introduction of replica non-determinism. A classical example of “intentional”
introduction of replica non-determinism is the use of “true” random num-
ber generators where each replica can yield different random number. On
the other hand, as regards the “non-intentional” introduction of replica non-
determinism, it is caused by omitting the coordination between replicas with
respect to non-deterministic behaviour. This usually happens due to the usage
of non-deterministic language constructs and/or local information.

Lastly, note that unlike the previous two sources that are always present to
some extent, this one can be avoided by the proper design of the replicated
system.

In order to prevent the aforementioned sources of replica non-determinism, replica
determinism needs to be enforced. Different methods for enforcing replica deter-
minism can be classified by asking the questions where and how.

When it comes to where to enforce replica determinism, according to (Poledna,
2007) there are two methods that can be used:

• Internal replica determinism enforcement is concerned with dealing with the
intention and missing coordination source of replica non-determinism by re-
stricting the functions used to implement a given service. This means that non-
deterministic language constructs and local information should be avoided.
Also, when implementing a given service, identical implementation is advised
so as to avoid different replicas yielding inconsistent results.

• External replica determinism enforcement is concerned with dealing with the
remaining two sources of replica non-determinism - the real world abstraction
limitation and the impossibility of exact agreement. When obtaining obser-
vations from external resources such as a set of replicated sensors, a proper
voting or adjudicating function (Di Giandomenico and Strigini, 1990) has to
be selected in order to coordinate sensor inputs and thus enforce replica deter-
minism. The selection of these functions is application-specific.

Same as with the coordination of sensor inputs, communication services that
are used to exchange observations among replicas have to be considered when
enforcing replica determinism. Choosing the appropriate characteristics of
the communication service minimizes the non-determinism introduced by the
communication.

When dealing with external replica determinism enforcement the following
requirements are generally defined (Schneider, 1990; Cristian, 1991):

– Membership: Every non-faulty server within a group has timely and con-
sistent information on the set of functioning servers which constitutes a
group.

– Agreement: Every non-faulty server in a group receives the same service
requests within a given time interval.

– Order: Explicit service requests as well as implicit service requests, which
are introduced by the passage of time, are processed by non-faulty servers
of a group in the same order.

2.2. Replica Determinism 17

Note that these requirements can never be truly fulfilled and the replica non-
determinism cannot be entirely prevented, only reduced. Because of the im-
possibility of exact agreement, the first two properties - membership and agree-
ment - can never be absolutely fulfilled. These properties, including order,
have to be relaxed depending on the system requirements. This relaxation
allows the cheaper protocols to be used, but, it is necessary to know the se-
mantics of service requests. For example, if service requests are commutative
or independent, the order requirement can be relaxed. Also, if replicas use
N-Version Programming (Avizienis, 1985), i.e. each replica uses an indepen-
dently implemented program satisfying the same specifications, agreement re-
quirement can be relaxed as well. However, note that these relaxations are
application-specific solutions to fault tolerance which add complexity to the
design of the system.

When it comes to how to enforce replica determinism, Poledna (Poledna, 2007)
classifies the following two methods:

• Centralized: this method is also called asymmetric and it defines one server that
can be distinguished from the others. This server is called central and all the
other servers belonging to the same group have to be synchronized with it.
The central server is the one controlling replica determinism by compelling
the other servers of the group to accept its decisions and processing pace. The
term that is used for the other servers depends on the correlation with the cen-
tral server. When the non-central servers receive and process service requests
together, but slightly delayed from the central server, the follower servers term
(Powell, Chérèque, and Drackley, 1991) is used. When the non-central servers
do not receive service requests, but instead receive from the central one check-
point messages that contain the state of the service, the standby servers term
(Budhiraja et al., 1991) is used. Examples of replicated systems making use of
centralized method are the semi-active and the passive replication strategies
of Delta-4 (Powell, Chérèque, and Drackley, 1991), the ISIS system (Birman et
al., 1985) or some database-oriented systems that use checkpointing (Shin, Lin,
and Lee, 1987; Koo and Toueg, 1987).

The most evident advantage of the centralized approach is the ease with which
communication protocols can achieve the order requirement. Since the com-
munication, both internal and external, is always done through the central
server, order is guaranteed implicitly. Also, non-deterministic decisions of the
group can be resolved by sending them to the central server. Due to the afore-
mentioned, the crucial disadvantage of this approach is the fact that the cen-
tral server plays a critical role and its failure can jeopardizes the whole system.
Thus, the central server cannot have byzantine failure semantics.

• Distributed: this method is also called symmetric because there is no central
server and all the servers play the same role. The non-deterministic deci-
sions and the processing pace have to be agreed upon, i.e. consensus has to
be reached and therefore each server of the group executes the same commu-
nication algorithm. Examples of replicated systems making use of distributed
method are MARS (Kopetz et al., 1989), Totem (Amir et al., 1993), Delta-4’s
active replication (Chérèque et al., 1992) and MAFT (Keichafer et al., 1988).

The main advantage of distributed approach is that no server has a distin-
guished role, thus imposing no restrictions on the failure semantics the servers

18 Chapter 2. Basic dependability concepts

have to exhibit. However, the communication protocols have to be more com-
plex in order to fulfill agreement and order requirements.

Note that there can also be approaches that are in between the centralized and
the distributed ones. One example is the broadcast protocol for the Amoeba system
(Kaashoek and Tanenbaum, 1991) where the functionality about non-deterministic
decisions is partly centralized and partly distributed. Another one is the broadcast
protocol described in (Chang and Maxemchuk, 1984) where the role of the central
server is performed sequentially by different servers.

19

Chapter 3

Foundations

Now that we have introduced all the relevant dependability concepts, in this chapter
we are going to describe the foundations on top of which our node FT mechanisms
are designed. In particular, we are going to focus on the part “reliable and flexible
communication subsystem” from the thesis statement, c.f. Section 1.2. Being even
more specific, we will start off by describing the communication paradigm and the
protocol based on this paradigm that are used throughout this dissertation. Then,
we will delve in the details of the communication subsystem that makes use of the
described paradigm and protocol and that serves as a basis for our node FT mecha-
nisms.

3.1 FTT paradigm and HaRTES

The Flexible Time-Triggered (FTT) communication paradigm (Pedreiras and Almeida,
2003) is a real-time communication paradigm that provides support for adaptivity
of RT DES in the form of operational flexibility, i.e. the ability to change the traffic
requirements on the fly, i.e. during the runtime, while maintaining real-time guar-
antees.

The FTT communication paradigm has been implemented on different network
technologies resulting in different FTT protocols. The first protocol was FTT-CAN
protocol (Pedreiras and Almeida, 2000) designed for Controller Areal Network (CAN).
However, in the recent years Ethernet has been replacing the competing network
technologies due to its support of ever-increasing bit rates and its simplicity. Con-
sequently, the FTT protocols using Ethernet are: FTT-Ethernet protocol (Pedreiras,
Almeida, and Gai, 2002) designed for shared Ethernet, and FTT-SE protocol (Marau,
2009) designed for COTS switched Ethernet.

Moreover, the FTT-based designs have proved to be a viable solution in the scope
of adaptive systems and recent works in this area show that there is an on-going in-
terest in continuing improving the RT-related features of the FTT protocol (Garibay-
Martínez et al., 2016; Ternon, Goossens, and Dricot, 2016; Ashjaei, Behnam, and
Nolte, 2016; Ashjaei et al., 2016).

The specific FTT protocol being used throughout this thesis is HaRTES (Hard
Real-Time Ethernet Switch) protocol (Santos, 2010). The HaRTES protocol is a master/multi-
slave publisher-subscriber protocol implemented on top of the standard Ethernet.
Each switch of the FTTRS is an enhanced Ethernet switch that embeds the FTT mas-
ter within and that is where the name HaRTES comes from. The HaRTES proto-
col data is encapsulated within the standard Ethernet frame payload. The protocol
supports both real-time (divided into time-triggered, also called synchronous, and
event-triggered, also called asynchronous) and non-real-time traffic classes. The pro-
tocol organizes the communication into fixed-duration time slots called Elementary
Cycles (ECs). Each EC is further separated into three windows, c.f. Figure 3.1.

20 Chapter 3. Foundations

FIGURE 3.1: Elementary cycle

Trigger Message Window (TMW) is used by the FTT master node embedded in the
switch to broadcast a special control message, called the Trigger Message (TM), to all
the FTT slaves. The TM contains the schedule for the synchronous messages that are
due to be transmitted in the current EC. Thus, the FTT master polls the synchronous
traffic directly.

Synchronous Window is intended for the exchange of synchronous messages.
Asynchronous Window is intended for the exchange of asynchronous messages

and non-real-time messages. This traffic in not polled directly by the FTT master,
but queued in dedicated memory pools inside the HaRTES. HaRTES then shapes
this traffic by transmitting it within this dedicated window so it does not interfere
with the synchronous traffic.

The architectural components of the HaRTES protocol that include the enhanced
FTT-enabled switch with the embedded FTT master (see Figure 3.2), and the FTT
slave are presented next. The introduction of the architecture and the operation of
the specific components of HaRTES protocol will be a basis for understanding the
simulation and implementation described by Chapter 7 and Chapter 8.

The components in the gray zone belong to the FTT master. The System Require-
ments Data Base (SRDB) is the central repository for all the traffic management related
information such as the message attributes for synchronous and asynchronous real-
time traffic (e.g. period, priority, deadline), global configuration information(e.g. EC
duration, the duration of the synchronous window) and resource allocation infor-
mation. The admission control and optional QoS Manager closely collaborate with
the SRDB to guarantee real-time traffic timeliness. They receive and process change
requests assuring that any previously negotiated schedule will be fulfilled. At the
beginning of every EC the scheduler scans the SRDB to build a list of synchronous
messages that should be sent in that EC (EC-schedule). The EC-schedule is sent to
dispatcher that is turn broadcast the TM conveying the received EC-schedule.

The rest of the components, non-gray (white) zone, belong to an enhanced FTT-
enabled switch excluding the above described FTT master.

We shall now go in depth describing functionalities of components belonging to
HaRTES input and output areas depicted in Figure 3.2, and components belonging
to FTT Slaves.

3.2. FTTRS 21

HaRTES input area

When packets get received they are classified by the packet classifier in one of the
following: FTT real-time packets, non-real-time packets, and FTT request packets.
An FTT packet is validated and, if deemed valid, stored in the corresponding syn-
chronous or asynchronous packet memory queue of the global memory pool. A non-
real-time packet is stored in a non-real-time queue of the global memory pool. An
FTT request packet is targeted for the FTT master and forwarded to the admission
control/QoS Manager module. Whenever a packet is placed in one of the queues of
the global memory pool, the packet forwarding process is activated. In case of FTT
real-time packet, the packet forwarding module does not consult MAC address, but
is based on a producer-consumer model that inspects SRDB to determine ports that
have consumers attached and forward packets from global memory queues to cor-
responding output port queues. Non-real-time packets consult MAC address like
in standard Ethernet switches. One of the main advantages of this architecture is
the seamless integration of both FTT and non-FTT-compliant nodes. Note that the
non-FTT-compliant nodes can send their traffic as non-real-time packets and they
will conform to procedures of the standard Ethernet packet forwarding.

HaRTES output area

Output ports have the same queues with the same meaning as in the global memory
pool. The forwarding process described above does not move the actual packets,
but what happens is that the queues store the pointers to the packets in the global
memory pool. The port dispatcher stores the information about the EC windows
and handles packet transmission. Initially, the FTT real-time packets are transmitted
in the appropriate windows and at the end, if there is enough time, non-real-time
packet are transmitted at the end of the asynchronous window. As concerns the TM,
it is transmitted directly from the FTT master dispatcher module to all the output
ports.

FTT Slave architecture

The architectural components of the FTT slaves are much simpler. The FTT slaves
only have to obey the commands that come from the FTT master. Thus, the most
relevant components of the FTT slaves are discussed next. The Node Requirements
Data Base (NRDB) is a counterpart of the SRDB in the FTT slave. The FTT slave
memory pool stores the packets received both from the application and the network
in different queues. Finally, the dispatcher module is responsible for the message
transmission according to the EC-schedule conveyed by the TM received from the
FTT master.

3.2 FTTRS

Flexible Time-Triggered Replicated Star (FTTRS) is the communication subsystem de-
vised by our team as a means to add fault tolerance to the FTT communication
paradigm that uses Ethernet networking technology taking HaRTES protocol as a
basis while not jeopardizing the support that FTT provides for RT and operational
flexibility (Gessner et al., 2013; Gessner, 2017). Overall, the FTTRS provides the nec-
essary network requirements for adaptive real-time DES executing critical applica-
tions. On the one hand, it provides a support for network adaptivity and stringent

22 Chapter 3. Foundations

FI
G

U
R

E
3.

2:
H

aR
TE

S
(r

ep
ro

du
ce

d
as

it
ap

pe
ar

s
in

(S
an

to
s,

20
10

))

3.2. FTTRS 23

RT requirements by using the above described HaRTES protocol. On the other hand,
the support for the critical applications is provided by developing different fault tol-
erance mechanisms on the network level.

For the reasons explained above, in this dissertation we use the FTTRS as a basis
on top of which we implement our node fault tolerance mechanisms to further in-
crease the reliability achieved by the overall system. In the next sections we will first
describe the fault model used by the FTTRS, followed by its architecture, and finally,
the FT mechanisms designed to handle the faults considered by the introduced fault
model.

3.2.1 Fault model

Fault model describes which faults and associated rate of occurrence are assumed
by the system being designed. The FTTRS assumes the faults enclosed by the gray
square depicted in Figure 3.3 which was described previously in Chapter 2 (Figure
2.3).

The faults considered by the FTTRS are non-malicious operational hardware
faults. According to different viewpoints these faults can be: system boundaries
- internal or external; phenomenological cause - natural or human-made; intent -
deliberate or non-deliberate; capacity - accidental or incompetence; persistence -
permanent or transient. Two examples of the faults considered by the presented
fault model are physical deterioration and physical interference as seen in Figure
3.3. These faults are caused by processes such as radiation, power transients, noisy
input lines, etc.

As regards the rates of faults in the FTTRS, permanent and transient faults are
distinguished. No specific rates were considered for any of them in the design of
the FTTRS, but as will be shown in Chapter 9, we will assume some domain specific
failure rates when measuring the obtained system reliability.

All components of the FTTRS have unrestricted failure semantics, i.e. they can
fail in an arbitrary manner. Exception from this are transient faults in the links. It
is assumed that they are detectable by Ethernet Frame Check Sequence (FCS) which
drops the corrupted frames and transforms these faults into frame omissions. When
designing FT mechanisms, having an unrestricted failure semantics is very difficult
to cope with due to the complexity needed to handle all the different effect the failed
components may experience.

Therefore, the FT mechanisms of the FTTRS are divided into two subsets. First,
the FTTRS includes a subset of FT mechanisms devoted to restricting the failure se-
mantics of the components. This restriction would then facilitate the second subset
of FT mechanisms that are devoted to masking the effects of now restricted compo-
nent failures, and providing a non-disrupted communication service.

In the next sections we are first going to present the FTTRS architecture, and then
to discuss the aforementioned subsets of FT mechanisms.

3.2.2 Architecture

The building blocks of the FTTRS are: FTT slave nodes, enhanced FTT-enabled
switch and FTT Master (see Section 3.1), henceforth switch, and links.

The switch, including both FTT-enabled switch and FTT Master, is a single point
of failure, i.e. if it fails, the complete system fails, due to inability to provide commu-
nication services. To eliminate such as single point of failure, FTTRS relies on two

24 Chapter 3. Foundations

FI
G

U
R

E
3.

3:
Th

e
cl

as
se

s
of

fa
ul

ts
co

ns
id

er
ed

fo
r

FT
TR

S
(s

ou
rc

e
(A

vi
zi

en
is

et
al

.,
20

04
))

3.2. FTTRS 25

FIGURE 3.4: FTTRS architecture

independent switch active replicas; if one switch replica fails, the other one contin-
ues providing communication services.

As already said, replica determinism needs to be enforced (Poledna, 2007) so
as to ensure that the surviving replica/s of a replicated group, a surviving switch
in this case, provide/s a correct service. FTTRS provides several mechanisms to
ensure that both switches are replica determinate (Gessner, 2017). Since some of
these mechanisms need switches to exchange information with each other to reach
an agreement with regards to different aspects, both of them are interconnected by
at least two bidirectional (full-duplex) links called interlinks. All interlinks are used
in parallel, so that no interlink represents a single point of failure.

Each FTT slave needs to be connected to both of the switches to tolerate the fail-
ure of one of them (or of the link that connects it to a given switch). In this way, if
one of the switches (or a link) fails, an FTT slave can still use the other non-faulty
switch (or link) for communicating.

Figure 3.4 shows the resulting architecture of FTTRS , which is composed of two
switches interconnected by at least two interlinks, and several FTT slave nodes that
are connected to each one of the switch replicas.

It is noteworthy to mention that each switch forwards through the interlinks
the messages received from the slaves directly connected to it. This provides four
redundant paths between each pair of slaves, and keeps the network connected in
spite of faults affecting multiple links.

However, this provokes a phenomenon called replica radiation (Gessner, 2017).
Specifically, this phenomenon causes the number of slave messages transmitted in
the downlinks to be doubled compared with the ones in the uplinks. Figure 3.5 illus-
trates this phenomenon. As we can see, the slave located at the left hand transmits 2
replicas of the same message, each one through a different uplink; whereas the slave
on the right hand receives two copies of this message per downlink.

This phenomenon can be desirable as it increases the reliability of the communi-
cation. However, it may unnecessarily limit the performance of the network when,
in order to tolerate transient faults, the system already includes mechanisms for
replicating the transmission of messages in the time domain.

26 Chapter 3. Foundations

FIGURE 3.5: Replica Radiation in FTTRS (reproduced as appears in
(Gessner, 2017))

This is an important aspect to take into account since, as it will be explained in
the next Section, FTTRS also provides mechanisms to pro-actively retransmit criti-
cal messages. Moreover, some of the fault tolerance mechanisms proposed in this
dissertation (Chapter 5) rely on or introduce pro-active retransmissions as well.

For example, in FTTRS a slave can pro-actively retransmit k copies of a given crit-
ical message through each one of its uplinks. Thus, replica radiation would provoke
each receiving slave to receive 2 ∗ k copies of that message per downlink.

Whether or not replica radiation represents a disadvantage from the performance
point of view depends on the application. Fortunately, replica radiation can be dis-
abled when necessary by configuring each FTTRS switch to appropriately restrict
the number of copies of a given message it forwards through its downlinks. In fact,
replica radiation has been disabled in some of the prototype implementations of FT-
TRS so far.

For the sake of simplicity, in this dissertation we consider that replica radiation
does not happen. On the one hand, we will assume that replica radiation is dis-
abled when using the FTTRS pro-active retransmission mechanisms. On the other
hand, we will design new pro-active retransmission mechanisms so that they do not
provoke this phenomenon.

This decision of preventing replica radiation from happening does not limit the
attainable reliability. This is because the level of time redundancy of each pro-active
retransmission mechanism should be chosen to attain a desired reliability, indepen-
dently of whether or not replica radiation is enabled. Moreover, FTTRS can be
configured and our new pro-active retransmission mechanisms modified to enable
replica radiation if desired.

3.2.3 FT mechanisms

In this section we explain first how components of the FTTRS may fail. Afterwards,
we describe the FT mechanisms used to restrict the failure semantics, and finally, we
describe how this restriction is used to implement further FT mechanisms to deal
with expected restricted component failures.

Components of the FTTRS have unrestricted failure semantics (Gessner et al.,
2013; Gessner, 2017), i.e. each component may fail arbitrarily. The exception are
links that due to the FCS of Ethernet transform frames corrupted by hardware link
faults into omissions. Concluding, FTT slaves and switches can fail in an arbitrary
fashion while the links fail by corrupting frames which are in turn dropped after
Ethernet inspects the FCS.

To restrict failure semantics of the switch, both internal composition units, FTT-
enabled switch and FTT master, use internal duplication and comparison. Specif-
ically, the hardware circuitry of the switch and its including composition units are

3.2. FTTRS 27

internally duplicated and compared and if any discrepancy is detected by the com-
parison, the complete switch turns itself off. This failure semantics is called crash
failure semantics and means that the switches either provide a correct service or crash,
i.e. remain silent permanently.

To restrict failure semantics of the slaves, previous work (Ballesteros et al., 2013)
proposes to further enhance both switches with devices called Port Guardians (PGs)
attached to each port of the switch. PGs inspect the traffic coming to connected ports
and drop all frames deemed incorrect considering a set of specified rules. Using the
PGs, slaves’ failure semantics is restricted to incorrect computation failure semantics,
but only from the point of view of the other slaves. In particular, slaves still fail
in arbitrary manners, but after the PGs’ filtering, all untimely frames and frames
exhibiting undesired behaviours, e.g. a replica trying to impersonate a frame of an-
other replica, are dropped and a slave can only fail to deliver a correct result to an-
other slave in value or time domain (incorrect message or no message at all(dropped
by the PGs)).

No further actions are taken to restrict failure semantics of the links since it is
already benign and easy to cope with.

After the first applied set of FT mechanisms described above, the failure seman-
tics of the FTTRS components is as follows. Switches have crash failure semantics,
i.e. they fail either by proving a correct service or remaining silent, slaves have incor-
rect computation failure semantics, i.e. they can fail only by delivering an incorrect
result to another slave in value or time domain, and links failure semantics remains
the same, they fail by corrupting frames which are in turn transformed into omis-
sions.

Next, we explain the FT mechanisms used by the FTTRS to tolerate both per-
manent and transient hardware faults in all the components of the FTTRS. We will
see how the above failure semantics restriction facilitates the FT mechanisms that
follow.

First off, since slaves are not considered being part of the communication subsys-
tem, the FTTRS does not provide mechanisms to tolerate slave permanent and tran-
sient faults. However, as already explained, mechanisms that restrict their failure
semantics are devised so that slave faults cannot prevent other slaves from commu-
nicating. In particular, PGs will filter out all the undesirable behaviours of the slaves
that can jeopardize the correct functioning of the communication. Nonetheless, re-
call that the main aim of this dissertation is devoted to providing FT mechanisms
to tolerate both permanent and transient slave faults as will be described later in
Chapter 5.

Permanent faults in the FTTRS components that form a part of the communica-
tion subsystem are tolerated by means of switch and link replication (Figure 3.4).

Transient faults in the switches are transformed into permanent ones due to the
crash-failure semantics enforced by the duplication and comparison of the switches’
internal circuitry (Gessner, Proenza, and Barranco, 2014a; Gessner, 2017). This means
that the switches either provide a correct service or crash, i.e. remain silent perma-
nently.

Lastly, transient faults in the links affect the messages being transmitted by the
slaves and the switches, and are being transformed into omissions using the Ether-
net FCS. To tolerate these faults and omissions they cause, the FTTRS proposes to
pro-actively transmit each message k times assuming that the number k has to be
sufficiently high so that the probability of a failed message transmission becomes
negligible.

28 Chapter 3. Foundations

As regards the slave messages, the number of replicas for each message sent by
the slaves is stored in the SRDBs and the NRDBs as an additional message attribute
(see Section 3.1) so that both the switches and the slaves have the knowledge of
redundancy message levels. Having this in mind, slaves know how many messages
they should transmit and switches can drop all the message replicas that go beyond
the predefined redundancy level for that message.

As regards the TMs transmitted by the switches, their redundancy level is de-
fined in the SRDBs with other global configuration information. Note that in the
HaRTES protocol a single TM is broadcast in the TMW to all connected slaves and is
received by each of them approximately at the same time ensuring a synchronized
start of the corresponding EC. Now, instead of broadcasting a single TM, the FTTRS
proposes that each switch broadcasts multiple TM replicas as a means to tolerate
transient links faults. Since some of the TM replicas may be lost due to omissions, a
solution for EC synchronization has to be provided bearing this in mind.

The solution comprises in both switches isochronously, i.e. at quasi-simultaneous
time instants, broadcasting their TM replicas. The sequence number for each TM
replica in conveyed within the TM payload and can be used by receiving slaves to
determine the start of synchronous window in EC by calculating how much TM
replicas are left to be received. For the details of managing TM redundancy by slave
node an interested reader can refer to the previous works (Gessner, Proenza, and
Barranco, 2014a; Gessner, 2017).

Moreover, all TM replicas have to contain the same payload. This is important
both from the point of view of tolerating permanent failure of one switch and from
the point of view of the above described mechanism of isochronous broadcasting of
TMs. This can be ensured by enforcing replica determinism of the switch replicas,
i.e. switch replicas must, starting from the same initial state and same input, produce
corresponding outputs.

The outputs that the switches produce are the TMs. Using the TMs, switches
command the start instance of each EC and the transmission schedule of periodic
messages in that EC. Thus, we can discriminate the output correspondence in the
time and value domain. The time domain correspondence is achieved if both switch
replicas transmit their TM quasi-simultaneously and the value domain correspon-
dence is achieved if both switch replicas produce exactly the same TM content (same
periodic messages schedule).

As regard the replica determinism enforcement in the time domain, semi-active
replication strategy described in Section2.1 is used. One of the switches is the leader
and will transmit TMs according to its own internal clock through both links and
interlinks. The other switch is the follower and it also does the same, but it synchro-
nizes with the leader with the reception of leader TMs. Concretely, it uses the arrival
time of the received TMs to decide whether it needs to defer or advance the start of
its next TM transmission (Gessner, 2017).

As regards the replica determinism enforcement in the value domain, active
replication strategy described in Section2.1 is used. Since both switches start from
the same initial state and exhibit crash failure semantics no internal non-determinism
can be expected. However, externally switches might receive different inputs from
the slaves. To overcome this, switch replicas exchange all the information relevant
for TM production through interlinks so that they have the same input needed for
TM production and then unambiguously determine which information has to be
considered, details in (Gessner, Proenza, and Barranco, 2014b; Gessner, 2017).

How to tolerate slave faults was not considered by the FTTRS. Therefore, in the

3.2. FTTRS 29

Chapter 5 we will describe how we build on top of the just described FTTRS com-
munication subsystem slave FT mechanisms. The incorrect computation failure se-
mantics enforced for the slaves will be used to facilitate the development of the node
FT mechanisms.

31

Chapter 4

Similar active node replication
proposals

This chapter is devoted to the identification of the works that are similar to the one
proposed by this dissertation.

We will first present active node replication works in general that are similar to
our work. This is done due to the fact that we use this technique as a basis to tolerate
the node faults. After listing these, we will give an overview and comparison with
our approach and then we will shift our focus to the communication subsystems
by identifying some of the specific solutions built on communication subsystems
similar to the one used by us, FTTRS.

One of the first research done on this subject was Software Implemented Fault Tol-
erance (SIFT) (Wensley et al., 1978). This is a very important reference in the history
of fault-tolerant computing because it is the first experience in the study of fault
tolerance in distributed systems and focuses on the use of standard avionics com-
puters as the nodes of the complete system. The problem of replica determinism
was explicitly addressed and the consensus problem, which was explained in detail
in Section 2.2, was first defined in the context of this system (Pease, Shostak, and
Lamport, 1980).

Another software-based architecture that uses node replication is Chameleon
(Kalbarczyk et al., 1999). In this case the architecture was proposed in the context of
adaptive fault tolerance. This work uses specific objects, called ARMORs (Adaptive,
Reconfigurable, and Mobile Objects for Reliability) to create fault-tolerant software
infrastructure. However, this work does not explicitly address the replica determin-
ism problem.

Some systems that make use of the active replication technique use very specific
architectures and designs, and have been developed for very specific applications.
Next, we will list some of these works that we have identified as similar to our
system.

This architecture for flight control systems and incorporated fault-tolerance mech-
anisms are designed specifically for JAS39 Gripen aircraft (Alstrom and Torin, 2001).
Active replication is applied for the aircraft actuators which use the same replicated
software, and voting is done to mask the faulty replicas. Replica determinism is
mentioned, but an explicit solution of how to achieve it was not provided.

The work in (Chtepen et al., 2009) describes how active replication in combi-
nation with technique called checkpointing (saving state from which the compo-
nent can recover) can efficiently be deployed to provide fault tolerance in grid com-
puting environments. Depending on the current grid load, hybrid fault tolerance
approach that switches between these two techniques has been proposed. In case
when enough computing resources are available, active replication is used, and in

32 Chapter 4. Similar active node replication proposals

case when the system is overloaded, checkpointing is used. This work does not deal
with enforcing replica determinism.

The work in (Ductor, Guessoum, and Ziane, 2011) presents an on-line adaptive
active replication technique concerning the number and location of replicas for large
scale Multi-Agent Systems (MAS). This work employs active replication adaptively
as a function of two main parameters: agent criticality and the amount of available
resources. As in the previous work, the replica determinism problem was not ad-
dressed here as well.

Software-based fault tolerance using active replication can be integrated in JAVA
ahead-of-time compiler called KESO (Thomm et al., 2011), which allows the applica-
tion to be replicated transparently, i.e. the application is unaware of the existence of
replication. This work proposes suggestions of how to enforce replica determinism
based on analyzing the application code in order to detect indeterminism and deal
with it.

The previous works were either too general or quite application specific. Hence,
we will focus next on more complete works that propose entire architectures provid-
ing hardware solutions for active replication.

The Multicomputer Architecture for Fault Tolerance (MAFT) (Keichafer et al.,
1988) was designed for real-time control systems requiring ultra high reliability.
MAFT employs physical partitioning of the nodes into two distinct subsystems. One
for performing application related functions, called application processor (AP) and
other for performing system executive functions, called operation controller (OC).
Active replication usage is suitable for MAFT system. The problem of replica deter-
minism was addressed by employing interactive consistency (Pease, Shostak, and
Lamport, 1980) and convergent voting algorithms (Dolev et al., 1986) to reach an
agreement.

The Fault Tolerant Multiprocessor (FTMP) (AL Hopkins, Smith III, and Lala,
1978) is very important reference for fault tolerant computing and also its successor
the Fault Tolerant Processor (FTP-AP) (Lala and Alger, 1988). Similar like in MAFT
this architecture divides each node into two subsystems: the core FTP, which plays
a similar role to MAFT’s OC, and the Attached Processor (AP), which has a similar
role to MAFT’s application processor. The designers of FTP-AP were very concerned
with the Byzantine Generals’ problem which was also addressed in MAFT and fol-
lowed the techniques from (Pease, Shostak, and Lamport, 1980).

Delta-4 (Chérèque et al., 1992) is an open dependable distributed computing
systems architecture. Like the previous two each node is divided into two sub-
systems. Host subsystem is in charge of application functions while the Network
Attached Controller (NAC) subsystem is in charge of system executive functions.
Fault-tolerance technique used is active replication of run-time software components
on host computers which are interconnected by a local area network. The replica
determinism problem is explicitly addressed and consensus is achieved using pro-
prietary atomic multicast 1 protocol.

The Generic Upgradable Architecture for Real-time Dependable Systems (GUARDS)
(Powell et al., 1999) is a fault-tolerant computer architecture based on Computer-Off-
The-Shelf (COTS) components. GUARDS can be configured along three different di-
mensions (channels, lanes, integrity levels) to meet the dependability requirements
of a wide variety of end-user applications. The specific interactive consistency pro-
tocol used in GUARDS is based on the so-called ZA algorithm (Powell, 2001).

1Atomic refers to both reliability and total order, i.e. the messages have to be received reliably by
all the nodes belonging to the same multicast group and in the exact same order.

Chapter 4. Similar active node replication proposals 33

The table 4.1 gives an overview of all of the aforementioned approaches. Column
System stands for the name of the system, column Replica Determinism says whether
a system addressed the problem of replica determinism or not, and column Active
Replication depicts whether a systems can be used to employ active replication in
hardware (hw) or in software (sw).

System Replica Determinism Active Replication
SIFT yes sw
Chameleon no sw
JAS39 Aircraft no hw
GRID no sw
MAS no sw
MAFT yes hw
KESO yes sw
FTP-AP yes hw
DELTA4 yes hw
GUARDS yes hw

sw : software solution.
hw : hardware solution.

TABLE 4.1: Comparison of systems using active replication

As already mentioned, all but the last three approaches listed in Table 4.1 are
either too general or too application specific and mostly lack details of specific FT
techniques applied. Some of them not even consider replica determinism enforce-
ment that is crucial when replication is being used.

FTP-AP uses a penalty count to disconnect a lane (replica) in the presence of per-
sistent erroneous behavior. Specifically, when a lane produces an erroneous result,
a penalty is accounted for said lane. When this penalty reaches a specific threshold,
a faulty lane is excluded from the others. However, there is no indication of how to
resynchronize a faulty lane. Oppositely, in this dissertation we define how to com-
pletely resynchronize (reintegrate) a faulty replica after the presence of persistent
erroneous behavior as will be explained in detail in the later chapters.

DELTA-4 does not take advantage of low-level services provided by the commu-
nication subsystem and was designed to provide a general high-level communica-
tion protocol that can be used on standard LAN technologies, specifically token-ring,
token-bus and FDDI. Our approach on the other hand does take advantage of our
communication subsystem, FTTRS, and as a result the replica determinism enforce-
ment is considerably simplified.

The main disadvantage of GUARDS is the fact that the restriction of failure se-
mantics of the nodes is not being used. As a result, there is a need for expensive and
complex network topology. In particular, in GUARDS each node requires a commu-
nication channel. Our system on the other hand relies on a communication subsys-
tem (FTTRS) that restricts the failure semantics of the nodes, so that we can use a
simpler network topology not requiring one channel per node. As was explained
before, we use a replicated star to connect the nodes.

Having explained the aforementioned works that make use of active replication
technique as a means to tolerate node faults we move on to the works with the most
similar communication subsystems and protocols as the one used by this disserta-
tion.

34 Chapter 4. Similar active node replication proposals

Our active node replication architecture is built on top of FTTRS, our Ethernet-
based implementation of FTT communication paradigm. Next, we present the archi-
tectures that are closer to our proposal but use different real-time protocols. Those
are the architectures based on TTP/C (Kopetz and Grunsteidl, 1993), FlexRay (Makowitz
and Temple, 2006) and TTEthernet (Kopetz et al., 2005) protocols. We have to note
that unlike FTTRS, the aforementioned protocols are not suitable for adaptivity.

The aforementioned works propose a way to deal with node failures by replicat-
ing and grouping them into what they called Fault Tolerant Units FTUs, but they do
not address the specific details, e.g. which replication strategy to use or how to reach
an agreement between replicas within an FTU depending on the replication strategy
used. Although they propose reaching an agreement among nodes for data mes-
sages by using a membership service, how to use this service for node replication is
not addressed in detail.

Moreover, although there have been some works on the modeling of the relia-
bility of the group membership protocol that all of these protocols include (Rosset
et al., 2012) and broadcast protocols used by FlexRay (Souto, Portugal, and Vasques,
2016), the dependability evaluation that includes all the components of the complete
fault-tolerant architecture has not been addressed yet, to the best of this author’s
knowledge.

35

Part II

Main Contribution

37

Chapter 5

Node Fault Tolerance

We will start this chapter by giving an overview of our system architecture and or-
ganization, followed by its fault model. Fault model section will also include the
description of the failures that our components may exhibit, so called failure seman-
tics. Then, taking into account the presented fault model and failure semantics, we
describe in detail the devised node FT mechanisms. Recall that the node FT mecha-
nisms are the main aim of this dissertation, c.f. Section 1.2, and also one of the main
contributions.

5.1 Overall System Description

As shown in Figure 5.1 our system architecture is composed of M nodes, of which
the critical ones are replicated N times. The nodes are interconnected by the repli-
cated switches and links of the FTTRS communication subsystem. The FT techniques
designed for the FTTRS were explained in detail in Chapter 3. Therefore, in this sec-
tion we focus mainly on the nodes and their FT.

Nodes are replicated by means of active replication (Powell, 2012). Active node
replication implies that all node replicas belonging to the same group play identical
role and should simultaneously provide the same service, and, in case some of them
fail, the provided service should not be interrupted. Note that each node can be
replicated, thus, all the replicas of a single node belong to one replication group,
e.g., as seen in Figure 5.1, Node 3 is replicated N times, and Replicas 1 to N belong
to the replication group of Node 3. As was explained before, we chose active node
replication technique as the best suited one for RT systems when compared to the
alternative replication approaches (see Section 2.1).

In order to provide fault tolerance by means of node replication we use a strategy
based on the N-Version Programming (NVP) paradigm (Chen and Avizienis, 1977;

FIGURE 5.1: Complete system architecture

38 Chapter 5. Node Fault Tolerance

Avizienis, 1985), which is intended for software fault tolerance. As seen in Figure
5.2, according to NVP each replica’s operation is divided into sequentially executed
fragments, called segments. Each replica calculates (C) an output called cross-check
vector (cc-vector), which is then sent to all the other replicas for comparison (E).
Once each replica obtains all the cc-vectors, they use a majority voting function (V)
to obtain a consensus value that then is used, thereby compensating the erroneous
outputs produced by faulty replicas. Moreover, each replica uses this consensus
value as the input of the next segment in order to carry out Forward Error Recovery
(FER); where FER is generally defined as replacing an erroneous state by an error-
free one. In this way, any transiently faulty replica may recover from an erroneous
state that would be characterized by the fact of erroneously assuming that the output
it generated was correct.

It is important to note that although we use the just mentioned fault-tolerance
strategy of NVP, we are not proposing an NVP solution. First, this is because NVP
is intended to tolerate software faults, while in contrast we are devoted to tolerating
hardware faults. Second, because what we propose is a set of mechanisms that are
not only devoted to providing error compensation and forward error recovery, but
also other features that allow to further improve reliability.

More specifically, the cornerstone mechanism that we propose is called Distributed
Consistent Majority Voting (DCMV). As it will be explained later on in this chapter,
the novelty of DCMV is that it allows including the just-mentioned additional mech-
anisms to further improve reliability. For instance, recall from Section 2.2 that when
active node replication is used as a means to provide fault tolerance, the replica de-
terminism problem (Poledna, 2007) needs to be addressed. On the one hand, it is
necessary to enforce internal replica determinism, so that all non-faulty replicas pro-
duce the same output as long as they are provided with the same inputs. We enforce
internal replica determinism by using the identical hardware and identical software
constructs. On the other hand, making sure that all replicas are provided with the
same inputs is what is called external replica determinism enforcement. This is one
of the aspects where DCMV plays a crucial role to attain high reliability; since it in-
cludes mechanisms to enforce external replica determinism, i.e. it makes sure with
high probability that all replicas receive the same inputs for voting.

Lastly, in order to build up a RT application, it is necessary to execute its different
tasks at the appropriate instants of time. This calls for different synchronization
mechanisms. Therefore, in order to support real-time features at the application
level in our node replicas we take advantage of the synchronization service that the
TM already provides. Recall that the TM is already used to synchronize the start of
ECs in all the nodes connected to the FTTRS communication subsystem. Thus, in
this dissertation we propose a solution that takes advantage of the TMs in order to
also trigger tasks in node replicas. This idea arose from the network-centric approach
for the coordination of all system activities proposed in (Calha and Fonseca, 2002)
and the work on CAMBADA robots (Silva et al., 2005) where the TM content was
modified in order to, besides triggering message exchange among nodes, also trigger
the execution of tasks in the nodes. In Section 5.3 we delve deeper in the details of
how we implement this approach and how we make it fault-tolerant.

5.2. Fault Model and Failure Semantics 39

FIGURE 5.2: DCMV following the NVP strategy

5.2 Fault Model and Failure Semantics

The fault model considered for this dissertation is the same one assumed for the
FTTRS described previously in Section 3.2.1 (see Figure 5.3), i.e. we consider non-
malicious operational hardware faults.

However, as regards the persistence of faults we shall extend the classification
by introducing two new classes of faults. Besides permanent and transient faults we
shall introduce two intermediate classes describing the persistence of faults. One
class will be introduced for the links and one class for the nodes of the FTTRS.

First, to tolerate transient faults in the links, the FTTRS proposes the use of pro-
active retransmission of critical messages in a single EC (see Section 3.2.3), e.g. the
TM is sent k times in the TMW of an EC to ensure that link transient faults affect-
ing the TM transmission/reception are tolerated. However, in this dissertation we
assume that in some cases transient faults can last longer than the pro-active retrans-
mission mechanism can handle. We shall refer to this new type of faults as Transient
Long Lasting Faults affecting Links (TLLFL). There are many examples in which TLLFL
may occur. For instance, although the maximum length of burst can be somehow
predicted, their duration is actually arbitrary. Thus, it may happen that the length of
a burst produced by space radiation or lightnings in dynamic environments, e.g. a
spacecraft, a space probe, or a commercial aircraft, do actually exceed the temporal
redundancy provided by the FTTRS pro-active retransmission mechanism. In fact,
the higher the bit rate of the communications (in Ethernet the bit rate has been in-
creasing over the last years), the higher the probability that a burst length surpasses
the temporal redundancy. The example of these type of faults was evident in in-
orbit experiment (Takano et al., 1996). To deal with this new class of faults we shall
provide additional FT mechanisms that are going to be one of the topics of the next
section.

Second, in some cases transient faults in the node replicas can manifest in such
manner that the effects caused by them cannot be distinguished from the effects
caused by permanent faults and thus prevent the affected node replica from correctly
communicating and/or operating as long as it is not reinitialized and recovered. The

40 Chapter 5. Node Fault Tolerance

FI
G

U
R

E
5.

3:
T

he
cl

as
se

s
of

fa
ul

ts
co

ns
id

er
ed

fo
r

th
e

ov
er

al
ls

ys
te

m
(s

ou
rc

e
(A

vi
zi

en
is

et
al

.,
20

04
))

5.2. Fault Model and Failure Semantics 41

TABLE 5.1: Fault classification according to persistence

Switch Node Link
Permanent

TLLFL
TFNP

Transient

name we attribute to this new class of faults is Transient Faults affecting the Nodes
manifesting as Permanent ones (TFNP).

An example of TFNP is described next. In memory devices the most prevalent
type of transient faults are Single Event Upset (SEU) faults (Dodd and Massengill,
2003). SEU causes the change of a bit from one stable binary to another. This bit
change can leave a certain memory location in an altered state and the node can
keep accessing it reading the corrupted data. This effect (reading of corrupted data)
will persist unless the error (bit flip) caused by the transient fault (SEU) is corrected.
The FT mechanisms that deal with these faults are described in detail in the next
sections.

Concluding, according to fault persistence faults considered for the overall sys-
tem of this dissertation are depicted in Table 5.1. Note that there is no equivalent
of TLLFL for the nodes and TFNP for the links. First, in the case of TLLFL, they
only make sense in the context of pro-active retransmission designed for tolerating
transient fault in the links. For the nodes, this can be seen as multiple consecutive
transient faults, and we already have FT mechanisms in place to deal with this. Sec-
ond, the links cannot be reinitialized like the nodes, and therefore, in the context of
the links TFNP would make little sense.

Now that we have described our fault model, we explain how the components
of our system may fail (our failure model), taking into account how FTTRS already
restricts their failure modes. In other words, we explain the failure semantics of each
one of the components that constitute our system.

Recall that switch replicas have crash failure semantics, i.e. they fail either by
proving a correct service or remaining silent, and link failure semantics is restricted
to omission failures, i.e. links can fail only by omitting messages. In particular, in
case of link transient faults corrupting the transmitted frames, the CRC mechanism
of the Ethernet detects them and turns them into omissions. How these restrictions
were achieved was already explained before in Chapter 3.

The nodes can fail in arbitrary manners, i.e. there is no assumption or restriction
on their behaviour in case of a failure. However, as was already explained in detail in
Section 3.2.3, due to the switches and their attached port guardians (PGs), the nodes’
failure semantics is restricted to incorrect computation failures (Laranjeira, Malek, and
Jenevein, 1991) from the point of view of the other nodes. This means that a node
can fail to deliver the correct results either in the time or value domain. Further
details of how the node faults manifest in terms of node communication and/or
operation will be given in the next section. This restriction will, besides preventing
error propagation, facilitate the design of the node FT mechanisms presented in the
next sections of this chapter.

42 Chapter 5. Node Fault Tolerance

5.3 Node Fault Tolerance Mechanisms

This section describes one of the core contributions of this dissertation. Here, we
explain in detail all the devised node FT mechanisms and connect them with the
fault and the failure models.

5.3.1 Error compensation

As was already explained, we use active replication of nodes to tolerate permanent
node faults following a strategy similar to the one proposed in NVP (Figure 5.2).

More specifically, we tolerate node faults by means of error compensation. For
this, we propose what we call the Distributed Consistent Majority Voting (DCMV),
which allows nodes to consistently vote in a distributed manner.

As regards the fault model, the DCMV is devoted, mainly, to cope with perma-
nent faults that prevent node replicas form correctly operating and/or communi-
cating, e.g. a node replica that cannot transmit and/or receive, a node replica that
crashes, etc. Furthermore, the DCMV includes the time redundancy that allows tol-
erating transient faults and, to some extent, also TLLFL. Moreover, since DCMV
also serves a basis for achieving forward error recovery, fault diagnosis and reinte-
gration, as will be explained later, it serves a basis for tolerating and reintegrating
from TLLFL and TFNP.

The design of the DCMV is facilitated by the incorrect computation failure se-
mantics that the PGs attached to the switch replicas enforce for the node replicas.
Thanks to the PGs, from the point of view of non-faulty replicas, a faulty replica
manifests as either omitting (not transmitting) its cc-vector, or as transmitting a cc-
vector with an incorrect data.

Now, we will briefly explain how the DCMV works. After some calculation each
replica produces an output called cc-vector. Cc-vectors are then exchanged through
the communication channel so that each node replica obtains all the cc-vectors. Once
the cc-vectors are exchanged, each node replica locally performs a majority voting
function. By voting in such a way, the system compensates the potential errors deliv-
ered by faulty node replicas. Note that, thanks to the incorrect computation failure
semantics that PGs enforce, those errors can only manifest (from the perspective of
node replicas) as incorrect/missing cc-vectors. The result of each voting is a con-
sensus value, i.e. the consensus cc-vector, that is supposed to be the same in all the
non-faulty node replicas. All these actions constitute one segment. The consensus
cc-vector of one segment is the input for the next one, as in NVP (Figure 5.2).

Note that a non-faulty replica can produce the correct consensus cc-vector in one
segment only if it votes with a majority of non-erroneous cc-vectors and if it re-
mains non-faulty in that segment. Thus, in a previous segment at least a majority
of replicas had to be non-faulty to ensure a majority of non-erroneous cc-vectors.
Also, the non-faulty replicas had to be interconnected so that cc-vectors could have
been exchanged. From the aforementioned we derive our Maximum Fault Assump-
tion (MFA): the system provides its intended service if at any time at least a majority
of non-faulty replicas are able to exchange their cc-vectors. If MFA is violated, we
assume that the system fails, even though, as will be seen later, in some cases we can
tolerate faults that go beyond this MFA.

As already pointed out in Section 5.1, for the majority voting to succeed, it is nec-
essary to enforce external replica determinism, i.e. all non-faulty node replicas must
be provided with a consistent set of inputs to vote on. Thus, to make the MFA to hold
with a high probability, and thus attain a high system reliability, the DCMV itself

5.3. Node Fault Tolerance Mechanisms 43

FIGURE 5.4: CVEP

includes a highly-reliable mechanism for node replicas to exchange their cc-vectors.
We call this mechanism Cc-vector Exchange Protocol (CVEP) (Derasevic, Barranco, and
Proenza, 2014).

The CVEP is a proactive retransmission protocol carried out to tolerate transient
faults, affecting the nodes or the links, that prevent node replicas from either cor-
rectly transmitting their cc-vectors to at least one non-faulty switch replica, or cor-
rectly receiving the cc-vectors of the other node replicas from at least one non-faulty
switch replica.

Generally speaking, on the one hand, in CVEP each cc-vector is pro-actively re-
transmitted multiple times within the same EC, taking advantage of the pro-active
retransmission service already provided by FTTRS (Gessner, 2017). On the other
hand, in CVEP this EC in which the cc-vectors are exchanged is consecutively re-
peated several times to further increase the chances of their successful exchange (see
Figure 5.4)

The communication round that results from proactively retransmitting cc-vectors
within each EC of a set of several consecutive ECs is called Voting Communication
Round (VCR).

CVEP details

In each EC of the VCR each node replica pro-actively sends multiple copies of its
cc-vector to each one of the switches during the synchronous window. As soon as
a switch receives the first copy of the cc-vector from a given replica in the VCR,
it keeps it and considers that copy as the legitimated cc-vector from that replica for
the current VCR. On the one hand this means that, from then on within each EC of
the current VCR, the switch pro-actively forwards a given number of copies of this
legitimated cc-vector to the other node replicas. Note that the switch forwards this
number of copies in the synchronous window of each EC, including the one in which
the switch successfully receives the first copy of the cc-vector. On the other hand, it
means that the switch will discard any further copy of the cc-vector it receives from
that node replica during the rest of the VCR. Also, note that the switches do not
need to be aware of the content of the cc-vector messages. They only need to store,
replicate, and forward them. Otherwise, the communication channel would need
to be application-aware and one of our goals is to keep the communication channel
application-agnostic. We will come back to this topic again later in this section when
talking about fault diagnosis.

44 Chapter 5. Node Fault Tolerance

When a node replica receives a cc-vector from another replica through any of the
switches, it reacts by pro-actively retransmitting during the VCR an acknowledg-
ment (ACK) to confirm the successful reception of that cc-vector. More specifically,
the node replica pro-actively retransmits a given number of copies of the ACK dur-
ing the asynchronous window of each EC of the current VCR, including the first EC
in which it successfully received the cc-vector.

Note that, during the CVEP, each node replica stores the first copy of the cc-
vector it receives from each one of the other node replicas; discarding the rest of
the cc-vector copies. For instance, if we consider 3 node replicas called A, B and C,
then the node replica A stores the first cc-vector copy it receives from node replica
B and the first cc-vector copy it receives from node replica C. When the VCR ends,
each node replica delivers the cc-vector copies it stored to its application, which uses
them in the voting that follows as will be explained in the next section.

At this point it is important to highlight that the switches neither store nor for-
ward the ACKs. Instead the switches use the ACKs to gather information concerning
what cc-vectors are successfully confirmed by the node replicas in the current VCR.
As it will be explained later in Section 5.3.4, this information regarding the ACKs is
used for implementing fault-diagnosis mechanisms.

Before continuing, let us to briefly come back again to the strategy that switches
follow to forward cc-vectors during the VCR. The reason why each switch forwards
multiple copies of just the legitimated cc-vector received from each node replica, and
drops any further cc-vector copy it receives from the nodes replicas, is twofold. The
first reason is that this strategy prevents the CVEP from causing the replica radiation
phenomenon. In this sense, please recall from Section 3.2.2 that we decided to design
new pro-active retransmission mechanisms in such a way that they do not provoke
this phenomenon. The second reason is that this strategy can increase the reliability
of the retransmissions. On the one hand, the switches can pro-actively retransmit
the legitimate cc-vector of a node replica even if that node replica fails before the
VCR ends. On the other hand, in such a way switches prevent any node replica from
exhibiting a two-faced behaviour as regards the retransmission of its own cc-vectors.
In other words, if a node replica is the one in charge of retransmitting its cc-vector,
it may fail by retransmitting cc-vector versions different from the one it originally
sent (its legitimate one). If this happens, different non-faulty node replicas might
end up the VCR with different versions of the cc-vector of the faulty node replica;
thus having an inconsistent set of cc-vectors for voting, which ultimately may lead
them to lose replica determinism.

In order to better understand how the two-faced behaviours can occur and be
prevented by the switches by keeping and forwarding the first received cc-vector
replica, consider the following example. If the switches do not locally keep and
retransmit the cc-vectors, the following scenario might occur. As shown in Figure
5.5, replicas A and B receive a correct cc-vector C1 from replica C in the first EC of
the VCR, EC1. In the following EC of the VCR, EC2 , replica A fails to receive all
the cc-vectors send from replicas B and C due to too many transient faults in the
channel. Simultaneously, replica C becomes faulty as well and sends an incorrect
cc-vector C2 to replica B. At the end of the VCR, the non-faulty replicas A and B
will have cc-vectors with different values received from replica C, and this leads to
replica non-determinism. Note that even though cc-vectors from replica B, B1 and
B2, are different in non-faulty replicas A and B, the values are the same since there
were no faults in these replicas. Therefore, as was just explained, we need to use the
switches when retransmitting cc-vectors. Unlike the node replicas, the switches are
reliable due to the enforced crash computation failure semantics (Gessner, Proenza,

5.3. Node Fault Tolerance Mechanisms 45

FIGURE 5.5: cc-vector exchange without switches

FIGURE 5.6: DCMV complemented with CVEP

and Barranco, 2014a; Gessner, 2017) and will either provide a correct service or crash.
Therefore, we can rely on them to correctly perform the retransmissions.

To conclude the current Section Figure 5.6 shows how an application in our ar-
chitecture is executed due to the introduction of the just explained CVEP. Each white
square marked as ‘E’ represents a VCR round where the cc-vectors are exchanged in
multiple ECs following the CVEP protocol. Gray squares, ‘C’ and ‘V’, represent the
calculation and voting tasks executed by the node replicas, respectively. Each task,
depending on its duration, can take arbitrary number of ECs to execute. As already
explained in Section 5.1 these tasks are triggered by the TMs. Thus, what we have
just presented in Figure 5.6 is a general solution that can be applied to any appli-
cation. However, depending on a specific application, the number and distribution
of tasks and VCRs can be arbitrary. In Chapter 6 we will show how the application
tasks and VCRs are distributed in the case of control applications.

Furthermore, it can happen that the data produced by a node replica (cc-vector) is
large and does not fit in a single EC. In case of large messages, the HaRTES protocol
used by the FTTRS provides a way to automatically fragment them in a sequence
of packets where each packet is scheduled sequentially and individually. Therefore,
to accommodate for this scenario, we can first exchange all the fragments following
the CVEP strategy, then, we can compose the cc-vectors and continue with the voting
phase. This solution would result in the extension of the VCR by multiplying it by
the number of fragments since we have to exchange all the fragments in multiple
ECs, same as we did with the non-fragmented cc-vectors.

Note that by the previously defined MFA only a minority of node replicas can fail
at any time. However, with the introduction of our CVEP we can tolerate more than
our MFA in some specific cases, e.g., if all node replicas fail by not receiving/trans-
mitting cc-vectors in the first EC of the VCR, this will be dealt with by resending

46 Chapter 5. Node Fault Tolerance

all the cc-vectors in the second EC of the VCR, and in this case even faults violating
MFA will be tolerated.

Moreover, note that the CVEP can also tolerate TLLFL to some extent. Specifi-
cally, if TLLFL last longer than a single EC but shorter than the CVEP, the message
losses will be tolerated if they are successfully resent in one of the ECs of the VCR.

5.3.2 Forward Error recovery

As already explained in Section 2.1, Forward Error Recovery (FER) is done by replac-
ing an erroneous state by an error-free state. In the case of our system we consider
that a given node replica can recover from an error provoked by a fault (happening
in the channel or in its internal circuitry) by using FER, when that fault is transient
and only corrupts data in a segment that, then, can be corrected with the consensus
cc-vector node replicas obtain when voting at the end of that segment. What kind
of data can be corrected in such a way depends on the application. For instance,
in a control application these data can be an incorrectly acquired sensor value, an
incorrectly calculated actuation value, an incorrectly calculated intermediate result,
etc.

More specifically, each replica performs FER in any given segment by using the
consensus cc-vector obtained by the Distributed Consensus Majority Voting Mech-
anism (DCMV). The following example illustrates this. One replica produces an
erroneous output (consensus cc-vector) due to transient faults in a segment i. Since
this is an input to the next segment (c.f. Figure 5.2), i+ 1, the produced cc-vector of
the segment i+ 1 will also be erroneous. However, the faulty replica can seamlessly
recover from the erroneous cc-vectors in a segment i + 1 by using the cc-vectors re-
ceived and voted upon from the non-faulty replicas to correctly calculate the next
output (consensus cc-vector) of the segment i+ 1.

It is important to clarify that this FER is not a novel mechanism since using a
consensus cc-vector to recover, as just explained, was already proposed in NVP.

In any case, note that the duration of transient faults and their effects can vary.
Transient faults can affect one or multiple ECs, and/or even one or multiple seg-
ments. Depending on this duration, it can happen that the just-mentioned simple
FER will not suffice. In those cases, a more elaborated recovery procedure is needed.
From now on we will refer this more complex recovery procedure to as Reintegration,
and we will discuss it in detail in Section 5.3.3.

Finally, note that the DCMV can be used not only to perform FER and reintegra-
tion, but also as a way to provide node replicas that suffer from faults with the basis
for being able to carry out self fault diagnosis with regards to their locally produced
cc-vectors. Particularly, if a node replica produces an erroneous cc-vector, this cc-
vector will be different from the one obtained by the majority voting function. Such
a situation can then serve as an indication that the node replica was faulty. Section
5.3.4 shows how we use this idea to provide one of the fault-diagnosis mechanisms
therein presented.

5.3.3 Reintegration

As mentioned before, a fault may affect a replica in such a way that goes beyond
that replica’s FER capacity. When this happens, the replica affected by the fault can
become desynchronized with respect to the non-faulty ones at the communication
and/or the application level.

5.3. Node Fault Tolerance Mechanisms 47

In order to cope with this problem, in the current section we propose two reinte-
gration mechanisms. One of them allows a faulty replica to resynchronize at the
communication level, whereas the other one allows it to resynchronize from the
point of view of the application.

But before continuing, it is necessary to clarify what does it mean to be desyn-
chronized at the level of the communication and to be desynchronized at the level of
the application. First, a node replica is desynchronized at the communication level
when it disagrees with the non-faulty ones about what is the current EC. Second,
to understand when a node replica is desynchronized at the application level, it is
necessary to note that when a node replica calculates its cc-vector, it has to consider
certain input variables. These variables, depending on the application, apart from
the consensus cc-vector from the previous segment, also include some locally calcu-
lated and stored variables not being exchanged among node replicas. Together, we
will refer to all of these variables that include the whole state of the computation as
the operational state of a replica. Having this in mind, we say that a node replica is
in synchrony at the application level with the other non-faulty node replicas if it has
the same operational state as them.

Coming back to the point at issue, the first reintegration mechanism we propose
is called TM resynchronization.

To better understand how this mechanism works, please recall that at the begin-
ning of this chapter we have introduced the idea of network-centric approach to co-
ordinate the execution of all the system activities by using the TMs. This approach
was based on previous works (Calha and Fonseca, 2002; Almeida, Pedreiras, and
Fonseca, 2002) that modified the TM content in order to, besides triggering message
exchange among nodes, also trigger the execution of tasks in the nodes.

However, the approach used by this dissertation is to use the same idea but not
to modify the TM content in order to trigger tasks in the node replicas (Derasevic,
Proenza, and Barranco, 2014). The main reason is to avoid the network subsystem
being aware of the application executed on top of it. Since each TM produced by the
switches conveys a Trigger Message Sequence Number (TMSN) that gets incremented
for every new EC, we have decided to use this information in the node replicas.
Thus, each node replica implements a local TMSN that, on the reception of each TM,
gets overwritten by the one conveyed in the TM.

Having the above in mind, we have to define in advance a set of TMSN val-
ues (specific ECs) when the node replicas should start with the execution of specific
tasks. By using this design, the execution times of application tasks have to be ex-
pressed in the number of ECs and each task can then be scheduled for triggering
at the beginning of a certain EC. Consequently, each node maintains a lookup table
where each row specifies a TMSN value and a task to be executed, which is then
used by the node’s application. Each time a new TM gets received by the node’s ap-
plication, it has to compare the TMSN value conveyed within with the TMSN values
stored in the lookup table to see if there is any task to be triggered.

In our replicated group of nodes, as long as there are no faults, node replicas
will receive TMs promptly and for each node replica, the locally stored TMSN and
the TMSN conveyed in the received TMs will differ by 1. If this is the case, all the
replicas are in synchrony from the communication point of view.

However, if, due to transient faults that last longer than the duration of the TMW
of an EC, classified as TLLFL, a node replica misses to receive TMs for some period
of time, it might miss to trigger some tasks and as a result it might become desyn-
chronized with the other node replicas on both communication level and application
level. As soon as this replica receives the first TM it can, by inspecting the difference

48 Chapter 5. Node Fault Tolerance

between local TMSN and the just received TMSN conveyed in the TM, determine
that it was out of synchrony with others and for how long. Then, depending on the
duration, it can take appropriate actions to continue with the correct execution. As
regards the TMSN, replica resynchronizes with others at the communication level
just by copying the TMSN value from the received TM. As regards the loss of syn-
chrony at the application level, the faulty replica needs to take further recovery ac-
tions which are explained next.

In some cases, the FER provided by the DCMV will suffice to resynchronize a
faulty replica at the application level, i.e. it will make the operational state of a faulty
replica consistent with the non-faulty node replicas. However, in some situations,
this will not be the case and a more sophisticated recovery mechanism is needed to
restore synchrony of a faulty node replica at the application level. For these latest
and less benign situations we propose our second reintegration mechanism, i.e. the
Voting Reintegration Point.

We base the Voting Reintegration Point on the idea of Recovery Point proposed
in (Avizienis, 1985). A recovery point consists in exchanging the whole state of the
computation among all versions, equivalent to our node replicas, to ensure that each
of them have a consistent state afterwards.

In order to achieve this, in the calculation of cc-vectors each replica has to con-
sider exactly the same input variables. These variables have to include the whole
operational state.

As a solution to recover the faulty replicas at the application level, we propose
to include in the cc-vectors all the variables that constitute the operational state of
a replica. Therefore, when a faulty replica receives cc-vectors from the non-faulty
ones, it can use them to restore its operational state. It does this by extracting all the
variables, voting on each of them, and using them as an input.

The Voting Reintegration Point is done pro-actively, i.e. we always include in the
cc-vectors all the information needed to restore operational state of a faulty replica
regardless whether there was a fault or not. Otherwise, the detection and postponed
sending of operational state variables would require some time and it would pro-
long the time to reintegrate, which can be crucial in critical systems since more node
replicas can fail in the meantime. As a result, this can increase chances of system
failure and decrease the system reliability.

The Voting Reintegration Point resynchronizes the faulty replicas at application
level, or in other words, it restores replica determinism of a faulty replica with re-
gards to their operational state. We say that a replica is replica determinate with the
others if, at the end of a given segment, it is able to produce the same consensus
cc-vectors as the others, i.e. it reaches the same operational state.

It also has to be noted that the Voting Reintegration Point can be applied only for
the applications whose operational state can be exchanged in the VCR. If the overall
size of all the exchanged variables is huge, this can prolong the VCR duration to the
point in which the application cannot meet its deadlines anymore.

However, since most of the RT applications are control ones and the data consti-
tuting operational state is reasonably small, the proposed solution is feasible. More-
over, since we use Ethernet, and it supports extensive bandwidths, we are able to
transfer a lot of data within our EC.

For illustrative purposes we shall give an example of how much bandwidth
would be used by all the messages being exchanged in each EC of the VCR in case
of 3 node replicas.

We assume that the cc-vector data and the ACK data will be able to fit within
the smallest-size Ethernet frame. The size of the smallest Ethernet packet (Ethernet

5.3. Node Fault Tolerance Mechanisms 49

FI
G

U
R

E
5.

7:
M

es
sa

ge
ex

ch
an

ge
ill

us
tr

at
io

n

50 Chapter 5. Node Fault Tolerance

frame and Inter packet gap) is 84 Bytes. The payload occupies 46 Bytes. As regards
the FTT, for synchronous and asynchronous FTT messages, FTT-related fields take
9 Bytes, so there is 37 Bytes left for the actual payload. Therefore, we assume that
the cc-vector and ACK data will fit in the remaining 37 Bytes, if not, either larger
Ethernet frames or the FTT fragmentation can be used.

The Ethernet bandwidth assumed for this illustration is 100Mbps. Since the du-
ration of EC is 1ms, the number of Bytes (B) that can be transmitted in a single EC is
calculated as follows: 100Mbps ∗ 1ms = 12500B.

For the number of message replicas, we chose 4 TM replicas, 4 cc-vector replicas
and 4 ACK replicas per each node replica in an EC (Chapter 9 gives rationale behind
these numbers). Figure 5.7 depicts the traffic exchange in one uplink and downlink
replica of all the components. Note that the other link replicas’ traffic is equivalent.
Let us observe now what happens in the downlinks and uplinks so we can estimate
bandwidth consumption.

First, in the TMW, 4 TM replicas, TM1...TM4, are sent by the switches (uplink)
and received by each node replica (downlink). Second, in the synchronous window,
4 cc-vector replicas are transmitted by each node replica (uplink) to other two node
replicas which in turn receive 8 cc-vector replicas (downlink), 4 from each of the
remaining two node replicas. In particular, node replica i transmits cc-vector repli-
cas, CCi1...CCi4, to the switches which in turn locally keep and then retransmit the
same number of copies according to the CVEP execution pattern to the other two
node replicas. Note that the arrows in the synchronous window shown in Figure
5.7 depict the relations for cc-vector exchange between the node replicas excluding
the switches in order to simplify the image. Last, in the asynchronous window, each
node replica transmits 8 ACK replicas (uplink) to the switches (downlink) to confirm
the successful reception of the cc-vectors received from the other two node replicas.

In order to facilitate the bandwidth consumption estimation for this illustration
we shall make the following pessimistic assumption. The bandwidth consumption
is the worst case transmission time (WCTT) of both uplinks and downlinks for each
node replica link, i.e. if a messages are transmitted through uplinks and b through
downlinks, and a > b, then, the WCTT is a.

Therefore, as seen in Figure 5.7, in the TMW, the WCTT is 4 Ethernet packets
corresponding to the 4 TM replicas received. In the synchronous window, the WCTT
is 8 Ethernet packets corresponding to the 8 cc-vector replicas received, and finally,
in the asynchronous window, the WCTT is 8 Ethernet packets corresponding to the
8 ACK replicas transmitted.

Thus, the summed WCTT is 4+8+8 = 20 Ethernet frames. We have to add to this
number the delays and time gaps between the TM replicas. So, let us assume that
they attribute for another 5 Ethernet frames. Thus, is total, we use 25 ∗ 84B = 2100B
which is 16.8% of the total number of Bytes available.

Remember that reintegration was introduced as a means to deal with transient
faults that affect a node replica in such a way that it becomes desynchronized with
the other node replicas either at communication or application level, but is still re-
coverable by using the aforementioned mechanisms.

Still, some transient faults in the node replicas may exhibit more severe effects
and can manifest as permanent ones (TFNPs). If not dealt with, TFNPs can lead to
quick attrition or redundancy achieved by the applied active replication of nodes.
To recover from these faults, the affected replica needs to be reinitialized by means
of a reset. Once a replica is reset, it can resynchronize with others by using the above
described reintegration mechanisms.

5.3. Node Fault Tolerance Mechanisms 51

As already mentioned, these faults cannot be distinguished from real permanent
faults since they produce the same effects. Thus, when we diagnose a replica as
permanently faulty, we first try to reset and reintegrate it a predefined number of
times. If this does not yield any success, we permanently disconnect it from the
others.

In the next section we describe the mechanisms used to diagnose a replica as
permanently faulty and issue a reset.

5.3.4 Fault Diagnosis

As regards node faults it is difficult to differentiate when they are transient, per-
manent, or transient but causing the node to behave as permanently faulty (TFNP
faults).

Fortunately, transient node faults that do not manifest as permanent are merely
tolerated by means of the FT mechanisms already explained. However, when a tran-
sient node fault manifests as permanent, it cannot be tolerated by means of these
mechanisms, nor it can be differentiated a priori from a permanent one.

For these two later cases our approach is thus to reinitialize a node that seems
to be permanently faulty and try to recover it. If the fault is actually transient, the
recovery will be successful. This is because the reintegration mechanisms will al-
low the replica to resynchronize with the rest of the replicas both at the level of the
communication and the application. Conversely, if the fault is permanent, the re-
covery will not succeed and the faulty node will be reinitialized again. To prevent a
truly permanently faulty node to keep on reinitializing, we shall disconnect it after
a predefined number of reinitialization attempts.

In any case, to apply this strategy of resume and recovery, it is necessary to pro-
vide the system with mechanisms to diagnose replicas as permanently faulty and
reinitialize them by means of a reset.

The first mechanism is Discrepancy Error Counter (DEC). The purpose of DEC is
to detect discrepancies in the votings performed by the node replicas that occur due
to internal replica faults affecting their ability to either produce the correct voting
values of to perform the voting correctly.

Specifically, if faults affect a node replica’s ability to produce the correct inputs
for the voting function, the local values produced by a node replica will not corre-
spond to the consensus value obtained by a majority voting. On the other hand, if
locally produced values are correct but the majority voting carried out by this replica
is affected by faults, then the local majority voting value (consensus) might not be
obtained or might be an incorrect one. In both cases this can be diagnosed as a dis-
crepancy.

Depending on the comparison function used by the majority voting and the val-
ues being compared, correspondence can be defined differently. One example would
be that the input values for the votings are the real numbers obtained from reading
the sensor values. Due to the real world abstraction limitation defined in Section 2.2 the
input values can be declared as corresponding even if there are slight differences.
A value can be considered correct if it falls in between the predefined bounds. In
this case, the majority voting function can be defined as bounded average, i.e. the
average is applied only to inputs which values are within the predefined bounds.
Another example would be that the input values for the votings are booleans, and
in this case, the correspondence is defined as an exact match between the values.

To detect a discrepancy defined above each replica maintains an error counter
data structure called DEC. In case a discrepancy is detected after the votings, the

52 Chapter 5. Node Fault Tolerance

FIGURE 5.8: CC-vector exchange between 3 node replicas

DEC is incremented by a modifiable increment value, and in case no discrepancy
is detected, the DEC is decremented by a fixed decrement value. When the DEC
reaches a predefined threshold, a replica is diagnosed as permanently faulty, and it
will issue a reset. If multiple consecutive discrepancies are detected, the increment
value will be increased after each discrepancy. This is done to increase the speed
of permanent fault detection since this is the expected behaviour in case there is a
permanent fault.

The second mechanism is Communication Error Counter (CEC). The purpose of
CEC is to detect communication errors caused by internal replica faults affecting its
ability to transmit/receive messages.

To help replicas detect communication faults, we implement inside the switches
Messages Status (MS) vector. MS vector is a matrix that gets populated by the switches
during a VCR and gets delivered to node replicas in the EC following the last EC of
the VCR. Specifically, the switches piggyback the MS vector within the TM, so as
to the make the transmission of this vector highly reliable. As will be explained,
this vector contains the information that help replicas decide if they suffered from
communication faults.

We shall demonstrate how the MS vector looks like and how it gets populated for
an example case of 3 node replicas. Figure 5.8 depicts how 3 node replicas exchange
their cc-vectors. As seen in the Figure, node replica 1 produces and transmits cc-
vector A and receives cc-vectors B and C, while node replicas 2 and 3 produce and
transmit cc-vectors B and C and receive A and C, and A and B respectively.

The MS vector corresponding to these node replicas is depicted in Figure 5.9.
There are 3X3 cells, each having one of 2 possible values, true(T) or false(F). The
first row corresponds to replica 1. First cell (cell 1-A) specifies if the replica 1 has
successfully transmitted its own cc-vector A to the switches. If so, its value will be
set to T , and if not, to F . The other two cells specify if the replica 1 has successfully
received cc-vectors from replicas 2 (cell 1-B) and 3 (cell 1-C) and then transmitted the
corresponding ACKs successfully. The second row corresponds to replica 2. Second
cell (cell 2-B) specifies if the replica 2 has successfully transmitted its own cc-vectorB
to the switches. The other two cells specify it the replica 2 has successfully received
and acknowledged cc-vectors from replicas 1 (cell 2-A) and 3 (cell 2-C). The meaning
of the last row is analogous to the above 2.

If all the cc-vectors get successfully exchanged and acknowledged in a VCR, all
the cells will be set to T . If some cell has a F value, we have to interpret it and

5.3. Node Fault Tolerance Mechanisms 53

FIGURE 5.9: MS vector

decide which replica was communication faulty, i.e. which replica failed to trans-
mit/receive.

We distinguish between two classes of cells and interpret them differently.
First, diagonal cells (1-A, 2-B, 3-C) specify if replicas managed to transmit their

cc-vectors to the switches. If some value is F , the corresponding replica is said to be
transmission faulty in that VCR.

Second, non-diagonal cells specify if replicas managed to receive and acknowl-
edge cc-vectors from the others. However, if some non-diagonal value is F , we
cannot immediately conclude that the replica corresponding to the row in which the
value was located was communication faulty in that VCR. It could have happened
that the replica transmitting the cc-vector was transmission faulty. Therefore, when
a non-diagonal value is F , first we have to inspect diagonal value corresponding to
that cc-vector (column). If the diagonal value is F , we can conclude that the trans-
mitting replica was transmission faulty, since the switch did not receive the message
and did not forward it to the receiving replica. But, if the diagonal value is T , we can
conclude that the receiving replica was communication faulty, since the switch did
receive the message and did forward it to the receiving replica which in turn failed
to receive or acknowledge it.

At this point, and before continuing, it is important to note that, due to channel
faults, it could be possible that by the end of the VCR both switches have not re-
ceived the same ACK messages from the slaves and, thus, each master may come up
with a different MS vector. Since masters must be replica determinate, it is important
to provide them with a mechanism to agree on the content of their MS vectors. In
this sense what we propose is to force both masters to reconcile the content of their
MS vectors and then provide slaves with a consistent view of that vector. For this,
at the end of the last EC of the VCR, both masters must both exchange with each
other their respective MS vectors several times and, then, locally carry out a logic
OR between each pair of corresponding cells of the MS vectors. In this way they will
obtain a consensus MS vector that then they can broadcast to the slaves. A similar
idea is proposed in (Gessner, 2017) to enforce an agreement between the FTT masters
on the update requests.

It is also noteworthy that, originally, the MS vector was used by each node locally
to perform Voting Set-Up Algorithm (VSUA) proposed in previous work (Derasevic,
Barranco, and Proenza, 2014). The goal of VSUA was to decide which node replicas
and which cc-vectors should be used by each majority voting in order to provide
a consistent voting in each node replica. The VSUA worked by inspecting the MS
vector and then finding the combination of node replicas and cc-vectors that satisfy
the rule: at least a majority of cc-vectors in at least a majority of node replicas. The

54 Chapter 5. Node Fault Tolerance

FIGURE 5.10: VSUA conflict example

VSUA always maximized the number of cc-vectors first and then the number of
node replicas that have these cc-vectors. The advantage of the VSUA is its ability to
make a decision even in the cases when the MFA is violated. But, this algorithm was
abandoned due to inability to determine the correct combination of node replicas
and cc-vectors to take into consideration for voting in some particular cases. E.g., in
a case of MS vector depicted in Figure 5.10 the combination of replicas and cc-vectors
that the VSUA would chose would be the gray area on the left-hand side, i.e. vote
with first 4 replicas and first 6 cc-vectors because the VSUA maximizes the number
of cc-vectors. However, note that there is another valid choice on the right-hand side
of Figure 5.10 with only one cc-vector less that would allow all the replicas to vote.

Due to the aforementioned issues, in this dissertation we have decided that, in-
stead of using VSUA, all the node replicas vote with whichever cc-vectors they have,
and if MFA is fulfilled, voting will be successful. The MS vector is still being used,
but for fault diagnosis purposes only.

When replicas receive the MS vector they can conclude if they were communica-
tion faulty in a VCR. If a replica was communication faulty in a VCR, its CEC gets
incremented, and if not, its CEC gets decremented. Similarly like with DEC, we
shall penalize consecutive communication faults by increasing the increment value.
When the CEC reaches a predefined threshold, a replica is diagnosed as permanently
faulty and it will issue a reset.

Since the nodes replicas can fail arbitrarily, there is no guarantee that the above
error counter mechanisms (DEC and CEC) will work in the presence of node faults
and force a reset. Therefore, the ideal scenario would be that we also implement
these mechanisms in the switches since they can be relied upon due to their crash
failure semantics. Then, if a faulty node fails to detect permanent fault and reset by
itself, switches can force it to reset.

However, we cannot implement DEC in the switches because then they would
also have to vote on the application variables contained within cc-vectors received
from the node replicas in order to detect discrepancies. This would mean that the
switches would have to be application-dependent and our goal is to keep the FT-
TRS unaware of the application/s executed by the nodes. On the other hand, CEC
can be implemented since the switches already populate MS vector and have the
knowledge of node communication faults. If the CEC mechanism implemented in
the switches detects a permanently faulty replica, the switches send to that replica a
reset command. Note that a faulty replica would have already been reset by itself if

5.4. Overview of the applied FT mechanisms 55

its CEC functioned properly and detected the fault first.
Note that the node replicas can even disobey the reset commands coming from

the switches in case of more severe node failures. In this case we devise the mecha-
nism described below.

The last mechanism implemented by the node replicas to detect permanent node
faults and issue a reset is You Are Alive (YAA) watchdog timer. This mechanism was
introduced as a final step that would guarantee that a faulty replica that is unable
to issue a reset by itself, or is unable to obey the commands from the switches, gets
reset. This usually happens when a replica crashes.

This device starts counting from a pre-established time until it reaches 0. When
a timer reaches 0, a permanent fault is diagnosed and a hard-induced reset is issued.

The timer itself resets to a pre-established time upon each reception of YAA mes-
sage conveyed within each TM and starts its countdown from the beginning. Thus,
as long as the TMs and YAA messages conveyed within get received, a timer restarts.
The YAA message has to traverse the path from the switches, through a replica, and
to the YAA watchdog timer device. If a replica crashes, the timer will not be restarted
and will expire. This will result in a hard-induced reset of a crashed replica.

Moreover, as concerns the YAA message itself, in order to prevent a faulty replica
from forging it, the switches include within each YAA message a code based on
the TMSN that only the switches and the YAA watchdog timer know. The YAA
watchdog timer validates each YAA message according to this code, and if that code
is not correct, then the YAA message is being ignored and the timer is not reset.

The architecture of the watchdog timer, as well as how it connects and commu-
nicates with the node replica are out of the scope of this work. In any case, it is
important to guarantee that the watchdog should be external to the node replica
and should not share common sources with it, e.g. clock sources, in order to pre-
vent spatial-proximity and common-mode failures. As concerns its complexity, the
watchdog timer should be quite simple. For instance, it can be synthesized within
a small FPGA, and can connect to the node replica by means of a General Purpose
Input/Output (GPIO) interface. This FPGA could synthesize a timer, a buffer to store
the YAA message, a small ROM that stores a look-up table to calculate the code
based on the TMSN, and an automaton that controls the watchdog timer actions.

5.4 Overview of the applied FT mechanisms

In this section we present an overview of all the FT mechanism applied for the clas-
sification of faults introduced previously in Section 5.2, as can be seen in Table 5.2.

Permanent and transient switch faults are tolerated by using the active and semi-
active replication of switches. Remember that the transient switch faults were trans-
formed into permanent ones due to enforced crash failure semantics. Permanent link
faults are tolerated by means of replication (duplication) of links. All these mecha-
nisms were described previously in Section 3.2.3.

Permanent node faults are handled by error compensation by means of active
node replication and DCMV described in this chapter.

TLLFL are handled by different mechanisms depending on the exhibited dura-
tion and the affected ECs. TM resynchronization mechanism is always needed as we
assume that these faults last longer than at least one EC in which case the affected
replicas need to apply this mechanism. When exchanging cc-vectors, if these faults
last less than one VCR, then all the cc-vector will be exchanged successfully by CVEP.
However, if the duration exceeds the length of a VCR, depending on the cc-vectors

56 Chapter 5. Node Fault Tolerance

TABLE 5.2: Applied fault tolerance mechanisms according to persis-
tence of faults

Switch Node Link
Permanent replication replication & DCMV replication

TLLFL

TM resynchronization
CVEP

replication & DCMV
reintegration

TFNP
fault diagnosis

reset
reintegration

Transient replication all
TM retransmission

CVEP

lost in the process there can either be enough cc-vector received for successful vot-
ing or not. If there is, nothing has to be done as the applied active replication and
DCMV will compensate the errors, and if there is not, the faulty replicas will have
to be reintegrated after the next VCR. If TLLFLs affect ECs in which the triggering
of the tasks that calculate the variables of operational state occurs, these tasks will
not be triggered and as a result the operational state will not be calculated correctly.
Therefore, the affected replicas will have to be reintegrated after the next VCR.

TNFP are handled by first diagnosing a permanent fault of a node replica fol-
lowed by its reset and reintegration.

Transient faults in the nodes can manifest in many different ways. Depending
on the manifestation, all of the FT mechanisms come into play to tolerate them. E.g.
if a transient fault in a node manifests in such a way that a node replica only fails
to receive TMs for a certain period of time, TM Resynchronization mechanism will
handle the fault, or if the manifestation causes a node not to calculate or to miscal-
culate some of the operational state variables, a complete reintegration is needed,
etc.

Transient links faults are handled by proactive retransmission of critical mes-
sages. TMs are retransmitted per-EC basis as a part of the FTTRS FT mechanisms
and cc-vectors are retransmitted per-EC and then this EC is repeated multiple times
per-VCR basis as described earlier when talking about the DCMV and CVEP.

57

Chapter 6

Realization of the proposed Active
Node Replication for the case of
control applications

In this chapter we describe how to deploy the most commonly used type of ap-
plications for Embedded Systems, control applications, in our fault-tolerant system
architecture. These applications and their deployment will be used in the rest of the
dissertation.

Figure 6.1 depicts the deployment of control applications. We assume that the
controller nodes of the control application are the most complex ones. Therefore,
these nodes use the aforementioned active node replication and DCMV and are in-
terconnected by the FTTRS communication subsystem. On the other hand, the in-
strumentation of the plant, sensors and actuators, are less complex, and other, more
simpler, FT mechanisms can be applied. Also, connecting these devices with con-
troller nodes can be done via FTTRS, via other communication network, via dedi-
cated links, etc. The FT of sensors and actuators and the way to connect them to
controller nodes is beyond the scope of this dissertation. However, this issue was
already covered by earlier works that describe, fist, the methodology of how to tol-
erate sensor values (Marzullo, 1990), and second, the output consolidation technique
for actuators FT (Powell et al., 1999) that can easily be applied to our architecture.

A typical control application periodically repeats 3 phases: sense, control, and
actuate. The period with which these phases are repeated is called sampling period.
Due to the introduction of our FT mechanisms in general, and DCMV and CVEP in
particular, in our fault-tolerant architecture, control applications now have 7 phases
(see Figure 6.2), henceforth Extended Control Application Phases (ECAC):

• Sense (S). Each node replica obtains the value(s) measured by the sensor(s). The
obtained value(s) shows the present state of the plant.

• Message Exchange of Sensor Values (ESV). Each node replica populates its cc-
vector with the obtained sensor value(s) and all the operational state values.
Node replicas then exchange their cc-vectors in a VCR.

• Voting on Sensor values (VS). Each node replica performs multiple voting pro-
cedures, one for each of the values conveyed in the cc-vectors. Each voting is
done with the values received from the other replicas and the locally obtained
values. As a result, each replica produces consensus values that compensate
possible errors.

Concerning the operational state values, due to the enforced replica determin-
ism (see Section 2.2), each node replica will produce identical values. Thus, for

58
Chapter 6. Realization of the proposed Active Node Replication for the case of

control applications

FIGURE 6.1: Control Application Architecture

FIGURE 6.2: Control Application Phases

Chapter 6. Realization of the proposed Active Node Replication for the case of
control applications

59

FIGURE 6.3: PID controller

voting procedures applied for these values we always uses exact match, where
bit-by-bit identical data is expected (Makam, 1982).

As regards the voting on sensor values, multiple scenarios are possible, e.g., if
we assume that each node replica is connected to one sensor replica and the
measured values are decimal numbers that can have small differences, then
the numeric match is often applied (Makam, 1982). On the other hand, if in the
same scenario sensors produce boolean values, then we can apply the afore-
mentioned exact match. Exact match is also applied if there is only one sensor
replica connected to all node replicas. In this case, the value produced by a sin-
gle sensor will be passed to all of the node replicas and this value is expected
to be the same in the absence of faults.

Note that in the case there are multiple sensor replicas that produce decimal
numbers, we use numeric match to tolerate the differences in the measured
values. In this case there is an additional advantage of using our architecture.
When we vote on the sensor values, we are able to compensate the potential
sensor errors in addition to tolerating errors produced by the faulty replicas.

• Control (C). Each node replica uses the consensus sensor value and the oper-
ational state consensus values, and, by means of a control law calculates an
actuation value. We consider that a Proportional-Integral-Derivative (PID) con-
troller (The Control Handbook. 1996) is used as a control algorithm (see Figure
6.3), which is commonly used in industrial control systems.

A sample code of a PID control algorithm is depicted bellow (Osman, Rahmat,
and Ahmad, 2009):

previous_error = 0
integral = 0
loop:
error = setpoint - measured_value
integral = integral + error*dt
derivative = (error - previous_error)/dt
output = Kp*error + Ki*integral + Kd*derivative
previous_error = error
wait(dt)
goto loop

The previous_error and integral variables will be used to calculate integral (I)
and derivative (D) terms of a PID controller. The control law is executed as fol-
lows. First, the error is calculated by subtracting the value measured by sensor,

60
Chapter 6. Realization of the proposed Active Node Replication for the case of

control applications

measured_value, and the set point (set_point). Then, the integral and deriva-
tive terms are calculated using the error and the precalculated previous_error
and integral variables. The output (actuation value) is calculated by adding
proportional (P) term and the precalculated integral and derivative terms mul-
tiplied by their constants, Kp, Ki, andKd, respectively. Lastly, previous_error
is updated and the control law repeats.

Consequently, operational state values in the case of a PID controller will be
setpoint, integral and previous_error values. These are all the values needed
for a controller to always successfully calculate the output (actuation value).

• Message Exchange of Actuation Values (EAV). Each node replica populates its cc-
vector with the calculated actuation value(s) (output) and all the operational
state values (setpoint, integral and previous_error). Again, node replicas then
exchange their cc-vectors in a VCR.

• Voting on Actuation values (VA). Again, as in VS, each node replica performs
multiple voting procedures, and, as a result, produces consensus values that
compensate possible errors.

Now, the cc-vectors contain actuation values instead of sensor values. Re-
currently, due to the enforced replica determinism (see Chapter 5), each node
replica will produce the identical actuation value and exact match procedure
will be applied for voting.

• Actuate (A). Each node replica sends its actuation value to the plant’s actu-
ator device(s) and the actuator device(s) perform the actuation accordingly.
How actuators deal with the multiple reception of actuation values is out of
the scope of this work, but typically an output consolidation of the received val-
ues (Powell et al., 1999) can be done.

It should be noted that is suffices to have only one reintegration performed after
the ESV phase for the faulty replicas to successfully recover/reintegrate. The reason
for this is that all the operational state variables that the replica uses are used by the
control law of the PID executed in the C phase.

However, we have also decided to perform the reintegration after the EAV phase.
The reason is that a faulty replica can reintegrate sooner, at the end of the VA phase.
As a consequence, if more replicas fail in the meantime, the ones just reintegrated at
the end of the VA phase can be used.

Another important observation is that the phases VS and C, and VA and A, which
are the task execution phases executed by the node replicas, are executed one after
the other. Thus, these phases can be triggered by one value of the TMSN (see Chapter
5) by triggering the first phase only and the second one is handled by the application
by starting immediately upon the completion of the first one. The advantage of
doing so is the potential reduction of idle time that is introduced by the separate
triggering. E.g., if the phase VS lasts 1.1 ECs 1 and phase C lasts 2.2 ECs, and if we
trigger them separately, then we have to wait 0.9 ECs after triggering the phase VS
until we can trigger the next phase C, because this is the soonest that we can receive
a new TM conveying TMSN. Afterwards we would also have to wait additional 0.8
ECs to trigger the following EAV phase. In total, that is 1.7 ECs of idle time. But, if
we trigger them jointly, the idle time is reduced to 0.7 ECs, i.e. the time until the start

1Recall that all application tasks have to be expressed in the EC duration so that we can use our
network-centric approach described in Chapter 5.

Chapter 6. Realization of the proposed Active Node Replication for the case of
control applications

61

of the next EAV phase following these two. Another case is when the joint duration
of these tasks is quite small, e.g., 0.7 ECs. Then, if we trigger them separately we
would introduce 1.3 ECs of idle time instead of 0.3 ECs.

63

Chapter 7

Verification and Characterization
via Simulation

The objective of this chapter is to verify the correctness and characterize the behavior
of the node fault tolerance (FT) mechanisms proposed in this work via simulation.

More specifically, it is important to note that the intention of this chapter is not
to calculate the coverage of the node FT mechanisms, i.e. their probability of suc-
cess. Instead its intention is to exhaustively inject each type of fault that may affect
the nodes ability to operate and/or communicate and, then, to corroborate that all
our node FT mechanisms worked as intended to tolerate and recover/reintegrate
from them. As concerns the characterization of the node FT mechanisms, this chap-
ter is devoted to clarify, for each injected fault, how it impairs the nodes, what FT
mechanisms take place, and what is the time needed to recover/reintegrate.

The chapter is organized as follows. We first introduce the chosen simulation
framework. Then we explain how we have used this framework to model the par-
ticularities of our system and to inject faults. Finally, we present and discuss the
results of the set of fault-injection experiments we carried out with this model.

7.1 Description of the simulation model

The simulation of our system was built using OMNeT++, an object-oriented discrete
event network simulation framework (Varga, 2001), and INET framework (Varga,
2007) which is an open-source library for OMNeT++ that contains models for wired
and wireless link layer protocols.

OMNeT++ is a component-based modeling framework. The models are built by
combining hierarchically nested construction units called modules programmed in
C++. Modules communicate by passing messages to each other. Modules can either
be simple or compound. Simple modules are the lowest level of module hierarchy
that encapsulate functionalities programmed by the OMNeT++ simulation classes,
i.e. simple modules are active components with associated behaviour. Compound
modules are modules that contain other modules, simple and/or compound, and
they are used for grouping purposes only. This means they are inactive and have no
associated behaviour. In each OMNeT++ model there is only one top level module,
called system module, that is on top of the hierarchy.

The model of our system builds on a previous model carried out by our research
group and which is described in (Knezic, Ballesteros, and Proenza, 2014). Specif-
ically, (Knezic, Ballesteros, and Proenza, 2014) proposes an OMNeT++ simulation
model of a distributed embedded system based on a slightly enhanced version of
HaRTES (Section 3.1) that includes the mechanisms FTTRS proposes for both, the

64 Chapter 7. Verification and Characterization via Simulation

FIGURE 7.1: OMNeT++ model of enhanced HaRTES protocol (source
(Knezic, Ballesteros, and Proenza, 2014))

FTT-enabled switch to pro-actively retransmit the TM and for the FTT slaves to syn-
chronize at the EC level taking into account the different TM replicas.

As it will be explained later, we modified and extended this previous model so
as to be able to analyze and verify the node FT mechanisms proposed in this disser-
tation. In this sense it is important to note that we have not extended that model to
include any further mechanism of FTTRS. In fact, we could have even simulated our
node FT mechanisms on a model of HaRTES that does not include any mechanism
of FTTRS. To better understand this point please recall that the mechanisms FTTRS
provides are devoted to increase the reliability of the FTT communication services
themselves, e.g. it provides redundant communication paths, proactive retransmis-
sion of critical messages, reliable and consistent real-time requirement updates, etc.,
but it does not provide any new communication service our node fault-tolerance
mechanisms need to rely on.

Moreover, this decision allowed us to simplify the model itself and to avoid sim-
ulating all the FTTRS related mechanisms, which are out of the scope of this disser-
tation.

Next, and prior to explaining the details of our model, we describe the previ-
ous simulation model (Knezic, Ballesteros, and Proenza, 2014). As can be seen in
Figure 7.1, this previous model includes the OMNeT++ models of a HaRTES switch
and of several FTT compliant nodes (FTT slaves) (please refer to Section 3.1). More
specifically, there are three types of OMNeT++ modules depicted in Figure 7.1. First,
the gray modules are the ones used from INET library, second, the white modules
with solid border model the behaviour of HaRTES protocol described in Section 3.1,
and finally, the white modules with dashed border model the TM retransmission
mechanism described in Section 3.2.3.

The HaRTES Switch compound module is presented of the left-hand side of Fig-
ure 7.1. We describe its constituting modules next. The SRDB module stores all the
traffic management and global configuration information and is initialized at the
beginning of simulation from an XML file. The Admission module that models the
admission control/QoS manager functions is not implemented. It is intended to be
used as a part of the future work and in this version of the model it simply drops
the received packets. The Scheduler module constructs the EC-Schedule and the cor-
responding TM. The Replicator module replicates TM simulating the TM retrans-
mission mechanism. Both the original TM and the replicated ones are sent to the

7.1. Description of the simulation model 65

Dispatcher module that in turn broadcasts them. The Dispatcher module also imple-
ments the complete packet forwarding process. For the case of producer-consumer
forwarding process of the FTT real-time packets it consults the Forwarding Table mod-
ule that stores the packet forwarding rules which are again read from an XML file at
beginning of simulation. The Classifier module identifies the packet types, i.e. it clas-
sifies if the packet type is FTT real-time (synchronous or asynchronous) or FTT non
real-time, and forwards the FTT real-time packets to the Validator module. The Val-
idator module validates the FTT real-time packets against the information contained
in the SRDB and in the Scheduler (The EC-Schedule). The packets are then stored
to one of the INET FIFO queues according to their type, i.e. either to NRT, Sync or
Async queue corresponding to FTT non real-time, synchronous, and asynchronous
FTT real-time packet type, respectively. The ETH modules are used from INET, and
model the Ethernet interfaces.

The FTT Slave compound module is presented of the right-hand side of Fig-
ure 7.1. Its constituting modules are described next. The NRDB module stores
all the traffic management and global configuration information related to the FTT
slave and is initialized at the beginning of simulation from an XML file. The Com-
biner module collects all the TMs, the original one and the retransmitted replicas,
it decodes them, and at the end of the TMW sends the EC-Schedule to the Dis-
patcher module. The Dispatcher module receives the EC-Schedule and builds the
synchronous messages that are scheduled to be transmitted in the current EC using
the data from the Application module. Additionally, this module is also responsible
for the delivery of the received messages targeted to this FTT slave to the Applica-
tion module. Same as before, the ETH modules are used from INET, and model the
Ethernet interfaces.

The goal of this model was twofold. First, in order to verify the correctness of
the TM retransmission mechanism, it was simulated step by step and the Replicator
and the Combiner modules were inspected in detail for corroborating their proper
operation. Second, it was used to assess how many ECs are expected to be success-
fully processed depending on the BER and the number of TM replicas, k, that are
pro-actively retransmitted.

Although the results of (Knezic, Ballesteros, and Proenza, 2014) are not funda-
mental for the current dissertation, we still outline them briefly for the sake of con-
sistency. Note that these results are a contribution of the FTTRS FT mechanisms and
not the FT mechanisms devised as a part of this dissertation. As shown in Figure
7.2, (Knezic, Ballesteros, and Proenza, 2014) simulates a system based on a slightly
extended version of HaRTES composed of 3 FTT slaves, each connected with a sin-
gle link to a single HaRTES switch. The Ethernet links were 10 meters long and the
bandwidth configured was 100 Mbps.

For injecting errors in the links, the model uses the BER parameter that OMNeT++
provides for injecting channel bit errors. Particularly, as seen in Figure 7.2, it uses
three BER values. First, for the link connecting FTT Slave1 to the HaRTES, the BER
was of 10−3, which is a very pessimistic assumption, and then it was decreased for
one (10−4) and three orders of magnitude (10−6) for links connecting FTT Slave2 and
FTT Slave3 to the HaRTES, respectively.

It was then shown for these different BER values and different numbers of TM
replicas (k) what was the number of successfully processed ECs on a sample of one
million ECs, as can be seen in Table 7.1.

The just described OMNeT++ model was the starting point for our new model,
as already said. The new model adds the node FT mechanisms for a group of three
actively replicated nodes (FTT Slaves) executing a control application. As can be

66 Chapter 7. Verification and Characterization via Simulation

FIGURE 7.2: General architecture of the system modeled in (Knezic,
Ballesteros, and Proenza, 2014)

TABLE 7.1: Processed EC results

k Slave1 (BER = 10−3) Slave2 (BER = 10−4) Slave3 (BER = 10−6)
1 56.2075% 94.3675% 99.9398%
2 80.7965% 99.6966% 100%
4 96.329% 99.999% 100%
8 99.8675% 100% 100%

16 99.9998% 100% 100%

7.1. Description of the simulation model 67

FIGURE 7.3: OMNeT++ model for node replication (source
(derasevic2015OMNeT++))

seen in Figure 7.3, the new OMNeT++ model includes new modules (dark gray rect-
angles) and modifies some existing ones.

We have modeled CVEP, CEC and YAA in the switch. In particular, there is a
new module between the Dispatcher module and the ETH mode that includes the
aforementioned mechanisms, which are the contributions of this dissertation.

The CVEP is simulated as described in Section 5.3. There are multiple ECs in
each VCR devoted to both original and retransmission cc-vector and ACK exchange
rounds.

First, upon a reception of a cc-vector packet, the corresponding MS vector diag-
onal value gets populated (set to true) and the packet is locally saved in the array
data structure maintained by the new module called retransmissionVector. In the next
ECs of a VCR, if there is a locally stored cc-vector packet in the retransmissionVector,
it will be forwarded to the output port/s and the one received from the Dispatcher
module will be dropped. Note that in each retransmission EC the node replicas send
the same packets again, even though the cc-vector packets will be dropped by the
switch if the new module already has them. The reasons for this are manifold. The
EC-schedule is already negotiated for these packets and the bandwidth is reserved.
Therefore, if they are not sent, the bandwidth would be left unutilized. Moreover,
the resending of cc-vector packets can serve as a signal that the node replicas are still
operational. Finally, it would be too complex to change the EC-schedule from one
retransmission to another in each EC of the VCR.

Second, upon a reception of the ACK packet, the corresponding MS vector non-
diagonal values get populated (set to true).

Last, the new module piggybacks the constructed MS vector to the TM replicas
following the last EC of the VCR. Furthermore, at this point, the CEC implemented
in the switch also inspects the MS vector values to determine if there were any com-
munication errors, and if so, the counter is updated accordingly. If the threshold
value is reached, a command is sent to the node replica telling it to reset. The com-
mand is sent by piggybacking it to the TM.

Moreover, in this new module we also implement the YAA logic. Specifically,
this module adds to each TM the corresponding YAA message that will be used by
the YAA watchdog timer implemented in the node replicas.

68 Chapter 7. Verification and Characterization via Simulation

In the FTT Slaves there are 3 new modules and also a set of new functionalities
modeled in the existing Application module. We describe them next.

The Application module executes a simple PID control application according to
the execution pattern described in Chapter 6. This module implements the Vot-
ing Reintegration Point, DEC, and CEC mechanisms. Voting Reintegration Point
is modeled by including in the cc-vector messages all the variables constituting the
operational state of the PID control application and voting on each of them. After
each voting, if there is a discrepancy, DEC is increased accordingly. If the threshold
is reached, the replica resets itself. Lastly, CEC is modeled by inspecting the MS
vector data contained in the TMs received from the switch. If there are communica-
tion errors, the counter is updated, and if the threshold value is reached, the replica
performs a reset.

The new CVEP and TM Resynchronization module located in each FTT Slave sim-
ulates the corresponding FT mechanisms. Particularly, as regards the CVEP, this
module stores the first received cc-vector from the other two node replicas and for-
wards it to the Application module for voting in the last EC of each VCR. And, as
regards the TM Resynchronization, each replica maintains a local TMSN which is
populated by copying it from the received TMs, as described in Chapter 5.

The new YAA module added to FTT slaves models the YAA watchdog timer de-
vice connected to each node replica. In particular, this module simulates the timer
which gets reset every time a new TM conveying YAA message is received. If con-
secutive TMs are not received by this device, enough for the implemented timer to
expire, the node replica will be reset by this module.

Finally, the Error Injector module is used to inject errors in the Application module
and the CVEP and TM Resynchronization module in order to check the correctness of
all the simulated mechanisms. This module is connected to the Dispatcher module
of the switch in order to allow it to be synchronized with the state of the EC, thus
allowing us to inject errors at certain time points in the EC.

7.2 Fault-injection experiments

In order to characterize the behavior of the node FT mechanisms and demonstrate
their correctness for a control application, we used this model to carry out a series of
fault-injection experiments.

We exhaustively injected each type of temporary fault in a given node replica, at
every phase in which it has sense to do so. We left the injection of permanent link
and node faults for the real prototype implementation that will be described later in
Chapter 6.

In this sense we injected via simulation Transient Long Lasting Faults affecting
Links (TLLFL), transient node faults, and Transient Faults affecting the Nodes man-
ifesting as Permanent ones (TFNP). We did not inject transient link faults. Note that
transient link faults are tolerated by the proactive retransmission mechanisms pro-
vided by FTTRS and the CVEP. Since these mechanisms are simple, transient link
faults are expected to be transparently tolerated by them and, thus, there is no real
need to verify their correctness.

In order to simplify the fault-injection procedure what we actually injected were
the manifestations of faults in terms of the node inability to correctly communicate
and/or operate. The way in which we injected faults is summarized in Figure 7.4.
Each column of the table specifies the ECAC phase in which the fault is injected.

7.2. Fault-injection experiments 69

FIGURE 7.4: Error Injection Tests

For the sake of succinctness, Table depicted in Figure 7.4 groups the injected
faults into 5 sets of tests. Test set 1 is depicted in the top-left part, test set 2 in the
top-right part, test set 3 in the bottom-left part, and test set 4 in the bottom-right one.
Test set 5 is somehow depicted together with test set 1, as we will explain later.

In test set 1 we injected TLLFLs preventing a node replica from receiving all
the TMs during a given EC and, thus, from triggering the corresponding phase.
These injections are indicated by the labels TM in Figure 7.4. In test set 2 we in-
jected TLLFLs that prevent a node replica from successfully receiving, transmitting,
or receiving and transmitting all cc-vectors. These injections are labeled as CC. As
Figure 7.4 shows, we injected them at phases ESV or EAV, i.e. at the phases in which
the node replicas exchange their cc-vectors. Among other, this test set was used to
test CEC mechanism by provoking sequential cc-vector reception failures, enough
to make the CEC to reach its threshold value and reset a replica. In test set 3 we
injected transient node faults that corrupt the operational state of a node replica.
These injections are labeled as MEM in Figure 7.4, which means that we corrupted
the value of the variables where the node replica stores the operational state. In test
set 4 we injected TFNPs that prevent the replica from correctly voting until its DEC
reaches the corresponding threshold and resumes the node replica. For this purpose
as Figure 7.4 shows, we corrupted during several consecutive ECACs the value of
the variable in which the node replica stores every voting result. Finally, in test set 5
we force the replica to not receive several consecutive TMs until its YAA watchdog
diagnoses the node replica as crashed and resumes it. Note that the way in which
we injected these faults is similar to the one in which we injected the faults of test
set 1 (see the top-left part of Figure 7.4), but preventing the reception of all the TMs
during several consecutive ECs.

As a result of injecting all the above-described faults, we corroborated that our
node fault-tolerance (FT) mechanisms always worked as intended to tolerate and
recover/reintegrate from them.

More specifically, the experiments allowed us to characterize the node FT mech-
anisms. Figure 7.5 and Figure 7.6 summarize this characterization. In particular,
the 3rd and 5th column respectively indicate the way in which faults impaired the
node(s) and the FT mechanisms that were involved to tolerate (and reintegrate from)
them. Moreover, the 4th column quantitatively characterizes the time (in number of
ECs) that the affected node needed to recover/reintegrate.

To understand the exhaustiveness of the test sets, let us differentiate between

70 Chapter 7. Verification and Characterization via Simulation

FIGURE 7.5: OMNeT++ results for TM reception failures

7.2. Fault-injection experiments 71

FIGURE 7.6: OMNeT++ results for Cc-vector transmission/reception
failures and sense/actuation value corruption

72 Chapter 7. Verification and Characterization via Simulation

communication and node faults. As regards communication faults, it is important
to recall that due to communication faults, a node replica may either not receive
TMs, not receive the cc-vectors from the other node replicas, or not transmit its own
cc-vector. Figure 7.5 shows the results obtained when preventing the node from
receiving all the TMs of a given EC; whereas first two subtables of Figure 7.6 specify
the results when preventing the node from receiving the cc-vectors from the other
node replicas or from transmitting its cc-vector. As explained before, this inability
for receiving/transmitting a given kind of message was injected in each possible
EC in which the node replica is expected to receive/transmit that kind of message.
Thus, we exhaustively injected communication faults.

Concerning node faults, please recall that they exhibit a byzantine failure seman-
tic. Moreover, at this point we have to recall that these faults are perceived differ-
ently, depending on whether we analyze the point of view of the other node replicas
or the point of view of the faulty node replica itself.

On the one hand, as already explained, from the other nodes point of view, the
Port Guardians (PGs) force a faulty node replica to exhibit an incorrect computation
failure semantic. In this sense, a faulty node either does not transmit its cc-vector
(because its PG discards it) or proposes an incorrect sensor or actuation value (which
is then transmitted in its cc-vector). The first one of these manifestations is covered
by the experiments in which the node is prevented from sending its cc-vector (test
set 2 and the second half of Figure 7.6). For the second type of these manifestations,
we force the node replica to produce an incorrect sensor value in the sense phase, or
an incorrect actuation value in the VS+C phase. This is done in test set 4, and the
results are shown in the last two parts of Figure 7.6.

On the other hand, node faults are perceived by the affected node replica itself
(from its local point of view) as exhibiting an unrestricted (byzantine) semantic. For
instance, the node could execute the phases untimely or in an arbitrary order, pro-
pose incorrect sensor and actuation values, incorrectly vote thereby obtaining an
incorrect sensor and/or actuation value, etc. We believe that all these unrestricted
fault manifestations are indirectly reflected in the fault-injection test sets 1, 2 and
3, when they are transient. Note that a node that transiently fails in an arbitrary
manner becomes desynchronized from the point of view of the communication and
/ or the application. As explained in Section 5.3, this means that the faulty node
disagrees with the non-faulty ones about what is the current EC and/or what is
the current operational state. As we demonstrated by means of test set 1, when
the faulty node becomes desynchronized at the communication level, it eventually
resynchronizes by means of the TM resynchronization mechanism. Certainly, what
Figure 7.5 shows is that the TM resynchronization mechanism successfully resyn-
chronizes the faulty node at the communication level when the difference between
the correct Trigger Message Sequence Number (TMSN) and the TMSN considered
by the fault node is just of one unit. However, the way in which the TM resynchro-
nization mechanism works is independent from this difference. Thus, a faulty node
that is desynchronized at the communication level will resynchronize at that level
when eventually receiving the TM. Similarly, by means of test sets 2 (Figure 7.6) and
3 we demonstrated that when the faulty node becomes desynchronized at the appli-
cation level (either because it could not vote correctly after nor receiving the other
replica’s cc-vectors, or because its operational got corrupted), it successfully resyn-
chronizes at the application level when voting, independently from the variables of
its operational state that have an incorrect value. Finally, test sets 4 and 5 cover the
cases in which a transiently byzantine fault makes a node replica to become perma-
nently desynchronized. If the node replica is still able to adequately manage its CEC

7.2. Fault-injection experiments 73

and DEC, it will eventually reset. If not, it still exits the possibility that the YAA
watchdog resumes the node. Of course, there may be scenarios in which the node
replica makes everything wrong, except forwarding the TMN to the YAA watchdog.
In this case the node will not be able to reintegrate, but at least its failure will be
compensated since from the point of view of the other nodes replicas, the faulty one
exhibits an incorrect computation semantics.

By means of the experiments and results presented in this section we have ana-
lyzed the behavior of the FT mechanisms proposed in this dissertation and verified
their correctness to a large extent. In this sense note that, as said before, here we
have not simulated permanent faults. However, permanent faults manifest as tran-
sient ones, but in a permanent manner. Thus, since our simulations demonstrate
that the errors produced by transient faults are compensated, then they indirectly
demonstrate that our FT mechanisms also compensate these errors when they are
produced by permanent ones. In any case, as already said, next chapter checks that
permanent faults are compensated in a real prototype implementation.

It is important to highlight that the results of the current chapter must not be
interpreted as the coverage of our node FT mechanisms; but as the corroboration
of their correctness. Note that in order to quantify the coverage of the node FT
mechanisms, it would be necessary to carry out extensive fault-injection campaigns,
with the appropriate statistical properties.

Finally, it is noteworthy that OMNET++ is not the most adequate tool for mea-
suring the reliability of a system relying on our node FT mechanisms and FTTRS. On
the one hand, OMNET++ does not allow to simulate the failure of hardware compo-
nents following a given time-to-failure distribution - for instance, it does not allow
simulating that a node fails following an exponential distribution - or the probability
of success of deterministic actions, .e.g. the probability of success of a given fault-
diagnosis action. On the other hand, OMNET++ will require more computation time
than other reliability quantification techniques; like the one we use in Chapter 9, in
which the system reliability is modeled by means of stochastic processes that are
analytically solved in a more reasonable amount of time.

75

Chapter 8

Prototype implementation and
Fault-Injection experiments

In this chapter we describe two real prototype implementations of a distributed con-
trol system relying on FTTRS and the node FT mechanisms proposed in this disser-
tation, as well as a set of fault-injection tests we conducted with these prototypes.

The objective of this chapter is twofold. First, it is devoted to demonstrating
that it is possible to integrate our node FT mechanisms with the FT mechanisms
already provided by FTTRS. Moreover, note that FTTRS is based on the HaRTES
protocol, which allows mixing traffic of different criticality levels. Thus, this chapter
also aims at demonstrating that a critical control application executed by a set of
actively replicated nodes that rely on our FT mechanisms can be executed alongside
non-critical applications executed by non-critical nodes.

The second objective of this chapter is to conduct a set of fault-injection tests to
demonstrate the correctness of our FT mechanisms. In this sense please note that
the second objective of the current chapter is analogous to the one of Chapter 7.
However, the difference is that in the present chapter we further want to check the
correctness of the mechanisms in a real prototype. In any case, it is important to
highlight that, like in Chapter 7, the present chapter is not intended to quantify the
coverage of our node FT mechanisms.

As we will explain, the first one of the two prototypes presented in the current
chapter was devoted to checking that our FT mechanisms correctly compensate per-
manent faults. Therefore, of all our node FT mechanisms, it only includes the ones
that make it possible for nodes to vote and compensate the failure of a minority of
node replicas (it does not include our forward error recover, the reintegration and
the fault diagnosis mechanisms). In contrast, the second prototype does include all
our FT mechanisms. Thus, we used it to inject the transient faults we already injected
via simulation in Chapter 7.

8.1 Description of the first prototype

A first prototype implementation of a control application relying on FTTRS and our
node FT mechanisms was presented in (Ballesteros et al., 2016a). My particular con-
tribution to this work was to help in the implementation of the task triggering mech-
anisms executed by the node replicas (see Chapter 5), as well as in the implemen-
tation of the Distributed Consistent Majority Voting (DCMV) mechanism (which in
this prototype does not include the CVEP), which allows nodes to consistently vote
in a distributed manner.

As depicted in Figure 8.1, the architecture of this prototype includes two inter-
connected switch replicas and a set of node replicas, one of which is sketched, that

76 Chapter 8. Prototype implementation and Fault-Injection experiments

FIGURE 8.1: Implementation Architecture (source (Ballesteros et al.,
2016a))

are connected to a plant and its instrumentation (a set of sensor replicas and an ac-
tuator subsystem).

We can distinguish between three layers. The first layer, Ethernet, is in charge of
Ethernet frame transmission between the node and the switch replicas. The second
layer, FTT, is in charge of providing the FTT services, i.e. switches have FT4FTT
masters embedded within them while the node replicas have FT4FTT slaves. The
last layer, Application, is in charge of the execution of the control application (see
Chapter 6).

Now, we briefly describe the operation of all the components. The switches start
by broadcasting the TMs. As soon as the node replicas start receiving the TMs
they know that the communication subsystem is available. The Initializer of each
node replica notifies the FT4FTT masters about its communication requirements,
i.e. the number of the messages, period, deadline, etc. The Initializer of each node
replica performs the initialization in a certain time instant and in the certain order to
make sure the initialization is done in one EC, after which the regular operation can
start. The Task triggerer in each node replica receives the TMs and implements our
network-centric approach described in Chapter 5, i.e. it handles the TMSN. Note
that the phases executed by the control application are merged even further than
what we proposed at the end of Chapter 6. Namely, the phases where the cc-vectors
are exchanged are triggered together with the phases that represent the application
tasks where the voting upon the received cc-vectors takes place and the information
obtained by the voting is used.

The prototype executes two applications. One of them is an application that con-
trols an inverted pendulum. It is implemented using a hardware in the loop technique,
i.e. the inverted pendulum is simulated using Simulink and the control system is im-
plemented in hardware. The other application consists of two nodes; one of them
records a video and sends the resulting stream to the other node that, then, displays
it.

The hardware of the prototype is depicted in Figure 8.2. There are two PCs that
implement the FTTRS switches and one of them implements inverted pendulum in
Simulink. There are 5 nodes; 3 of them implement the node replicas executing the
control application, whereas the other 2 ones record, exchange and display the video
stream as explained above.

8.2. Fault-injection experiments with the first prototype 77

FIGURE 8.2: Prototype (source (Ballesteros et al., 2016a))

8.2 Fault-injection experiments with the first prototype

We used this prototype to inject permanent faults in the channel. All the faults were
injected by manually unplugging the links connecting components while the system
was operating.

First, it was tested what happens if any of the switches crashes by disconnecting
the links connecting them to the rest of the system. It was observed that all the
applications were executed normally with no disturbances. Second, it was tested
what happens if some of the links become disconnected by unplugging them. The
result was that as long as at least a majority of replicas were connected to one switch
or two interconnected switches (MFA), the control application operates correctly.

It is important to note that we also injected scenarios in which a node replica
becomes permanently disconnected from both switches, again, by disconnecting the
links connecting it to the rest of the system. These scenarios in which a node is com-
pletely disconnected from the network are an indirect way to inject permanent node
faults. This is because from the non-faulty nodes perspective, a permanently faulty
node either transmits cc-vectors with incorrect values or transmits no cc-vector at
all. In both cases the permanently-faulty node is tolerated by the DCMV, which
succeeds independently of whether the non-faulty nodes vote using an incorrect cc-
vector from the faulty node or vote using no cc-vector from that node.

8.3 Description of the second prototype

After conducting all these experiments, the prototype of (Ballesteros et al., 2016a)
was extended so as to include the rest of our node FT mechanisms. The new result-
ing prototype is described in (Ballesteros et al., 2016b). Specifically, the new mech-
anisms included in the resulting prototype are the CVEP; the reintegration mecha-
nisms, namely the TM resynchronization and Voting Reintegration Point; and the
fault-diagnosis mechanisms, i.e. the DEC, CEC, and YAA watchdog timer. For a
detailed description of these mechanisms, please refer to Chapter 5. My particular
contribution to this work was to help in the implementation of all these mechanisms.

Figure 8.3 depicts the architecture of the new resulting prototype. The gray
squares are the new/modified implementation modules. In this implementation
we perform the execution of phases as was described at the end of Chapter 6 and
therefore modify the Action triggerer and the phases accordingly. Communication Er-
ror Counter (CEC) mechanism was implemented at the second layer, FTT, because it
belongs to the communication subsystem and Discrepancy Error Counter (DEC) and

78 Chapter 8. Prototype implementation and Fault-Injection experiments

FIGURE 8.3: Implementation Architecture (source (Ballesteros et al.,
2016b))

You Are Alive (YAA) watchdog were implemented at the third later, Application, for
the analogous reasons.

8.4 Fault-injection experiments with the second prototype

We used this new prototype to inject, at one of the three node replicas that execute
the inverted pendulum control application, the same types of faults we injected us-
ing the simulation model (Section 7.2), namely Transient Long Lasting Faults affect-
ing Links (TLLFL), transient node faults, and Transient Faults affecting the Nodes
manifesting as Permanent ones (TFNP).

Note that we used the same strategy as in Section 7.2 to exhaustively inject these
faults while reducing the complexity of the fault-injection procedure. On the one
hand, this means that we classified the fault-injection tests into the same 5 test sets
of Section 7.2. On the other hand, this implies that we injected the faults in the same
way as in the simulation, i.e. we injected faults by preventing one of the nodes of
the prototype from correctly communicating and/or operating.

Just for the sake of clarity, Figure 8.4 repeats the Table depicted in Figure 7.4 of
Section 7.2, which specifies what kind of faults we injected in each test set, as well as
the way in which we did so.

Please note again that each cell represents the phase in which a given type of
fault is injected. Label TM specifies that the node was forced to lose all the TM repli-
cas of the ECs that compose the phase. Label CC specifies the phases in which the
node was prevented from receiving all the cc-vectors sent by the other node replicas
and/or prevented from transmitting its own cc-vector to both switches. Label MEM
indicates the phases in which the value of the variables that compose the operational
state that is locally stored in the replica are corrupted.

By means of conducting the fault-injection test sets in the real prototype we cor-
roborated what we already observed when conducting them via simulation. First,
we successfully checked that all of our FT mechanisms worked as intended in pres-
ence of the injected faults. Second, we characterized the way in which faults impair
the nodes, the FT mechanisms involved in each case, and the recovery/reintegration
time.

8.4. Fault-injection experiments with the second prototype 79

FIGURE 8.4: Error Injection Tests

Next, we summarize the characterization regarding the faults’ impairments and
the involved FT mechanisms; please refer to Figure 7.5 and Figure 7.6 of Section 7.2
for further details about it.

Test set 1 is devoted to injecting TLLFLs that prevent the node replica from re-
ceiving all the TMs sent at the ECs that compose a given phase. As a result, the
replica does not execute the corresponding control application phase. To resyn-
chronize at the communication level the faulty node replica always uses the TM
resynchronization mechanism. However, some of the missed phases cause the fault
replica to not obtain the same operational state as the others, e.g. when the voting
is not performed, and thus the Voting Reintegration Point mechanism is needed as
well to resynchronize the replica at the application level.

Test set 2 aims at injecting TLLFLs that prevent the replica from receiving and/or
transmitting cc-vectors. In these set of tests we test all the combinations, namely the
inability of a faulty node replica to receive cc-vectors, the inability to transmit cc-
vectors, and both. The manifestation of these faults causes a faulty replica to not
obtain the same operational state as the others, and thus, the Voting Reintegration
Point mechanism is needed. Note that it makes sense to inject these faults only in
the phases in which the cc-vectors must be exchanged.

Test set 3 injects transient node faults that corrupt the operational state of the
node replica. This was done by corrupting the operational state values the node
replica generates and uses. Same as before Voting Reintegration Point is needed.

Test set 4 injects a TFNP that prevents the node replica from correctly voting.
In particular, the values obtained by the node replica when locally voting are cor-
rupted for several consecutive voting phases; enough to make the node replica DEC
to reach its threshold and, thus, to compel that node replica to reset. After the reset
the node replica uses both the TM resynchronization and the Voting Reintegration
Point mechanisms to reintegrate.

Test set 5 injects a TFNP that leads the node replica to completely crash, i.e. the
replica is unable to execute any action. This is done by preventing the node replica
from receiving TMs, enough to cause its YAA watchdog timer to expire and reset the
replica. Like with the previous test set, the node replica uses both the TM resynchro-
nization and the Voting Reintegration Point mechanisms to reintegrate.

Concerning the characterization of the time need for the node replica to recov-
er/reintegrate, the 4th column of Tables depicted in Figure 7.5 and Figure 7.6 already
summarize the results. In addition, Figure 8.5 provides some extra details. Each row

80 Chapter 8. Prototype implementation and Fault-Injection experiments

FIGURE 8.5: Time to recover/reintegrate (reproduced from the source
(Ballesteros et al., 2016b))

of each table refers to a given test set. As concerns the left-hand table, each one of
its columns indicates the phase in which a fault being injected ceases; whereas the
number specified in each one of the cells corresponding to a column indicates the
number of ECs the replica needs to recover/reintegrate once the fault ceases. The
right-hand table specifies, for each test set, the maximum and the average number
of ECs needed for the node replica to recover/reintegrate when the injected fault
ceases.

As can be seen in those tables, the faulty replica recovers/reintegrates as soon as
the first successful voting takes place; so that the time needed to recover/reintegrate
is the time that elapses since the fault ceases until the node replicas votes.

8.5 Conclusion

The results obtained by means of the fault-injection tests carried out with the real
prototypes described above fulfill the two objectives of the current chapter. On the
one hand they demonstrate that the mechanisms proposed in this dissertation can
be integrated with those already proposed by FTTRS. In this way, we prove that
it is possible to provide critical nodes with mechanisms to tolerate faults affecting
the network and/or the nodes themselves, while being able to share a reliable and
flexible real-time network with non-critical nodes. On the other hand, the results
further corroborate in a real prototype what we already show in Chapter 7 as regards
the correctness and the characterization of our node FT mechanisms.

Certainly, as happens with the OMNeT++ simulation model, it would be quite
complex and time-consuming to use a real prototype to quantify the reliability ben-
efits of our FT mechanisms. Hence, as already pointed out, Chapter 9 is devoted to
clarifying this issue by means of a more adequate and efficient reliability evaluation
technique.

81

Chapter 9

Dependability Evaluation

This chapter is devoted to describing the dependability evaluation of our system.
The goal of this evaluation is to obtain numerical results of our system reliability.

The goal of dependability evaluation, which is an equivalent to quantitative eval-
uation technique described in Section 2.1, presented in this section is to first model
our system, and then to analyze it and quantify the reliability achieved by it. When
building dependability models, we consider the system architecture that executes
the control applications presented in Chapter 6.

To model our system we follow the approach proposed in the work of Valério
Rosset et al. (Rosset et al., 2012). This work uses Discrete-Time Markov Chains (DTMC)
formalism to model Group Membership Protocol (GMP) for Time-Division Multiple Ac-
cess TDMA networks.

Specifically, the GMP is executed repeatedly on a TDMA communication round
basis and its faults assumptions are expressed on a per-execution basis. Thus, the
DTMC models of the GMP use a time step that is closely related to the GMP execu-
tion. The use of DTMC allows the association of the state transitions of the models
with the passing of chosen time intervals.

Similarly, in this thesis, we use DTMC formalism to model the behaviour of our
system within ECAC that is periodically repeated. The time step of DTMC models
will be closely related to the discrete phases that constitute each ECAC.

The built models are analyzed and the reliability achieved is measured by a tech-
nique called reliability prediction (Blischke and Murthy, 2011). The goal of reliability
prediction is to predict the failure rates of components and overall system reliability.
Particularly, within the scope of reliability prediction, the reliability can be defined
as the ability of the system to perform its intended service without failure under
stated conditions and for a declared period of time. The reliability is quantified in
the terms of probabilities. The quantification is defined as follows: it is the survival
probability of the system over a specific period of time during its life, when only one
failure can occur.

To build DTMC models that describe our system and to measure the reliability
achieved using reliability prediction we use the PRISM tool (Kwiatkowska, Nor-
man, and Parker, 2011). In the next sections we first describe the PRISM tool, then
we describe our dependability models and how we analyze them using the PRISM
language, and finally, we discuss the obtained reliability results.

Note that all the PRISM queries and variables specified in this chapter are just
for the illustration purposes. The detailed code and all the used variables will be
explained in Appendix A.

82 Chapter 9. Dependability Evaluation

9.1 PRISM model checker

PRISM is a probabilistic model checker tool that supports the following probabilistic
models (Kwiatkowska, Norman, and Parker, 2011):

• Discrete-Time Markov Chains (DTMCs)

• Continuous-Time Markov Chains (CTMCs)

• Markov Decision Processes (MDPs)

• Probabilistic Automata (PAs)

• Probabilistic Timed Automata (PTAs)

To develop and analyze models in PRISM, the PRISM language has to be used.
Following are the three main components of the PRISM language:

• Modules are the main composition units which can cooperate with each other
describing the whole model. They are specified as:

module name ... endmodule

• Variables are defined within each module and they represent the local state of
the encircling module. The global state of the model is determined by the local
state of the included modules. A variable is declared as:

x : [0..2] init 0;

In the example above the variable x is declared as an integer ranging from 0 to
2 with an initial value of 0.

• Commands can be defined within a module and specify its bahaviour. They
have the following declaration:

[sync] guard -> p1 : u1 + ... + pn : un;

The guard represents a predicate over the variables of all the modules in one
model. If the condition of the guard is fulfilled, an update, the transition that
modifies the local variables, u1 to un can be taken with the corresponding prob-
ability p1 to pn. The optional sync label defines the synchronization with the
other modules. If commands from two or more different modules have the
same label defined in the square brackets, then these two commands are syn-
chronized, i.e. the transition specified by them are taken simultaneously. If no
label is defined, or if the defined label does not match any of the labels from
the other module commands, there is no synchronization.

PRISM property specification language is used to analyze the constructed prob-
abilistic models. The operators that we shall use in our models are the regular and
the bounded P operators that are used to reason about the probability of an event
occurrence, in a bounded case within a specified time bound. The path property that
we shall use in combination with P operator is F property, usually called eventually,
and it means that the property being checked eventually becomes true at some point
along the path.

A simple example of these two operators are illustrated below:

9.2. Dependability Models 83

P=? [F messageLoss = true]
P=? [F<=100 systemFail = true]

This first query is an example of a regular P operator with F property that speci-
fies what is the probability of a message eventually being lost (variablemessageLoss
being true). The second query is an example of a bounded P operator with F prop-
erty that specifies what is the probability of a system failure event eventually occur-
ring (variable systemFail being true) within 100 time units.

In PRISM models we can also define rewards, i.e. the real values associated with
certain states or transitions of the model, that can then be analyzed to obtain the
expected values of the defined rewards. The particular reward properties that we
use in our models are cumulative reward properties. They function by associating a
reward with each path of a model and then accumulating it along a path, but only
up to a given time bound. An example of cumulative reward property is:

R=? [C <= mission_time]

This property returns the expected accumulated reward within mission_time
time units of operation.

PRISM tool also supports transient probabilities calculation. This feature allows us
to calculate the probability of each possible global state of the model (combination
of the values of the local variable of all the modules) for a defined number of time
units. As will be shown in Section 9.3 we will use this feature of PRISM to obtain
reliability results.

9.2 Dependability Models

In the first modeling attempt we have modeled all the functionalities in a single com-
plex PRISM model, but due to state space explosion, the PRISM tool was unable to
build and execute the model. After couple of iterations by applying different mod-
eling optimization techniques described in (Boyd and Lau, 1998) our final version of
the model consists of 3 PRISM models. There is one main model and two auxiliary
ones. The idea was to reduce the complexity (state space) of the main model by dis-
entangling some of the functionalities to the auxiliary models. The auxiliary models
are then executed separately and the results obtained by them are used by the main
model.

Moreover, to further reduce the state space, these models use a set of values that
are calculated beforehand, and that characterize the probabilities of node replicas
and switches failing to transmit or receive certain key messages.

Our dependability models are used to model the execution of 3 node replicas
interconnected by the FTTRS. We choose to model 3 node replicas because this is
the typical level of node redundancy used in fault-tolerant architectures based on
majority voting.

Each model will be composed of a couple of modules. In each model the module
representing a node replica will be the one dictating the execution of discrete time
steps and the other modules will synchronize with it. A node replica module will
always be instantiated 3 times to represent 3 node replicas and they will execute in
a lock-step.

All models follow the same execution pattern. A set of sequentially executed
discrete time steps, henceforth steps, is periodically repeated until a termination
number of time steps is reached.

84 Chapter 9. Dependability Evaluation

A step is a set of mutually exclusive synchronized PRISM commands modeling
some specific behaviour. An example of a module executing two steps is presented
below.

module example

...

step : [1..n] init 1;
systemFailed : bool init true;
failedSwitches : [0..2] init 0;

...

[sync] step = 5 & systemFailed = true -> ...;
[sync] step = 5 & systemFailed = false -> ...;

[sync] step = 6 & failedSwitches = 0 -> ...;
[sync] step = 6 & failedSwitches = 1 -> ...;
[sync] step = 6 & failedSwitches = 2 -> ...;

...

endmodule

As shown above, for illustration purposes we define a module called example
with three local variables, step, systemFailed and failedSwitches, representing the
sequentially executed steps of the module, the system failure, and the number of
failed switches respectively. Note that if there is another module that also executes
commands with [sync], it will be executed simultaneously with this one.

In the first step, step = 5, if the system has failed, systemFailed = true, execute
the body of the first command of step 5, and if not, systemFailed = false, execute
the body of the second command of step 5.

In the second step, step = 6, if no switches have failed, failedSwitches = 0, exe-
cute the body of the first command of step 6, if 1 switch has failed, failedSwitches =
1, execute the body of the second command of step 6, and if both switches have
failed, failedSwitches = 2, execute the body of the third command of step 6.

Figure 9.1 depicts the graphical representation that we use to represent our mod-
els. Circles represent the steps and arrows the set of mutually exclusive transitions.
Furthermore, we distinguish between 4 types of steps in our models: regular, fail-
ure, evaluation and synchronization steps. The first three types are executed by the
modules representing the node replica instances only, while the last one involves
the execution of the other modules as well.

Next, we explain each step type.

• Regular steps model the consequences of faults on different system compo-
nents during certain system operations and also the actions taken by these
components to deal with them, e.g. the effect of cc-vector losses on the execu-
tion of EAV ECAC phase. They are represented by single border white circles.

• Failure steps model the failures of different components of our system due to
transient and permanent faults. In all the models these steps are executed at the

9.2. Dependability Models 85

FIGURE 9.1: PRISM steps

beginning of the periodic execution of the model. By using this approach, we
assume that the failed component is useless immediately after the evaluation
of the failure step. The approach is pessimistic because of two reasons. First,
a failure might have happened anywhere within the periodic execution of the
model and the component might have still been operational, and second, in
reality the failure can manifest after some time and the component might have
still been used until the manifestation.

Note that in the case of permanent failures, the effects will last throughout
the entire execution of the model, and in the case of transient failures, only
throughout one period of model execution.

These steps modeling failures are represented by double border white circles.

• Evaluation steps model the evaluation of the system state in order to decide
in a deterministic manner if the system has failed or not. If it has, the model
evolves to a global state by each node replica module modifying its the local
variables correspondingly to represent the system failure. This being done
prevents any local variable from being modified. As a result, the introduction
of these steps has a positive effect on the modeling by reducing the number of
possible transitions and speeding up the model. These steps are represented
by black circles.

• Synchronization steps model the simultaneous execution of different modules
of the model. Recall that the modules representing multiple instances of node
replicas are always executed in lock-step. Therefore, these steps refer to the
synchronization of different modules with multiple instances of node replica
modules. They are represented by dashed border white circles.

As regards our 3 models, the main model is used to model the execution of our
system in an ECAC. The organization of ECAC phases used in the one described at
the end of Chapter 6, i.e. the phases VS and C and the phases VA and A are both
merged. The auxiliary VCR model is used to model the execution of a single VCR
and the auxiliary reset model is used to model if the failure of our system occurs
when one replica is being reset. All three models are periodically executed until a
termination time expressed by a predefined number of discrete time steps is reached.
However, note that the period and the termination time for each model is different.

86 Chapter 9. Dependability Evaluation

The period for the main and the reset model is an ECAC, and the period for the
VCR model is an EC. The termination time for the main model is the number of
discrete time steps in the duration of the mission time for a specific domain (this
will be the topic of Section 9.4), for the reset model the duration of a reset of a node
replica, and for the VCR model the duration of a VCR.

Now that we have described the basis of the used execution pattern and model
separation, in the following sections we describe, first, how we calculate probabili-
ties used by the models, and then, each of the PRISM models in detail.

9.2.1 Probabilities calculation

Prior to the execution of the modules of different models, we calculate a set of prob-
abilities that are then used by the module commands.

The first set of precalculated probabilities refers to node replicas or switch repli-
cas losing, i.e. failing to transmit or receive, different key messages in a given EC.
These probabilities and their corresponding acronyms are the following ones:

• The probability of a node replica losing (failing to receive) all the TM replicas
sent by the switches in a given EC (TMRF)

• The probability of a node replica failing to transmit its cc-vector to the switches
in a given EC (CCTF)

• The probability of a node replica failing to receive any cc-vector from the switches
sent by one of the other node replicas in a given EC (CCRF)

• The probability of one switch replica failing to receive from the other switch
replica any message needed to synchronize and to be replica determinate with
the other switch replica in a given EC (SWRF).

To understand why it is important to provide the modules with these set of pre-
calculated probabilities, first note that if TMRF occurs, then the affected replica can-
not execute the corresponding EC, which may lead that replica to fail. Similarly,
CCTF and CCRF affect replicas’ ability to vote, recover and/or reintegrate after a
VCR. Finally, if SWRF happens the whole system fails, as switches may lose syn-
chronism or replica determinism with respect to each other.

Next, we will explain how each of these probabilities needs to be calculated de-
pending on the possible network configurations, i.e. the combination of non-failed
network components.

First, as seen by Figure 9.2 there are 4 possible network configuration combina-
tions, 3 of which are relevant, for the calculation of TM loss probabilities (TMRF).

In the case 1, all of the network components are operational, i.e. a replica is
connected by two links to two interconnected switches. In this scenario a replica
receives k TM replicas 4 times: first switch sends TM replicas to the node replica di-
rectly through the link connecting them, and through the other link via the interlinks
with the other switch; second switch does the same.

In the case 2, there are two operational switches that are not interconnected. This
case leads to the system failure due to inability of the switch replicas to communicate
and to establish replica determinism.

In the case 3, a replica is connected to one of the two interconnected switches. In
this scenario a replica receives k TM replicas 2 times, once from each of the switches.

In the case 4, a replica is connected to one of the surviving switches. In this
scenario a replica received k TM replicas only once.

9.2. Dependability Models 87

FIGURE 9.2: Possible configuration for calculating TM probability
loss

Second, the probability of transmitting cc-vector replicas (CCTF) depends only
on the number of links with which a replica is connected to the switches. If it is
connected with only one link (cases 3 and 4 from Figure 9.2), a replica transmits k
copies, and if it is connected with two (note that this assumes two interconnected
switches - case 1 from Figure 9.2), a replica transmits 2k copies.

Third, as seen by Figure 9.3 there are also 4 possible network configuration com-
binations for the calculation of the failure to receive cc-vectors (CCRF).

In the case 1, all of the network components are operational, i.e. both transmit-
ting node replica Rtx and receiving node replica Rrx are connected by two links to
two interconnected switches. In this scenario a receiving replica receives k cc-vector
replicas 4 times since there are 4 distinct paths from Rtx to Rrx.

In the case 2, everything is the same apart from Rtx that now has only one link.

FIGURE 9.3: Possible configuration for calculating cc-vector probabil-
ity loss

88 Chapter 9. Dependability Evaluation

In this scenario a receiving replica receives k cc-vector replicas 2 times since there
are 2 paths.

In the case 3, everything is the same apart from Rrx that now has only one link.
In this scenario a receiving replica receives k cc-vector replicas 2 times since there
are 2 paths.

In the case 4, Rrx and Rtx are connected with only one link to the switch/es. In
this scenario a receiving replica receives k cc-vector replicas only once due to the
existence of only one path.

Last, the probability of one switch replica failing to receive from the other switch
replica any message needed to synchronize and to be replica determinate with the
other switch replica in a given EC (SWRF) is taken into account only when both
switches are operational and interconnected. In that case each switch receives from
the other a predefined number of control message replicas.

Once a configuration is determined, corresponding message loss probability (cc-
vector, TM) needs to be calculated. Acknowledgments (ACK) message loss prob-
ability will not be considered in the model because these messages cannot lead to
system failure, as will be explained later. This probability is calculated as follows:

ProbSingleMessageLoss = 1− (1−BER)FrameSizeInBytes∗8 (9.1)

ProbAllMessageLoss = ProbSingleMessagenum_repetitions

First, we calculate the probability of losing a single message, ProbSingleMessageLoss,
using Bit Error Ratio (BER) parameter. BER is the ratio between bit errors and to-
tal number of transferred bits. Then, we can calculate the probability of losing all
messages, ProbAllMessageLoss, by multiplying ProbSingleMessageLoss as much
times as the message is repeated, num_repetitions.

The second calculated set of probabilities refers to permanent and transient com-
ponent failures and for their calculation we use the failure rates. Failure rate of a
component is a frequency with which a component fails and is expressed in failures
per unit of time.

For failure rates we assume the exponential distribution. With the assumed ex-
ponential distribution we can calculate Cumulative Distribution Function (CDF), i.e.
the probability that a component fails within t time units, where T is a random vari-
able representing a time to failure of a component, and λ is the failure rate of the
component.

CDF = P (T <= t) = 1− e−λt (9.2)

9.2.2 Auxiliary VCR Model

It models all the particularities of the VCR of the CVEP (See Chapter 5). This model
extracts the VCR behaviour and calculates the probabilities that will be reused by
the main model.

The input parameter for this model is a network configuration, i.e. the number
of operational (non-failed) switches, interlinks and links. The output of the model
is a list of probabilities of cc-vector reception failures for each node replica after the
execution of a VCR. The goal of this model is to calculate cc-vector reception failures
for each replica and for each possible combination of input parameters. Moreover,
this model takes into account the redundancy level used for the messages and the

9.2. Dependability Models 89

FIGURE 9.4: VCR PRISM model

ECs of the VCR. Then, we reuse these results by the main and the reset model when-
ever an outcome of a VCR (cc-vector reception failures) has to be consulted. These
probabilities (outcome) can be used to update in the main model whether or not
cc-vectors have been successfully exchanged, which was the aim of the VCR.

The model consists of only one module representing a node replica that is instan-
tiated 3 times. The node replica modules are executed in lock-step and the execution
of the model is depicted in Figure 9.4.

Steps 0, 1 and 2 are used to deterministically select the probabilities of messages
losses depending on input network configuration that were calculated beforehand
(see Section 9.2.1). Specifically, Step 0 selects TMRF, and Steps 1 and 2 select CCRFs
corresponding to the reception of cc-vector from the other two node replicas.

Steps 3-6 model the execution of one EC of a VCR. These steps are executed
periodically until the VCR ends. Step 3 models the TMW in which a replica receives
TMs from the switches taking into account the preselected TMRF. At least one TM
replica needs to be received for the node replica to be able to transmit/receive its cc-
vectors. If no TM passes through to the node replica, Steps 4, 5 and 6 will take this
into account and simply move on to the next subsequent step until Step 7 is reached.
Step 4 models the transmission of cc-vector replicas from the node replicas to the
switches taking into account the CCTF. At least one cc-vector replica from each node
replica needs to be successfully transmitted for the switches to be able to forward
it to the receiving replicas. Steps 5 and 6 model the reception of cc-vectors from
the switches that were transmitted by the other two replicas in the previous step
taking into account the preselected CCRFs. Finally, step 7 deterministically decides

90 Chapter 9. Dependability Evaluation

TABLE 9.1: The output of the VCR model

Switches Interlinks Links 1 Links 2 Links 3 cc 12 cc 13 cc 21 cc 23 cc 31 cc 32
0 0 0 0 0 p12 p13 p21 p23 p31 p32
0 0 0 0 1 p12 p13 p21 p23 p31 p32
0 0 0 1 1 p12 p13 p21 p23 p31 p32
0 0 0 1 0 p12 p13 p21 p23 p31 p32
0 0 1 0 0 p12 p13 p21 p23 p31 p32

. . .
2 1 2 1 2 p12 p13 p21 p23 p31 p32
2 1 2 2 0 p12 p13 p21 p23 p31 p32
2 1 2 2 1 p12 p13 p21 p23 p31 p32
2 1 2 2 2 p12 p13 p21 p23 p31 p32

whether or not all the ECs of the VCR have been executed, taking into account how
many ECs compose the VCR.

The specific output that is calculated by the VCR model is presented by Table 9.1.
We obtain this table in PRISM by defining an experiment in which we vary the input
parameters.

First 5 columns are the input parameters. Specifically, columns Switches and
Interlinks specify the surviving switches and interlinks of the FTTRS, and columns
Links i specify links of replica i, i ∈ [1, 3]. Note that for the interlinks we assume
that the maximum value is 1 and this value represents that at least one interlink is
operational. On the contrary, the value 0 represents the failure of both interlinks.
Why we model interlinks like this will be explained in the next section, Section 9.2.3.

Last 6 columns are the output of the VCR model for each combination of in-
put parameters. The output is specified by the following probabilities: pij|ij ∈
[12, 13, 21, 23, 31, 32], where each column specifies a probability of a replica i failing
to receive at least one cc-vector from replica j.

9.2.3 Auxiliary Reset Model

It models if the system fails during a reset of one replica. Note that if more than one
replica is reset, the system fails due to violation of MFA and this will be considered
by the main model. Therefore, we model a reset of one replica only by this model
and the behaviour of the other two non-reseting replicas.

Similarly like in the VCR model, the input parameters for this model are a subset
of network configurations and the output is the probability of the system failure
for each case. The goal of this model is to reuse it output (the set of calculated
probabilities) by the main model whenever an outcome of the system failure during
a reset of one replica has to be consulted.

The model consists of three modules. The first module, Node Replica module,
models a node replica behaviour in an ECAC and it is instantiated 3 times. One
instance will model a reseting replica while the other two instances will model the
non-reseting replicas. All three node replica modules are executed in lock-step and
they dictate the execution of the entire model. The second module, Switches mod-
ules, models the permanent failures of the switches in an ECAC, and the last mod-
ule, Interlinks module, models interlinks permanent failures in an ECAC. The last
two modules only execute some of the steps in synchrony with the node replica
modules.

It has to be noted that we have modeled interlinks failures as follows: either both
of them fail simultaneously or both of them are operational. This was done in order

9.2. Dependability Models 91

FIGURE 9.5: reset PRISM model

to further reduce the complexity of the model and the state space. This approach is
again pessimistic since we could tolerate the failure of one interlink.

As seen by Figure 9.5 there are only 4 steps that model the periodic execution of
ECAC.

Step 0 is a failure synchronization step. It models the permanent failures of FT-
TRS components: links, switches and interlinks in a current ECAC. All three mod-
ules, namely, three Node Replica module instances and one instance of each Switches
and Interlinks modules, execute this step in synchrony to model the failures of com-
ponents that each belong to a different module.

Step 1 is used to detect a scenario where there is only one surviving node replica
link and one surviving switch replica left. If this is the case, we model that with 50%
probability this surviving link is connected to the surviving switch and with 50%
probability it is not (equiprobable chances). This is done since we do not distinguish
between switch replicas and link replicas in our model. So, this specific scenario had
to be covered for.

Step 2 is an evaluation step. It evaluates the global system state to determine
if the system has failed. If so, all the relevant variables are set to fitting values to
signify the system failure.

Step 3 models the occurrence of all the faults that can lead to the system failure
that were not modeled by the previous steps. These faults include both permanent
and transient node replica failures along with transient failures affecting both the
TMs and the cc-vectors. After the execution of step 3 the model evolves back to step
0 and starts the next ECAC period.

Similarly like in the VCR model, the particular output produced by this model,
portrayed in Table 9.2, is obtained by defining a PRISM experiment in which the

92 Chapter 9. Dependability Evaluation

TABLE 9.2: The output of the reset model

Switches Interlinks Links 2 Links 3 System Failed
1 0 1 1 pSysFailed
1 0 1 2 pSysFailed
1 0 2 1 pSysFailed
1 0 2 2 pSysFailed
1 1 1 1 pSysFailed

. . .
2 1 1 1 pSysFailed
2 1 1 2 pSysFailed
2 1 2 1 pSysFailed
2 1 2 2 pSysFailed

input parameters (the first 4 columns) representing the relevant network configura-
tions are varied to obtain the output (the last column) that represents the probability
of the system failure.

Since one replica is being reset, and cannot transmit or receive messages, its
links (Links1) are not of importance for the evaluation of this model output. Also,
since the system failures due to component failures are going to be evaluated by the
main model, in this model we only take into consideration network configurations
in which the system has not failed yet.

9.2.4 Main Model

This model is the most complex one. It models how the system evolves in a per
ECAC basis including the occurrence of faults, the consequences caused by them, the
actions carried out by each of the components, and finally, whether the whole system
fails. The last action of the model will be used to measure the system reliability.

The main model is composed of 4 modules. Same as the previous reset model,
there are 3 instances of Node Replica module and 1 instance of each Switches and
Interlinks modules. However, the main model has one more module, System Failure
Evaluation module, that maintains a variable that indicates if the system has failed
and that is going to be used when quantifying the achieved reliability, as will be seen
later in Section 9.3.

The periodic execution of the main model is illustrated in Figure 9.6.
Steps 0 to 5 model the occurrence of permanent and transient faults in the current

ECAC, excluding messages omissions due to bit errors affecting the frames.
Same as in reset model, step 0 models the permanent failures of the FTTRS com-

ponents in current ECAC: links, switches and interlinks. These components belong
to Node Replica, Switches and Interlinks modules respectively.

Step 1 is an evaluation step in which it is assessed if the system fails due to the
fault occurrences modeled in step 0, if any. Additionally, this step also evaluates if
node replicas are permanently faulty due to their inability to communicate with the
rest, i.e. analogous to step1 from the previously described reset model there can be

9.2. Dependability Models 93

FIGURE 9.6: main PRISM model

94 Chapter 9. Dependability Evaluation

only 1 link and 1 switch replica left but are not connected. Also, both links might
have failed permanently.

Steps 2 and 4 model permanent and transient node replica failures respectively.
Recall that these are the failure steps explained in the beginning of Section 9.2.

Like the first part of Step 1, Steps 3 and 5 are also evaluation steps that assess if
the system fails due to all the fault occurrences so far. In case the system has failed,
all the relevant local variables are set to certain values that disable the paths in the
model taken in case of no failure. As explained before, this reduces the number
of possible transitions and speeds up the model execution. It has to be noted that
steps 8, 14, 22 and 24 do exactly the same thing, but include the evaluation of more
scenarios that can lead to the system failure, e.g. failure to meet the MFA due to
message omissions and/or unsuccessful majority voting.

Step 6 is used by the Replica Node module instances to select one of the precalu-
cated probabilities of TM message losses (TMRF) depending on the current network
configuration (see Section 9.2.1), which results from the faults modeled throughout
steps 0 to 5, if any. This probability is used in the steps that model ECAC phases
that are executed by the node replicas (S, VS + C, VA + A). These phases might not
be triggered if a replica does not receive at least one TM from the switches and as a
result no output can be produced.

Step 7 models the outcome of the Node Replica module after performing the S
phase of the ECAC. Analogously, Steps 15 and 23 model the outcome of the Node
Replica module after performing the VS + C and VA + A phases of the ECAC respec-
tively. As previously explained, each of these steps uses the TMRF selected in Step
6.

Steps 9, 17, and 25 model the permanent fault detection due to the DEC reaching
its threshold because of too many transient faults. As a result the replica is reset.
These steps are located after Step 7 (S), Step 15 (VS + C) and Step 23 (VA + A). If
the output of these ECAC phases is incorrect due to detected discrepancies in the
votings, the DEC increases and it is evaluated if its threshold has been reached. In
particular, discrepancy in the voting is detected if the locally produced cc-vector
from a node replica differs from the consensus cc-vector obtained after the majority
voting, or if the majority voting was unsuccessful, i.e. there was no majority. Af-
ter Step 7 (S), we can immediately know that the locally produced sensor value is
wrong, i.e. there will be a discrepancy. After Step 15 (VS + C), we know that the
consensus value was wrong (unsuccessful voting). Note that this is also the input to
the next voting. Thus, there was a discrepancy in the current voting and will also
exist in the next voting. Lastly, after Step 23(VA + A), we have to check if there was
a discrepancy due to the unsuccessful voting.

Steps 10 and 11, and 18 and 19 model the cc-vector reception losses (CCRFs)
occurred in the 1st and the 2nd VCR (ESV, EAV) respectively. For the sake of clarity,
we will refer the node replica modeled by each instance as repi, repj and repk. By
default we describe the behavior of the Node Replica module instance that models
repi. Specifically, after a VCR, a replica repi can fail to receive all the cc-vector copies
from the other two replicas repj and repk as a result of faults affecting the messages
being transmitted/received. This is represented by the variables, ccV EctRXi, j and
ccV EctRXi, k, which respectively indicate whether or not repi successfully receives
at least one copy of the cc-vector of repj and repk. Recall, that this was already
modeled by the VCR model described in Section 9.2.2. Therefore, to make these to
decisions each Node Replica module instance takes into account the current network
configuration and the corresponding probabilities precalculated by the VCR model.

9.3. Property verification 95

Steps 12 and 20 model the permanent fault detection due to the CEC reaching
its threshold because of too many transient faults. Similarly like with DEC, as a
result the replica will be reset. These steps are located after each of the VCR steps.
If the output of these steps is incorrect, i.e. cc-vector messages were lost due to
communication faults, the CEC increases and it is evaluated if its threshold has been
reached.

Steps 13 and 21 evaluate the values of the cc-vectors prior to the VCR round and
transform the incorrect ones into the failure to receive a corresponding message con-
veying that cc-vector by updating the variables ccV EctRXi, j and ccV EctRXi, k. If
a cc-vector value was incorrect before the VCR, this wrong value would have been
propagated to the rest of the replicas and the implication is the same as if the mes-
sage was not received, i.e. the value will be incorrect for the voting procedure that
follows. This simplifies the model since, otherwise, we would need to distinguish
between replicas not receiving a cc-vector and replicas receiving a cc-vector that car-
ries an incorrect value.

Step 26 and 27 evaluate the faults that occurred during a reset of a replica and
if these faults caused the system failure. First, in Step 26 we model the occurrence
of a system failure during a reset of one replica by using one of the probabilities
calculated by the reset model described in Section 9.2.3 depending on the current
network configuration. Next, in Step 27 we evaluate the remaining faults that were
not covered by the reset model, e.g. if during a reset of one replica, the system has
not failed but one of two links connecting a node replica to the switch has failed.

Note that a rest occurs either after the TNFP occurrence modeled in Step 4 or
after DEC or CEC evaluation modeled in Steps 9, 17, and 25, or Steps 12 and 20,
respectively. The first reset includes diagnosis, reset and reintegration time while
the last two include only reset and reintegration time. However, since the reset time
is orders of magnitude higher that the diagnosis and reintegration times combined,
this is not an issue for the model.

Step 28 models the propagation of the effects of transient node faults to the next
ECAC round. In particular, it can happen that transient node faults occur after the
VA phase. If this is the case, a node replica can have its operational state corrupted
and it can only be recovered in the next ECAC, in the first voting round, VS. More-
over, since this is the last step, we use it to execute in synchrony the module that
evaluates if the system has failed, the System Failure Evaluation module. If it has, its
local variable sysFail of the System Failure Evaluation module will be updated to sig-
nify that the system has failed. This variable will be used to quantify the achieved
system reliability described in the next Section.

9.3 Property verification

In this section we describe first how we use PRISM property specification language
to obtain the properties that represent the output of the auxiliary VCR and reset
models and then we demonstrate how to use the PRISM feature of transient prob-
ability calculation to measure the reliability achieved by our system modeled with
the main model.

In the VCR model we obtain the outputs for each network configuration by cal-
culating what are the probabilities of each node replica failing to receive cc-vectors
from the other node replica at the end of the VCR. Each instance of the modeled
node replica module has 2 local variables that represent if the cc-vectors from other
2 node replicas have been received. Also, each instance of node replica module has

96 Chapter 9. Dependability Evaluation

variables that specify if the VCR has ended. To calculate one of the aforementioned
probabilities we specify the query as follows:

P=? [F vcrEnd = true & ccVectorReceive12 = 0]

The query specifies what is the probability of replica 1 eventually at the end of the
VCR (vcrEnd = true) failing to receive cc-vector from replica 2 (ccV ectorReceive12 =
0).

In the reset model we obtain the outputs for each network configuration by cal-
culating the probability of the system failure within a predefined number of discrete
time units.

The reset time has to be converted in the number of discrete time units and it is
done as follows:

reset_time = X s
duration_ECAC = Y s
steps_ECAC = 4
discrete_time_units = floor(reset_time/duration_ECAC) * steps_ECAC

Reset time and the duration of ECAC are both expressed in the number of sec-
onds. The reset model executes 4 discrete time steps (0-3) in each ECAC phase.
First, dividing the reset time by the duration of ECAC and taking the floor value,
we obtain how many ECAC phases does the model execute. Then, multiplying the
number of ECAC phases with the number of discrete time steps executed by each
ECAC phase, we obtain the number of discrete time units that the model executes.

The instances of node replica modules have variables that define if the system
failure has occurred. Using these variables, the reset model calculates the system
failure probability using the query below:

P=? [F<=discrete_time_units sysFail1|sysFail2|sysFail3]

It is specified what is the probability of the system failure event detected by any
instance of the node replica module eventually occurring (sysFail1|sysFail2|sysFail3)
within a specified number of discrete time units (discrete_time_units).

Now that we have explained how we use PRISM property language to obtain
the properties that represent the output of the auxiliary models we move on to de-
scribing how to measure our system reliability.

To obtain the reliability we use the PRISM feature of transient probability cal-
culation. In particular, we execute the main model and obtain the probabilities for
each possible global state of the model (combination of the values of the local vari-
ables of the included modules) every step discrete time units starting from the init
discrete time units until a specified number of discrete time units time is reached by
executing the command bellow:

prism main_model.pm -tr init:step:time

The conversion from real to discrete time for the different times (init, step, time)
used by the transient probability calculation can be done by applying the same logic
as for the reset model. The only difference now is that the steps_ECAC variable is
29 since there are 29 steps executed by the main model in each ECAC phase.

Recall that in the main model we had a module that at the end of each ECAC
phase evaluates if the systems has failed and sets a corresponding variable sysFail
to 1 if this was the case. The initial value of the sysFail variable is 0.

9.4. Results 97

Once the transient probabilities are obtained, the next step is to detect and sum
up the probabilities where the local variable of the evaluation module sysFail has a
value of 1. This number represents the unreliability of our system, i.e. the probability
that the system failure has occurred. Then, the reliability is simply calculated by
subtracting from 1 the obtained unreliability.

Additionally, the main model does not consider the reset time. The steps exe-
cuted by the main model including resets are considered to last one ECAC phase.
However, whenever a replica is reset, a time in the duration of a predefined number
of seconds has passed. Therefore, in order to precisely determine a total time of the
model execution, we need to add the accumulated reset time to the specified model
execution time.

We do this by defining a reward that associates a value 1 each time a replica
is reset. Then by using cumulative reward properties we define a query following
query:

R=? [C<=execution_time]

which gives us the expected number of resets within execution_time discrete
time units. To determine total model execution time we add to the execution time
the expected number of resets multiplied by the specified reset duration.

9.4 Results

This section presents the reliability results we have obtained. As will be seen, we
shall show what is the measured value of the reliability throughout the pre-specified
time, i.e. the value of the reliability function R(t). We have considered both perma-
nent and transient faults.

Note that the reliability results depend on the values given to the different pa-
rameters used by our model, e.g. failure rates, fault tolerance coverages, number
and size of different messages, etc. Therefore, first, it is necessary to establish a case
of reference where for each parameter we decide upon a reasonable/realistic value
that should be used. Then, starting from this reference case we perform sensitiv-
ity analysis with respect to different parameters to see the effects they have on the
measured reliability.

Ethernet is recently being introduced in many different industry branches replac-
ing older network technologies. In particular, automotive industry is receiving a
wide attention nowadays and therefore in the scope of automotive domain Ethernet
can play a key role in substituting or coexisting with more traditional network tech-
nologies such as CAN. In this sense, we have decided to set up the case of reference
parameters for automotive domain. In particular, we are interested in quantifying
what would be the reliability benefits of our proposal when using components of
commercial quality. Since those components do not strive to achieve high reliability
goals, in our analyses we consider the reliability requirements for the least demand-
ing automotive x-by-wire applications, such as throttle-by-wire (Morris and Koop-
man, 2005). Throttle-by-wire applications have a reliability requirement of≥ 0.99999
during a mission time of 10 hours.

Next, we present the parameters that our model uses and for each parameter
give a case of reference value.

The failure rates and Bit Error Ratio (BER) describing both permanent and tran-
sient failures of the components of our system in the scope of automotive domain
are shown in Table 9.3.

98 Chapter 9. Dependability Evaluation

TABLE 9.3: Automotive applications failure rates and BER

Rate Name: Rate Value:
Perm. Node Fault Rate (FR) (Defense, 1995) 1E-5 faults/hr

Perm. Switch FR (Defense, 1995) 1E-6 faults/hr
Perm. Link and Inter-link FR (Defense, 1995) 1E-7 faults/hr

Power Supply FR (Defense, 1995) 1E-5 faults/hr
Transient Switch and Node FR (Peti et al., 2005) 1E-4 faults/hr

Bit Error Ratio (BER) (Stephens, 2004) 1E-6 err/bit

TABLE 9.4: The coverages used by the model of our system

Coverage Description:
Coverage of tolerating the occurrence of a replica reseting due to
a DEC reaching its threshold caused by transient faults
Coverage of tolerating the occurrence of a replica reseting due to
a CEC reaching its threshold caused by transient faults
Coverage of tolerating a permanent failure of a switch replica
Coverage of tolerating a permanent failure of a node replica
Coverage of tolerating a transient failure of a node replica
Coverage of tolerating switches synchronization when
exchanging control messages
Coverage of a node replica tolerating a TNFP

Next, the parameters shown in Table 9.4 present the different coverages that we
use in our system. They represent the probabilities with which certain FT mech-
anisms successfully tolerate intended faults. The first two coverages are are used
for a specific scenario in which a replica resets after the detection of a “permanent
fault” by either the discrepancy error counter (DEC) or communication error counter
(CEC). However, this detection is triggered not by a permanent fault, but due to the
occurrence of too many transient faults in the node replicas or in the links, exclud-
ing the transient faults in the nodes manifesting as permanent ones (TNFPs). These
transient faults will trigger the unnecessary reset after being falsely diagnosed as a
permanent ones by either DEC or CEC. The rest of the coverages are self-explanatory.

In our experiments we assume the same vales for all the presented coverages,
and the value assumed is 99.9% even though it is a pessimistic assumption according
to the following. In a typical highly-reliable system such as the Self-Repairing Flight
Control System of a military aircraft the fault-tolerance coverages are of the order of
99,99% and 99,9992% (Wu, 2002).

Finally, in Table 9.5 we present the values of different parameters used by the
PRISM model of our system. For the detailed list of models and modules that make
use of these please refer to Appendix A.

For the size of the TMs and the Switch Sync messages we assume the lowest
Ethernet frame size of 64 bytes. Since both of these message types do not convey a
lot of information, we can safely assume that the Ethernet payload of 46 bytes within
the chosen Ethernet frame size of 64 bytes will suffice to convey all the data. Switch

9.4. Results 99

TABLE 9.5: The parameter used by the model of our system

Parameter Name: Parameter Value:
TM frame size expressed in bytes 64

Switch Sync frame size expressed in bytes 64
CC-vector frame size expressed in bytes 512

of TM replicas sent in one EC 4
of Switch Sync replicas sent in one EC 4

of cc-vector replicas sent in one EC 4
of ECs constituting a VCR 3

EC duration expressed in seconds 0.001
ECAC duration expressed in the # of ECs 20

reset duration expressed in seconds 10
ratio of transient node fault effects propagating to the next ECAC 0.2

ratio of transient node faults manifesting as permanent ones 0.1
probability that a sensor device transiently fails in one ECAC 0

Sync messages are the messages exchanged among switch replicas as a means to
enforce replica determinism in the value domain, as was described previously in
Section 3.2.3. On the other hand, for cc-vectors we assume much larger frame size
of 512 bytes. We have chosen this value due to the fact the cc-vectors have to convey
the complete operational state of a node replica and we assume that 512 bytes should
be more than enough to store this data.

For the number of TM replicas, Switch Sync replicas and cc-vector replicas sent in
one EC we chose a value of 4 replicas. For the number of ECs that constitute a VCR
we consider a value of 3 ECs. We assumed these values as intuitively reasonable
ones, but, as will be seen later, we affirm this choice when doing sensitivity analysis.

The duration of the EC is chosen to be 1ms because the current technology used
for implementing the switches and the HaRTES protocol that our underlaying net-
work uses (see Section 3.1) confines the minimum size for the EC to this value.

For the duration of ECAC we decide to use the value of a sampling period of
Ball-On-Plate balancing system (Awtar et al., 2002). This system was was used as an
example when first designing our network-centric approach for coordination of task
and message scheduling (Derasevic, Proenza, and Barranco, 2014). We kept using
the values of this system thought our system design. This value was 20ms, or 20
elementary cycles.

The duration of a node replica reset is 10 seconds. This was the average value of
a reset measured in node replicas used in our implementation described in Chapter
7.

The ratio with which the effect of transient fault in the node replicas propagate
to the next ECAC is 0.2 because of the following. There are 5 phases in ECAC when
we use the merging of phases executed by controller nodes explained at the end
of Chapter 6: S, ESV, VS + C, EAV, VA + A. If transient faults in the node replicas
occur in the last phase (VA + A), the operational state of that replica might become
corrupted and as a result this error can be compensated only in the next ECAC, in
the first phase with voting (VS + C). Assuming that all phases are of equal duration
and that transient fault distribution in node replicas is uniform, the proportion of
their propagation is equal to the duration of one phase only (one fifth of the entire
ECAC), which is 0.2 (See Figure 9.7).

The ratio of transient node faults manifesting as permanent ones (TNFPs) is as-
sumed to be 0.1. We do not have any real knowledge of this parameter and think

100 Chapter 9. Dependability Evaluation

FIGURE 9.7: Merged phases of ECAC

that 10% is a realistic value. We will show later in this section when doing sensitivity
analysis that this parameter has no significant impact on the achieved reliability and
thus the precise decision on its value is not of considerable importance.

Lastly, we have a parameter that represents the probability that a sensor device
transiently fails in an ECAC. This probability is set to 0 and is not currently being
used by the model. This parameter was introduced as a means to model sensor
transient failures. This is done since we have detected that our system can also
deal with sensor transient faults, e.g. in case there is a single sensor connected to
our system and it fails in a way that some of the node replicas manage to receive
a correct value and some of the node replicas do not, if a majority of node replicas
did receive the correct values, all replicas can, assuming there are no more faults,
obtain the correct sensor values by means of DCMV, i.e. by receiving and voting
on all sensor values. However, since we make no assumption of how sensor FT is
achieved, i.e. by replication or some other technique, we left this feature unused.

Next step is to carry out the quantification of reliability for the values of the pa-
rameters presented above. As previously explained these values will be our case of
reference. The aim of performed quantification is to, first, see if we meet the relia-
bility goals for the chosen throttle-by-wire application of automotive industry, and
second, to see what is the reliability gain when we compare our fault-tolerant design
based on active node replication and FTTRS to a simple non-replicated design.

The non-replicated system that we use for comparison is quite simple and is
modeled as a single node connected to a plant. Since there is no need for the com-
munication infrastructure (links and switches of the FTTRS), only the node faults
have to be considered for this model. Therefore, the non-replicated system fails on
occurrence of any node fault: permanent or transient. For this simplex system we
did not have to build any model. The reliability can be calculated with a simple ex-
pression: R(t) = 1−P (t) = 1− (1−e−λt), which evaluates to e−λt , where λ is a sum
of permanent and transient node failure rates.

As illustrated in Figure 9.8, the first measurement we performed shows the reli-
ability results obtained for our fault-tolerant system with previously described case
of reference parameter values and the reliability results of a simple non-replicated
system. The y axis shows the measured reliability, i.e. the probability that the system

9.4. Results 101

FIGURE 9.8: Reliability comparison between proposed fault-tolerant
and non-replicated system

will not fail, and the x axis shows the time samples at which the reliability is mea-
sured. The scale for x axis is 5 minutes, e.g. the number 30 represents 150 minutes
(30 ∗ 5).

The results show that with our system it is possible to meet the specified reliabil-
ity goals for considered throttle-by-wire target applications. The reliability achieved
by our system is higher than the required 0.99999 after a mission time of 10 hours.
On the other hand, the non-replicated system’s reliability after 10 hours is only
0.9988, which is quite low when compared to our system. Moreover, Figure 9.8
shows that the reliability of our system decreases slowly throughout 10 hour period
whereas the non-replicated system’s reliability decreases quite rapidly. Even after 5
minutes, which is the first measured sample, the measured non-replicated system’s
reliability is 0.999915, which is still less than the required 0.99999. With these results
we can conclude that it is justifiable to have a fault-tolerant system design, and that
with our design in particular it is possible to meet the reliability goals of throttle-by-
wire automotive applications.

Furthermore, apart from measuring reliability for the pre-specified parameter
values of our reference case, we also perform a sensitivity analysis, i.e. we define
experiments varying the values of different parameters of our model to determine
the impact they have on the achieved reliability. For the sensitivity analysis per-
formed in this dissertation we chose to vary the values of parameters we were the
least certain about. The list of different experiments and the goals of each are listed
below:

• Experiment 1 - Varying the TM redundancy level. The goal of this experiment
is to see how the reliability changes by changing the number or pro-actively
transmitted TM replicas.

102 Chapter 9. Dependability Evaluation

• Experiment 2 - Varying the cc-vector redundancy level. In this experiment
we want to see how the reliability changes by modifying the total number or
cc-vector replicas transmitted. This is done by simultaneously changing the
number of cc-vectors transmitted in one EC and the number of ECs of a VCR.

• Experiment 3 - Varying the coverage values. By observing different set of val-
ues for all the specified coverages we want to examine how they affect reliabil-
ity.

• Experiment 4 - Varying the ratio with which transient faults manifest as per-
manent ones. Since we do not have any concrete knowledge about this value,
in this experiment we want to see its significance in the reliability results.

• Experiment 5 - Varying the component transient failure rate. Within the scope
of automotive applications this value can actually range from 1E− 3 to 1E− 4
according to (Kopetz, 2004), so we want to see how these two different values
influence the measured reliability.

• Experiment 6 - Partial disabling of reintegration. The goal of this experiment is
to illustrate the importance of reintegration mechanism. However, due to the
complexity of our model it was very difficult to add additional logic that would
differentiate when is the reintegration needed and when simple voting suffices
to tolerate transient faults in the links and nodes, i.e. it was impossible to
extract reintegration mechanism only, due to state space explosion. Therefore,
we have found an intermediate solution, and this solution was to modify the
existing model to partially disable reintegration. Specifically, we have disabled
reintegration only after the reset of a replica that can occur either due to TNFP
or due to DEC or CEC reaching their thresholds. Thus, when reintegration is
disabled, the replica that resets will not reintegrate and will stay permanently
faulty. We then observe how this affects the achieved reliability.

Next, we present the results obtained by each of the above listed experiments
and discuss them in more details.

The Figure 9.9 shows the results of Experiment 1 in which we vary the number
of TM replicas being sent by the switches. Remember that for our reference case
we chose a value of 4. In this experiment we are going to consider from 1 to 5 TM
replicas in order to analyze the impact of this parameter on the reliability results and
show why we chose 4 as the most adequate value.

First, the results show a significant difference between sending 1 and 2 TM repli-
cas. With only 1 TM replica the results show that the reliability requirements for our
test application cannot be satisfied, i.e. the reliability is much lower than 0.99999
after 10 hours of mission time. Moreover, note that the reliability measured when
only 1 TM replica is being sent is even worse that the reliability achieved by the
non-replicated system. However, in the case of 1 TM replica in the first 10 minutes
(first two samples) the reliability is bigger than the required 0.99999 and then start-
ing from the third sample it becomes lower, which was not the case with the non-
replicated system that never achieved the reliability requirement, as was discussed
in the first measurement.

Note that this observation is normal since the rates of transient faults affecting
the messages are much higher than the rates affecting the hardware of the compo-
nents. Recall that in the non-replicated system we did not have any communication.
Moreover, in our fault-tolerant system the TM is crucial for providing both com-
munication services and correct system operation. Therefore, if we do not tolerate

9.4. Results 103

FIGURE 9.9: Experiment 1 - Varying the TM redundancy level

transient link faults affecting the TM transmission, we cannot achieve high reliabil-
ity.

From then on, we further increase the number of TM replicas until and including
the value 5. We can see that for each value larger than 1 TM replica the reliability
requirement is satisfied. In particular, we can see that between 2 and 3 TM replicas
the difference starts to appear in the 6th digit after the decimal, and between 3 and
4 TM replicas the difference start to be visible in the 9th digit. Lastly, the difference
between 4 and 5 TM replica is in the 13th decimal digit. We chose the value of 4 TM
replicas as our reference case value since the effect on reliability starts to be negligible
at that point as compared to 3 TM replicas (9th digit).

In the next experiment, Experiment 2, we vary the number of cc-vector replicas
together with the number of ECs that constitute a VCR to see how the overall cc-
vector redundancy level affects the final reliability.

Note that the by increasing/decreasing overall cc-vector redundancy level we
also increase/decrease the overall acknowledgments (ACKs) redundancy level due
to the fact that for each transmitted cc-vector two acknowledgments are transmit-
ted by the receiving replicas (see Chapter 5). However, since the only purpose of
ACKs is to populate the MS vector non-diagonal cells that are used for diagnosing
purposes by the switches, they are of little relevance for the reliability model and are
not considered.

The results obtained by this experiment are illustrated in Figure 9.10. The values
of our reference case were 4 cc-vector replicas sent in every EC of the VCR and the
number of ECs of the VCR was chosen to be 3. In this experiment we vary both
parameters starting from 1 cc-vector replica sent in a single EC during the VCR that
has only 1 EC, then 2 cc-vector replicas sent in each EC of the VCR that has 2 ECs,
then our reference case of 4 cc-vector replicas sent in each EC of the VCR that has 3
ECs, and finally 5 cc-vector replicas sent in each EC of the VCR that has 4 ECs.

104 Chapter 9. Dependability Evaluation

FIGURE 9.10: Experiment 2 - Varying the cc-vector redundancy level

The results show that for each of the chosen cc-vector redundancy level value
the reliability requirement after a mission time of 10 hours is met. As regards the
difference in reliability numbers we can see that for the first two measurements, 1
cc-vector replica sent in a single EC and 3 cc-vector replicas sent in each of the 2
ECs of the VCR, the difference is in the 8th decimal digit of reliability. The differ-
ence between the next two measurements, 3 cc-vector replicas with 2 ECs VCR and
our reference case, 4 cc-vector replicas with 3 ECs VCR, shows in the 13th digit, and
lastly, the difference between the last two measurements, our reference case and 5
cc-vector replicas with 4 ECs VCR, is not obtainable because the PRISM tool cannot
display more than 16 decimal digits. Similarly like with the previous experiment
with TM redundancy level we have decided that the difference in 13th digit is neg-
ligible.

Observing the results, we can conclude that the cc-vector redundancy level is
not as important as TM redundancy level, e.g. if we consider the extreme values for
both experiments, 1 TM replica and 1 cc-vector replica, we can see a huge difference
in the reliability results. With 1 cc-vector replica we can achieve our reliability goal,
whereas with 1 TM replica we cannot.

This observation is due to different facts. First, node replicas can recover from
cc-vector losses using DCMV. Particularly, node replicas can, by exchanging and
voting on cc-vectors, tolerate cc-vector losses as long as at the end of the VCR each
node replica has at least a majority of non-faulty cc-vectors to vote with. Note that
there is no equivalent mechanism for tolerating the loss of TMs. Second, note that
TM replicas are sent in every single EC of ECAC as opposed to cc-vectors that are
sent only in the ECs of VCRs. Therefore, node replicas are much more likely to
become faulty due to TM losses then due to cc-vector losses. The above stated facts
justify the results obtained for the cc-vector experiment as compared to the previous
experiment with TMs.

9.4. Results 105

FIGURE 9.11: Experiment 3 - Varying the coverage values

Following is the Experiment 3 presented in Figure 9.11 in which we vary the
coverage values. The results demonstrate that for the coverage values of 99.9% (ref-
erence case), 99.99% and 100% our system meets the reliability requirements for au-
tomotive throttle-by-wire applications and for the values of 99% and 95% it does
not. As demonstrated the coverage values have a significant impact on the achieved
reliability and it can be seen that even the small variations in these values can have
a major impact on measured reliability.

Note that for choosing the reference value for this parameter we do not take the
same approach as we did with TM replicas and cc-vector replicas. This is because
for the previous two experiments the parameter values are a matter of the system
configuration and for the parameter of this experiment, the coverage values prob-
ability, it is much more complex. Attaining a high coverage implies carrying out a
lot of testing and refining aspects such as the accuracy and the quality of the error-
detection mechanisms which is a demanding and time-consuming task that was not
done by this dissertation.

Ensuing experiment, Experiment 4, is used to vary the ratio with which transient
node faults manifest as permanent ones (TNFP). For a reference case value we chose
a value of 10 %.

We have decided to vary this parameter starting with the value of 0% and in-
creasing it every 10 % until 100 %. As illustrated in Figure 9.12 this parameter has
no major effect on the reliability. We can see that for all the value variations the reli-
ability goal is met. Therefore, our decision to choose 10 % as a reference case value
will not have any major impact on the obtained results.

As regards the changes in reliability values, note that the 10th decimal digit is
where the differences start to appear between different ratio values. Even in the
extreme case of 100 % where every transient fault manifests as a permanent one, a
reliability is not decreased by much.

106 Chapter 9. Dependability Evaluation

FIGURE 9.12: Experiment 4 - Varying the ratio with which transient
faults manifest as permanent ones

These observations can be explained by the existence of reset and reintegration
mechanisms which promptly recover node replica being affected by TNFPs. The
reset and reintegration of a faulty replica happens fast enough to avoid more replicas
from being affected by TNFPs thus preventing the system from failing.

Experiment 5 shows what happens when we decrease the failure rate of transient
faults in the hardware of switches and node replicas by one order of magnitude. As
displayed on Figure 9.13 we compare our reference case where this rate is 1E −
4 to the failure rate decreased by one order of magnitude, 1E − 3. As expected
the value of this rate has a notable impact on the achieved reliability. Note that
with the decreased failure rate our system would not be able to meet the reliability
requirements of throttle-by wire automotive applications.

Conclusion is that the components used, nodes and switches in our case, have to
be designed in such a way to achieve a specific failure rates by e.g. using techniques
such as component shielding and radiation hardening.

In our last experiment, Experiment 6, we disable reintegration after a reset of
a replica and compare the reliability results with a non-disabled model for differ-
ent values of ratios with which transient faults manifest as permanent ones (TNFP),
since these faults are one of the major causes of replica resets.

We chose the values of 0 %, 10 %, 50 % and 100 % for this experiment and for
each of these values we compare the results of the model with partially disabled
reintegration and the model with reintegration included.

As seen by Figure 9.14, for the first two values of TNFP, 0 % and 10 %, we can
see that we still meet the reliability requirements both with and without reintegra-
tion. However, for the last two values, 50 % and 100 %, we can see that without
reintegration we cannot meet our reliability requirement of 0.99999 after 10 hours.
We can also observe that the greatest reliability difference between models with and

9.4. Results 107

FIGURE 9.13: Experiment 5 - Varying the component transient failure
rate

without reintegration is for the case that favors the occurrence of reset the most, i.e.
for the value of TNFP ratio of 100 %.

Concluding, we can see from this experiment the importance that reintegration
has in the reliability results even though we have only disabled it partially. Thus,
the need for introduction of this FT mechanism is justified.

Examining all the experiments it has to be noted that transient faults in the chan-
nel are prevailing and are most important ones to deal with comparing to other rates.
This is why we can see that the results of experiments focusing on varying the pa-
rameters that are more closely related to the rates affecting the system components,
experiments 2, 4 and 6, do not show big fluctuation in reliability results.

Lastly, note the expected reset time was not included in the results since the val-
ues obtained were negligible compared to the mission time of 10 hours, i.e. the
expected number of resets was never more than 0.5, even in the worst case reset ex-
periments, i.e. the experiments that favor the probability of node replicas being reset.
Recall that for the reset time of a node replica we assumed a value of 10 seconds.

Overall, we show in this section that it is important to provide tolerance to node
faults if we want to achieve high reliability goals and we can see that some parame-
ters of the system are more important than others.

108 Chapter 9. Dependability Evaluation

FIGURE 9.14: Experiment 6 - partial disabling of reintegration

109

Part III

Conclusions and Future Work

111

Chapter 10

Conclusions and future work

In this chapter we conclude the presented dissertation and give an overview of pos-
sible future developments.

10.1 Thesis validation, contributions and conclusions

The thesis of the present dissertation states that “it is possible to attain high levels of
reliability of adaptive critical RT DES that rely on a reliable and flexible RT communication
subsystem based on an FTT implementation on Ethernet by providing FT mechanisms for
the nodes.”.

By means of the work described in the current document we have proven this
thesis and we have provided a series of novel contributions. Next, we both briefly
argue how this work validates the thesis, and highlight its main contributions while
focusing on the main conclusions that can be drawn from it.

Generally speaking, to prove the thesis this dissertation first proposes a node ar-
chitecture that provides mechanisms to tolerate hardware faults affecting the nodes,
and that relies on an existing fault-tolerant and flexible RT communication subsys-
tem based on Ethernet. Second, the dissertation verifies, both via simulation and
experimentally, the correct operation of these architecture’s FT mechanisms, as well
as their integration with the underlying communication subsystem. Finally, it pro-
poses a dependability model of a DES relying on this node architecture that quan-
titatively demonstrates that the proposed FT mechanisms do increase the reliability
of the DES.

In this sense, the first step to validate the thesis was to select an appropriate
Ethernet implementation of the FTT paradigm. For this we chose the FTTRS com-
munication subsystem due to the provision of the following features:

• FTTRS is based on HaRTES, which is a specific realization of the FTT paradigm
on top of full-duplex Ethernet. Thanks to HaRTES, FTTRS provides flexible
RT communication on top of Ethernet. In this way, on the one hand, FTTRS
provides RT guarantees for traffics with different RT requirements (hard and
soft). On the other hand, FTTRS supports operational flexibility by allowing
the change, at runtime, of the communications RT requirements while keeping
all RT constraints. This last property of HaRTES and thus of FTTRS is specially
well-suited for supporting network adaptivity.

• FTTRS is the most reliable implementation of the FTT paradigm on top of Eth-
ernet. FTTRS provides reliable FTT communication services based on the fol-
lowing FT mechanisms:

– FTTRS relies on a duplicated star topology (two switches) to tolerate tran-
sient/permanent faults affecting any of the switches.

112 Chapter 10. Conclusions and future work

– Each node can connect to each one of the switches by means of an in-
dependent full-duplex link, so as to tolerate permanent hardware faults
affecting its links.

– Both FTTRS switches are interconnected by means of more than one full-
duplex link. This allows switches to exchange appropriate information to
coordinate with each other and, also, provides redundant communication
paths among the nodes.

– Each FTTRS switch is internally duplicated and compared. In this way
each switch exhibits a crash failure semantic, which facilitates the design
and integration of further FT mechanisms as the ones proposed here.

– Both FTTRS switches are replica determinate and, thus, provide reliable
and consistent communication services. This is a property that any re-
dundant network chosen for supporting our nodes and FT mechanisms
must provide.

– Each FTTRS switch includes a Port Guardian (PG) for each one of the
nodes connected to it. PGs filter out incorrect messages to enforce that,
from the point of view of the non-faulty nodes, faulty ones exhibit an
incorrect computation failure semantic. Again, this facilitates the design
and integration of further FT mechanisms like the ones herein proposed.

– FTTRS provides a proactive retransmission service for critical messages.
This allows tolerating transient hardware link faults that corrupt the mes-
sages being exchanged. In this sense, FTTRS further paves the way for
our mechanisms towards achieving a high system reliability.

– Both switches of FTTRS pro-actively retransmit isochronous Trigger Mes-
sages (TMs) to reliably indicate the start of each communication cycle (El-
ementary Cycle, EC). On the one hand, this provides a highly reliable
mechanism for nodes to synchronize with the start of each EC. On the
other hand, it served us as a reliable time basis to both timely trigger the
tasks to be executed at the nodes, and implement recovery (reintegration)
mechanisms.

However, FTTRS does not provide any mechanism to tolerate faults that prevent
a node from correctly communicating and/or operating. This is an important limi-
tation for attaining a high system reliability. On the one hand, this is because nodes
are normally the most unreliable elements of a DES. On the other hand, this is be-
cause a critical DES normally includes several nodes such that each one of them is
fundamental for the DES to provide its intended service.

Therefore, the next step necessary to validate the thesis was to devise a set of
mechanisms to tolerate these faults that prevent nodes from correctly communicat-
ing and/or operating.

Our first decision towards this purpose was to use an active node replicated ar-
chitecture. We took this decision because by means of active node replication node
failures can be timely and transparently masked so as to prevent them from jeopar-
dizing the RT response of the system.

Following this approach and, in oder to make node replicas being able to com-
pensate errors, it is necessary to provide FT mechanisms that allow them to be kept
replica determinate and to reliably vote. For doing so, we first needed to define a
fault model, to specify the failure semantics of the system elements and, finally, to
exhaustively analyze to which extent the FT mechanisms of FTTRS already deal with
faults.

10.1. Thesis validation, contributions and conclusions 113

As explained, we adopted the fault model of FTTRS, i.e. we aim at tolerating
non-malicious operational hardware faults. Faults that then can manifest arbitrar-
ily; except in the links, which are the only elements of the system that exhibit an
omission failure semantic. However, we showed that on the one hand, since each
FTTRS switch is internally duplicated and compared, we can rely on switches that
exhibit a crash failure semantic. On the other hand, we also recalled that thanks to
the port guardians of the FTTRS switches, faulty nodes exhibit an incorrect compu-
tation failure semantic from the point of view of non-faulty nodes, i.e. non-faulty
nodes perceive faulty ones as either omitting messages or sending messages that
carry incorrect data (payload).

To analyze the extent of the FT mechanisms of FTTRS, we thoroughly studied
the effects of faults depending on their persistence, the elements they affect, and the
way in which they manifest.

First, we showed that permanent hardware faults occurring in a switch and/or
in the links may lead a node to not be able to communicate with the rest of the nodes
any further. Similarly, permanent faults affecting the hardware of a node may per-
manently prevent that node from communicating; either because it cannot transmit
any message or because it transmits incorrect messages that are then discarded by
the corresponding PGs. Moreover, a node may not be able to correctly operate, e.g.
compute, any longer. In any case, independently of whether the fault occurs in the
channel or in the node hardware, in the worst case a permanently faulty node will be
perceived by the non-faulty ones as a node that sends messages that carry incorrect
data (payload) from the application point of view, e.g. an erroneous sensor/actua-
tion value. FTTRS provides no mechanism to tolerate any of these situations.

Second, as regards temporary hardware faults, the current proposal of FTTRS
transforms temporary hardware faults occurring at a switch into a permanent crash
failure of that switch. Thus, we considered those faults as permanent ones, since
proposing mechanisms for a switch to recover from a temporary hardware fault is
out of the scope of the current work. Concerning temporary hardware faults occur-
ring in the links or in the nodes themselves, we found out that the persistence of
these faults may have different impacts on the nodes ability to operate and/or com-
municate. Thus, in order to appropriately identify what are the necessary FT mech-
anisms in each case, we further classified temporary faults as transient (affecting the
links or the nodes hardware), Transient Long Lasting Faults affecting Links (TLLFL),
and Transient Faults affecting the Nodes manifesting as Permanent ones (TFNP).

Transient link faults may transiently affect the capacity of a node for transmit-
ting/receiving, but they are transparently tolerated by using the pro-active retrans-
mission mechanism already provided by FTTRS. Thus, we did not need to propose
any further mechanism to cope with those faults.

Conversely, TLLFLs are transient faults in the links whose duration exceed the
FT capacity provided by the pro-active retransmission mechanisms of FTTRS. Due
to TLLFLs, a node may not be able to send messages to the non-faulty ones. Also,
a node may not receive messages that are necessary for it to be kept synchronized
with the non-faulty nodes from the point of view of the communication and/or the
application. This means that a node may become unable to correctly operate from
then on. In any case, again, in the worst case a node affected by a TLLFL will be
perceived by the non-faulty ones as if it were affected by a permanent fault, i.e.
as omitting messages or as sending messages with incorrect data. FTTRS does not
provide any mechanism to cope with TLLFLs.

Transient (hardware) node faults are those that may transiently prevent a node
from communicating, or compel a node to transiently carry out incorrect operations.

114 Chapter 10. Conclusions and future work

Certainly, thanks to the FTTRS pro-active retransmission mechanisms, an affected
node may tolerate these faults and correctly transmit/receive. However, the pro-
active retransmission mechanisms of FTTRS are originally thought to tolerate tran-
sient faults in the links. Thus, the level of redundancy of these mechanisms, i.e.
the number of pro-active retransmissions, should be calculated taking into account
the rate with which messages may be corrupted at the links, rather than the rate
with which nodes suffer from transient faults. Furthermore, in any case, these pro-
active retransmission mechanisms are useless to tolerate transient node faults that
lead nodes to perform incorrect operations. This is especially important to solve,
because a node that carries out even a single incorrect operation may not only send
messages with incorrect data, but may also become desynchronized at the commu-
nication and/or application levels and, thus, may also become unable to correctly
operate any further.

Finally, TFNP faults are transient faults affecting the hardware of a node itself
such that the node manifests as permanently faulty, unless the node is reset. In other
words, the node needs to be reset prior to be able to appropriately re-synchronize,
with the non-faulty nodes, from the communication and application points of view.
FTTRS does not propose any mechanisms for dealing with TFNPs.

Taking into account this analysis, we proposed a voting mechanism for node
replicas we call the Distributed Consistent Majority Voting (DCMV). The main advan-
tage of the DCMV is its simplicity, since in principle each node replica only needs to
locally vote (majority voting) on the result it obtains locally and the ones it receives
from the other node replicas. This simplicity is achieved since, thanks to FTTRS,
non-faulty nodes perceive faulty ones as proposing either no or an incorrect value
for voting.

In any case, for DCMV to succeed, it is necessary to enforce that node replicas
are replica determinate (internally and externally). On the one hand, internal replica
determinism is enforced by using the same hardware and software constructs by
each node replica. This is not a novel idea of this dissertation, but a well-known
strategy. On the other hand, for enforcing that node replicas are externally replica
determinate, we included within the DCMV a mechanism to guarantee, with high
probability, that non-faulty replicas successfully exchange a consistent majority set
of correct values to vote on. This mechanism is essentially a pro-active retransmis-
sion mechanism, called Cc-vector Exchange Protocol (CVEP), that further increases the
redundancy given by the pro-active retransmission mechanisms provided by FT-
TRS. One of the advantages of CVEP is that it performs pro-active retransmissions
in each one of multiple ECs, so as to avoid that TLLFLs, .e.g. bursts produced by
electromagnetic disturbances, may prevent non-faulty replicas to successfully ex-
change the values they use to vote on. The other advantage of the CVEP is that it
served as a basis to implement fault-diagnosis mechanism, as we will recall later on.

At this point, it is important to note that the replicated node architecture and
the DCMV itself would be enough to tolerate faults that prevent a node from com-
municating/operating. Nevertheless, as pointed out above, temporary faults in the
channel or in a node replica itself can actually lead that replica to irremediably fail,
even though it is not affected by a permanent fault. This may lead to a node re-
dundancy attrition problem that ultimately limits system reliability and, thus, the
benefits of the redundancy investment.

To overcome this limitation, in this dissertation we proposed a series of mech-
anisms to thoroughly prevent temporary faults from making node replicas to be
perceived as permanently faulty.

10.1. Thesis validation, contributions and conclusions 115

In this sense, the first aspect that is worth to highlight is that the DCMV itself
already provides a simple and well-known form of Forward Error Recovery (FER).
Specifically, a node replica can use the result of the voting to correct the value it
proposed for voting in case that proposed value was not correct.

However, faults may lead a node replica to become desynchronized at the com-
munication and/or the application level beyond the error recovery capacity of the
just mentioned FER. Thus, we realized that it was necessary to propose more so-
phisticated recovery mechanisms to prevent undesirable fault attrition. We refer
these advanced recovery mechanisms to as reintegration mechanisms.

The first one of these mechanisms is called TM resynchronization, and it allows
node replicas to resynchronize at the level of the communication. The TM resyn-
chronization is based on the fact that we propose to divide the application, being
executed at the node replicas, into different phases or tasks that are triggered syn-
chronously in every node replica. More specifically, in order to force this synchro-
nism among node replicas we decided to use a network-centric approach similar to
the one presented in (Calha and Fonseca, 2002; Silva et al., 2005). In this sense, the
idea of dividing the application in phases triggered by the Trigger Message (TM) the
FTT provides is not a contribution of this dissertation. However, what is novel is the
way we proposed for node replicas to use the TM to trigger the phases. Basically,
what our idea proposes is that node replicas use the Trigger Message Sequence Num-
ber (TMSN) to appropriately trigger the different phases. In this way, conversely
to what happens in (Calha and Fonseca, 2002; Silva et al., 2005), the use of the TM
we propose for triggering the phases does not require the network subsystem from
being aware of the application executed on top of it. Given this strategy for trigger-
ing the application phases, what we propose by means of the TM resynchronization
is a way for a node replica to use the TMSN to re-resynchronize at the level of the
communications and, then, to regain its ability to trigger the application phases in
synchrony with the non-faulty replicas.

The second reintegration mechanism we proposed is called the Voting Reintegra-
tion Point. This mechanism takes advantage of the DCMV to exchange and vote
on not only specific intermediate results, but also to exchange and vote on all the
variables that compose the state of their computation, i.e. all the variables of their
operational state. When to exchange the variables and vote on them is application
dependant. In this sense, it is not mandatory that node replicas exchange and vote
on their operational state every time they exchange and vote on an intermediate
result. Doing so could be feasible for control applications, since their operational
state is usually small. To demonstrate this suitability for control applications, in this
dissertation we have proposed different examples of how the control cycle can be
divided into phases to benefit from the use of the Voting Reintegration Point mech-
anism. For other applications that have greater operational states, the CVEP could
be extended so that replicas can use many communication rounds (even non consec-
utive) to exchange all the values needed to vote on; or replicas may exchange and
vote on at least the variables that are strictly necessary to keep themselves replica
determinate as concerns their most critical functions.

Note that the TM resynchronization and the Voting Reintegration Point mech-
anisms allow reintegrating a node replica that suffered from any temporary fault,
except from a TFNP. This is because, as explained above, a TNFP may lead a replica
to behave as if it was permanently faulty as long as it is not reset. In other words,
as said above, a replica that suffers from a TFNP needs to reset prior to be able to
undertake any reintegration mechanism.

116 Chapter 10. Conclusions and future work

In order to treat TFNPs we proposed a set of fault-diagnosis mechanisms for de-
tecting when a replica is affected by this kind of faults and, then, to force it to resume
and reintegrate.

First, we propose each node replica to locally manage what we call a Discrepancy
Error Counter (DEC) to diagnose when, after having accumulated too many com-
putation errors, itself seems to be affected by a TFNP. Basically, the node replica
increases its DEC when it detects a discrepancy between the value/s it proposes for
a given voting and the value/s that result from that voting. Whenever the DEC
reaches a given threshold, the node resets itself and carries out the necessary reinte-
gration procedures.

Second, we propose each node replica to locally manage a Communication Error
Counter (CEC) to diagnose when, after having accumulated too many communica-
tion errors, itself seems to be affected by a TFNP. The management of these coun-
ters builds upon the CVEP, which compels node replicas to pro-actively retransmit
acknowledge messages (ACKs) for reliably confirming the correct reception of the
messages sent from the other node replicas. The FTT switches use these ACKs to
consistently fill up what we call the Messages Status (MS) vector, .i.e. a matrix that
specifies for each node replica whether or not that replica correctly sent its message
to any of the switches and whether or not each one of the other node replicas ac-
knowledged it. Switches send the MS-vector to all node replicas every time replicas
execute the CVEP. In this way, each node replica can use the MS-vector to update its
local CEC and reset itself if that CEC reaches a specific threshold.

There may be situations in which a node replica fails to correctly manage its
local CEC or to correctly reset when necessary. To cope with these situations, both
FTT switches manage their own set of CECs, using the MS-vector they consistently
fill up. When a given CEC within the switches reaches a threshold, the switches
themselves diagnose the corresponding node replica as being affected by a TFNP
and, then, they reliably send a reset command to that replica.

Note that we decided not to include DECs within the switches. This is because
doing so would require switches, i.e. the communication subsystem, to be aware
of details that belong to the application itself, .e.g. the variables that compose the
operational state.

In any case, a node replica may still fail to reset either when its local DEC/CEC
reaches a threshold or when the switches instruct it to do so. To overcome this lim-
itation we proposed a mechanism called You Are Alive (YAA) watchdog timer. The
idea basically consists in the switches periodically sending a You Are Alive (YAA)
message to every node replica they have not diagnosed as faulty. The node replica
must forward this message to a dedicated YAA watchdog timer attached to (but in-
dependent from) it. This timer resets the node replica after not receiving any YAA
message during a given interval of time. In order to prevent a node replica from
forging the YAA message, the switches include within each YAA message a code
that is dynamically updated in a way that only the switches and the YAA watchdog
timer know.

Given all these mechanisms we proposed, the next step to validate the thesis
was to demonstrate both that they are correct and that these mechanisms can be
integrated with those already proposed by FTTRS.

We demonstrated the first one of these aspects by means of a simulation model
and by means of two real prototypes.

The simulation model was primarily intended to verify the correctness of our
mechanisms when considering all the temporary faults described above. For this
purpose, we used as a basis an OMNET++ simulation model proposed prior to

10.1. Thesis validation, contributions and conclusions 117

the present work and that models an enhanced version of HaRTES. We extended
this model to include all our mechanisms and, then, to carry out a series of simu-
lated fault-injecting experiments that thoroughly verify the correctness of the mech-
anisms. As we explained in the corresponding chapter, the fact of having simulated
our mechanisms on an enhanced-version of HaRTES does not limit the validity of
the verification results. Moreover, it further shows that although our mechanisms
can take advantage of FTTRS to rely on a highly-reliable communication subsys-
tem, they can also be used on top of other FTT realizations. In fact, some of our
mechanisms, e.g. the YAA watchdog timer mechanism, could be used in other com-
munication paradigms as well.

Concerning the verification by means of the real prototypes, we first supervised
the implementation of our mechanisms on them. Then, we also supervised the de-
sign and execution of the fault-injection tests we conducted with those prototypes
to experimentally verify the correctness of the mechanisms. Those tests were basi-
cally the same as the ones conducted via simulation, but including also permanent
faults. Additionally, these tests allowed us to acquire statistics about the time a faulty
node replica needs to recover/reintegrate. These statistics further demonstrate that
this time should be low enough to consider as negligible the probability of extra
temporary faults affecting a node replica while, at the same time, another replica is
temporary unavailable due to previous near-coincident temporary faults.

It is important to highlight that these tests were conducted on a set of triplicated
critical hard RT nodes that share the FTTRS network with non-critical soft RT nodes.
Thus, the experiments carried out with the real prototypes also allowed us to ex-
perimentally demonstrate that our mechanisms can be integrated with the ones of
FTTRS. In this way we proved that it is possible to provide node FT mechanism in
a mix-critical DES in which critical nodes co-exist with non-critical ones, and where
all of them communicate on a reliable and flexible RT network.

The last step to validate our thesis was to quantitatively demonstrate that our
mechanisms allow attaining a high reliability level for a DES that rely on FTTRS.

For this purpose we used a model checker tool, called PRISM, to model and
quantify the reliability of a DES that executes a control application while relying on
our FT mechanisms and FTTRS. We build this model using the Discrete Time Markov
Chain (DTMC) formalism, which is well suited for periodic execution of control ap-
plications. The characterization of the system aspects that may influence the reliabil-
ity, e.g. the components failure rates, as well as the targeted reliability requirements
were chosen so as to reflect the reliability properties and needs of throttle-by wire
applications in the context of the commercial automotive industry. In any case, we
also performed a set of sensitivity analyses with respect to these properties and, also,
with respect to aspects related to our FT mechanisms (e.g. the probability of success
of certain reintegration mechanisms) and to the FT mechanisms of FTTRS (e.g. the
number or pro-actively retransmitted TMs). On the one hand, the reliability figures
we obtained proved that the reliability requirements of these applications can be
met when they rely on our FT mechanisms and FTTRS. On the other hand, we also
proved by comparing our system with a non-replicated one, that without our node
FT mechanisms the reliability would significantly decrease thus justifying the need
for the implementation of our mechanisms.

To conclude we can ascertain that the work presented throughout the present
dissertation proves our thesis statement by means of several analyses and constructs;
tests carried out via simulation and on real prototype implementations; and a model
that quantifies the achievable system reliability.

118 Chapter 10. Conclusions and future work

10.2 Future Work

Next, we outline a series of potential developments we identified in this dissertation,
which can be considered by future work.

• Note that adaptivity, i.e. the ability of the system to adapt to the change of
system requirements, was only supported at the network level by means of
operational flexibility. In other words, our system only supports adaptivity in
terms of the flexibility that FTTRS already provides for mixing different kinds
of RT traffic, as well as for modifying at run time the traffic scheduling without
jeopardizing the desired real-time constraints. Adaptivity of the nodes’ appli-
cation execution was not addressed by this dissertation and is one of directions
to take in order to extend the work herein presented.

• Instinctively, the concept of adaptivity can be considered even for the applied
FT mechanisms. FT can be dynamically changed depending on the system re-
quirements, e.g. the number of node replicas, the replication strategy applied,
the number of pro-actively sent messages can all be dynamically adjusted as
the system changes the environment and requires more or less FT. We have
already considered this partially in one of our previous works, (Derasevic,
Proenza, and Gessner, 2013), but this dissertation does not address this topic.

• One future task can be devoted to exploring the possibility of adding redun-
dancy preservation, i.e. trying to maintain the same pre-established redun-
dancy level, as a means to further increase the reliability achieved. This idea
would be applied to actively replicated nodes, when one node replica perma-
nently fails and eventually gets disconnected either by using another node in
the system or by replacing the failed one to preserve the redundancy.

• Another potential point for further development would be to broaden the fault
model and consider more faults. Then, this would open possibility for imple-
menting further FT mechanism to deal with newly considered faults and their
effects.

• The idea of VSUA presented in Section 5.3.4 was abandoned due to inability to
determine which node replicas and cc-vectors should be taken into considera-
tion for majority voting in some particular cases. This opens room for future
work by trying to enhance the original algorithm of VSUA to make an optimal
decision about which node replicas should vote and with which cc-vectors to
maximize the reliability achieved and weaken the current MFA considered,
which might be too strict.

• Recall that the nodes can fail arbitrarily and the FTTRS was used to restrict
their behaviour by attached PG filtering. This facilitated the design of node
FT mechanisms. Inheriting from this, future work can consider how to restrict
node failure semantics by the nodes themselves and this would then lead to
further simplification in the design of FT mechanisms.

• We can try to reduce reintegration time by doing reintegration in every single
EC. As regards the TM resynchronization there would be no overhead since
TM is received anyways in every EC and TMSN is copied by each replica.
However, as regards the Voting Reintegration Point, this approach would re-
quire messages to be exchanged in each EC. This would have a negative effect

10.2. Future Work 119

of bandwidth consumption, but, if these messages are small enough, the ef-
fect would be negligible, especially because of the fact that we use Ethernet
communication network that allows for high bandwidths thus allowing huge
quantities of data to be transmitted. Additional voting would also have to be
performed in every EC, but this operation is rather simple and would not im-
pose too much complexity on the node replicas’ application. This approach
would require additional modeling and experimentation and the gain in relia-
bility would be questionable.

• It is possible to closely inspect the operation of the application executed by
the node replicas and identify different failures modes of the replica. Then, if
a node replica fails permanently, but can still contribute by performing only
a subset of operations, we can find a way to detect this and allow the replica
to function in a degraded mode without permanently disconnecting it. This
would require the provision of more extensive fault diagnosis mechanisms that
would be able to detect this.

• Although we provide mechanisms for nodes to tolerate faults in the sensors,
in this dissertation we do not explicitly address sensor nor actuator fault toler-
ance. Thus, one future objective could be to take into account using the over-
sampling and prediction based techniques as a means to tolerate sensor and
actuator faults even further. Moreover, different sensor replication and actua-
tor replication techniques can also be regarded.

• Future efforts could be taken to perform more inclusive sensitivity analysis of
the presented PRISM models. All the parameters presented in Chapter A can
be varied and for every single parameter an optimum value can be determined.
However, all these parameters depend greatly on the application executed.

• Note that the coverage values that we used in our dependability evaluation
model are based on different assumptions. A potential line of research would
be to use the presented simulation and implementation to obtain the concrete
value of each one of these coverages.

121

Part IV

Appendices

123

Appendix A

PRISM source code

In this chapter we describe our three PRISM models in details. All the modeling
details including the source code of each prism module are encompassed here.

A.1 Main model

The parameters listed in the Table A.1 are constants defined for the main model. The
values of the constants presented are taken from the case of reference experiment for
automotive industry throttle-by-wire applications. The parameters pCCV ectRxi are
the output of the auxiliary VCR model and the parameters pResetSysFaili are the
output of the auxiliary reset model which are used by the main model in the steps
modeling the VCR and reset respectively.

TABLE A.1: Main model parameters

Name Type Value Description
numReplicas int 3 Number of node replicas

FSTM int 64 Frame size of the TM ex-
pressed in bytes

numTM int 4 Number of the TMs sent in
one EC

FSCtrlMsg int 64 Frame size of the control mes-
sages exchanged among the
switches expressed in bytes

numCtrlMsg int 4 Number of control messages
exchanged among switches

BER double 1E-6 Bit-error ratio
ecDuration double 1/1000 EC duration in seconds

missionDuration double 36000 Mission duration in seconds
resetDuration double 10 Reset duration in seconds

hypercycleDuration int 20 The duration of the ECAC ex-
pressed in the number of ele-
mentary cycles

disThshFalsePosProb double 0.001 Probability that a replica re-
sets due to a discrepancy
error counter reaching its
threshold due to to many
transient faults causing a re-
set

124 Appendix A. PRISM source code

commThshFalsePosProb double 0.001 Probability that a replica re-
sets due to a communica-
tion error counter reaching
its threshold due to to many
transient faults causing a re-
set

switchFailSysFailCov double 0.001 Coverage of tolerating a per-
manent failure of one switch

nodeFailSysFailCov double 0.001 Coverage of tolerating a per-
manent failure of a node

nodeTransFaultSysFailCov double 0.001 Coverage of tolerating a tran-
sient failure of a node

switchesSyncSysFailCov double 0.001 Coverage of tolerating losses
of synchronization messages
between switches

TNFPSysFailCov double 0.001 Coverage of tolerating a
TNFP

transFailPropRatio double 0.2 Ratio with which the tran-
sient fault propagates to the
next ECAC

transFailPermFailManifRatio double 0.1 Ratio with which the tran-
sient fault manifests as a per-
manent one

senTransFailProb double 0 Probability that a sensor de-
vice transiently fails in one
ECAC

PRr double 1E-6 Permanent replica failure rate
PLr double 1E-7 Permanent link failure rate
TRr double 1E-4 Transient replica failure rate

PSWr double 1E-6 Permanent switch failure rate
TSWr double 1E-4 Transient switch failure rate

PIr double 1e-7 Permanent interlink failure
rate

PSr double 1e-5 Power supply failure rate
pCCVectRx1 double 8.9202

980775
29113
E-29

Probability that all the cc-
vectors from the sending
replica are lost in a VCR
when there is 1 switch and
any number of receiving
and transmitting links (1
useful), or 1 of each links and
2 switches

pCCVectRx2 double 2.2300
745204
80771
E-29

Probability that all the cc-
vectors from the sending
replica are lost in a VCR
when there are 2 switches,
2 receiving links and 1
transmitting link

A.1. Main model 125

pCCVectRx3 double 4.9732
323640
97859
E-58

Probability that all the cc-
vectors from the sending
replica are lost in a VCR
when there are 2 switches,
2 receiving links and 2
transmitting links

pCCVectRx4 double 1.9892
931234
958
E-57

Probability that all the cc-
vectors from the sending
replica are lost in a VCR
when there are 2 switches,
1 receiving links and 2
transmitting links

pResetSysFail1 double 6.6739
994639
49503
E-7

Probability that the system
fails during a reset S = 2, I =
1, L2 = 2, L3 = 2

pResetSysFail2 double 1.0339
772780
1204
E-6

Probability that the system
fails during a reset S = 2, I =
1, L2 = 2, L3 = 1

pResetSysFail3 double 1.0339
772780
1204
E-6

Probability that the system
fails during a reset S = 2, I =
1, L2 = 1, L3 = 2

pResetSysFail4 double 1.2176
109906
7524
E-6

Probability that the system
fails during a reset S = 2, I =
1, L2 = 1, L3 = 2

pResetSysFail5 double 1.0340
945129
998447
E-6

Probability that the system
fails during a reset S = 1, L2
= 2, L3 = 2

pResetSysFail6 double 1.0340
945129
998461
E-6

Probability that the system
fails during a reset S = 1, L2
= 2, L3 = 1

pResetSysFail7 double 1.0340
945129
998461
E-6

Probability that the system
fails during a reset S = 1, L2
= 1, L3 = 2

pResetSysFail8 double 1.0340
945129
998461
E-6

Probability that the system
fails during a reset S = 1, L2
= 1, L3 = 1

The probabilities used by the main model are calculated as shown in Table A.2.
As was explained before, there are two set of calculated probabilities. One set refers
to message loss probabilities and uses BER parameter and the other set refers to

126 Appendix A. PRISM source code

component failure probabilities and uses failure rates. As regards the message loss
probabilities, the main model only uses TM loss probabilities that were explained in
Section 9.2.1.

TABLE A.2: Main model probabilities calculation

Name Calculation Expression Description
pSingleTMLost 1-pow(1-BER, FSTM *

8)
Probability of losing
one TM

pAllTMLost pow(pSingleTMLost,
numTM)

Probability of loosing
all the TM replicas sent
in a single TMW

pTMLost1 pAllTMLost * pAllTM-
Lost * pAllTMLost *
pAllTMLost

Probability of losing all
TMs: 2S 2L 1I (2 links, 2
TMs = 4 copies)

pTMLost2 pAllTMLost * pAllTM-
Lost

Probability of losing all
TMs: 2S 1L 1I (1 link, 2
TMs = 2 copies)

pTMLost3 pAllTMLost Probability of losing all
TMs: other (1 link, 1
TM = 1 copy)

pSingleCtrlMsgLost 1-pow(1-
BER,FSCtrlMsg *
8)

Probability of losing
one control message
exchanged between
switches

pAllCtrlMsgLost pow(pSingleCtrlMsgLost,
numCtrlMsg)

Probability of losing all
the control messages
exchanged between
switches

pRepFailHyperCycle 1- pow(2.718281828459,
-hypercycleDuration *
ecDuration * (PRr+PSr)
/ 3600)

Probability that a
replica permanently
failed during a hyper-
cycle

pLinkFailHyperCycle 1- pow(2.718281828459,
-hypercycleDuration
* ecDuration * PLr /
3600)

Probability that a link
permanently fails dur-
ing a hypercycle

pRepFailReset 1- pow(2.718281828459,
-resetDuration *
(PRr+PSr) / 3600)

Probability that a
replica permanently
failed during a reset

pLinkFailReset 1- pow(2.718281828459,
-resetDuration * PLr /
3600)

Probability that a link
permanently fails dur-
ing a reset

pRepTransientFailHyperCycle 1- pow(2.718281828459,
-hypercycleDuration
* ecDuration * TRr /
3600)

Probability of transient
failure occurring dur-
ing a hypercycle

pRepTransientFailReset 1- pow(2.718281828459,
-resetDuration * TRr /
3600)

Probability of transient
failure occurring dur-
ing a reset

A.1. Main model 127

pSwitchHyperCycle 1- pow(2.718281828459,
-hypercycleDuration
* ecDuration *
(2*(PSWr+PRr)+TSWr+PSr)
/ 3600)

Probability of switch
permanently failing
during a hypercycle

pInterlinkHyperCycle 1- pow(2.718281828459,
-hypercycleDuration *
ecDuration * PIr / 3600)

Probability of an inter-
link permanently fail-
ing during a hypercycle

pSwitchReset 1- pow(2.718281828459,
-resetDuration *
(2*(PSWr+PRr)+TSWr
+ PSr) / 3600)

Probability of switch
permanently failing
during a reset

pTNFPReset transFailPermFailManif-
Ratio * pRepTransient-
FailReset

Probability of TNFP oc-
curring during a reset

pRepTransientReset (1 - transFailPermFail-
ManifRatio) * pRep-
TransientFailReset

Probability of non-
TNFP occurring during
a reset

The main model incorporates the four prism modules that are described in the
following sections.

A.1.1 Node Replica module

This module will be instantiated 3 times representing the 3 node replicas that we
have in our system. The node replica module is the most complex one. These mod-
ules execute all the 29 steps sequentially and dictate the execution of the main model.
Steps are defined as constants as shown in Table A.3.

TABLE A.3: Node replica module sequential step constants

Name Type Value Description
NetworkComponentFail int 0 Permanent network topol-

ogy component failure step :
switches, interlinks, links

EvalNetCompSysFail int 1 Evaluate the system failure
after the network compo-
nents permanent failures,
deem replicas unable to com-
municate as permanently
faulty

ReplicaFailiure int 2 Permanent replica failure
step

EvalRepSysFail int 3 Evaluate the system failure
after the permanent failures
of the replicas

128 Appendix A. PRISM source code

ReplicaTransientFail int 4 Transient replica failure step :
sensor, actuation and consen-
sus actuation values wrong

EvalRepTransSysFail int 5 Evaluate the system failure
after the transient failures

TMProbCalculcation int 6 Determine the TM probabil-
ity to be used in the phases
triggered by the TM depend-
ing on the surviving network
components

Sense int 7 Sense step : sensor value
wrong due to lost TMs

EvalSenseSysFail int 8 Evaluate the system failure
after the sense step

DiscrepancySense int 9 Discrepancy threshold
reached after the sense step
due to too many transient
faults

VCR1CCVectRx1Lost int 10 Determine the probability of
cc-vector 1 (received from the
1st replica) being lost de-
pending on the current net-
work configuration

VCR1CCVectRx2Lost int 11 Determine the probability of
cc-vector 2 (received from the
2nd replica) being lost de-
pending on the current net-
work configuration

CommErrVCR1 int 12 Communication error thresh-
old reached after the 1st VCR
due to too many transient
faults

UpdateRXVCR1 int 13 Update the received cc-
vectors variables due to
wrong values of the corre-
sponding cc-vectors from
the other replicas after the
1st VCR to facilitate the next
evaluation step

EvalVCR1SysFail int 14 Evaluate the system failure
after the 1st VCR step

VoteSenControl int 15 Vote on the sensor values and
control step : actuation value
wrong due to lost TMs

EvalVoteSenControlSysFail int 16 Evaluate the system failure
after the vote on the sensor
values and control step

A.1. Main model 129

DiscrepancyVoteSensControl int 17 Discrepancy threshold
reached after vote on the sen-
sor values and control step
due to too many transient
faults

VCR2CCVectRx1Lost int 18 Determine the probability of
cc-vector 1 (received from the
1st replica) being lost de-
pending on the current net-
work configuration

VCR2CCVectRx2Lost int 19 Determine the probability of
cc-vector 2 (received from the
2nd replica) being lost de-
pending on the current net-
work configuration

CommErrVCR2 int 20 Communication error thresh-
old reached after the 2nd
VCR due to too many tran-
sient faults

UpdateRXVCR2 int 21 Update the received cc-
vectors variables due to
wrong values of the corre-
sponding cc-vectors from the
other replicas after the 2nd
VCR to facilitate the next
evaluation step

EvalVCR2SysFail int 22 Evaluate the system failure
after the 2nd VCR step

VoteActActuate int 23 Vote on the actuation values
and actuation step : con-
sensus actuation value wrong
due to lost TMs

EvalVoteActActuateSysFail int 24 Evaluate system failure after
the vote on the actuation val-
ues and actuation step

DiscrepancyVoteActActuate int 25 Discrepancy threshold
reached after the vote on
the actuation values and
actuation step due to too
many transient faults

EvalResetSysFail int 26 Evaluate if the system failed
during the reset step of one
replica

EvalResetFaults int 27 Evaluate all the faults of
replicas that could have hap-
pened during the reset of one
replica

130 Appendix A. PRISM source code

TransFaultProp int 28 The effects of transient faults
might propagate to the next
ECAC, evaluate global sys-
tem failure

The variables presented in Table A.4 represent the local state of the node replica
module.

TABLE A.4: Node replica module local variables

Name Type Initial
Value

Description

step1 0..28 0 sequential steps of the ECAC
sensTempWrong1 0..1 0 obtained/calculated sensor

value temporarily wrong
actuationTempWrong1 0..1 0 obtained/calculated actua-

tion (consensus sensor) value
temporarily wrong

consActuationTempWrong1 0..1 0 obtained/calculated con-
sensus actuation value
temporarily wrong

replicaFailed1 0..1 0 replica permanently failed
links1 0..2 2 operating (non-failed) links
oneSwitchOneLinkInterconnected1 bool false flag indicating whether a

switch and a replica link are
interconnected when there is
one left of each

resetActive1 0..1 0 replica is being reset
tmProbability1 1..3 1 indication of the all TM loss

probability (pTMLost1 -
pTMLost3)

ccVectRx11 0..1 0 cc-vector 1 received by the
replica

ccVectRx21 0..1 0 cc-vector 2 received by the
replica

sysFail1 bool false a flag indicating the system
failure

When a replica is permanently faulty, it will move through all the steps, modify
steps1 variable only and skip the execution of step logic that updates the other local
variables. This is done in order to avoid deadlocks since all the replicas are synchro-
nized by each step and each replica has to execute all the steps in sequence. If the
permanently faulty replica did not execute some step, it would block the other repli-
cas synchronized with that step and would prevent the model execution to proceed.

The two additional instances of node replica module are modeled by using the
concept of module renaming defined by PRSIM language as depicted in Listing A.1.

A.1. Main model 131

The renaming is done on a textual level and it allows us to rename the existing identi-
fiers and introduce the new ones for the newly introduced instances of node replicas.
We are able to do so since all the node replicas are identical executing identical set
of transitions.

LISTING A.1: Node replica module renaming
module NodeReplica2 = NodeReplica1 [
s tep1 = step2 ,
sensTempWrong1 = sensTempWrong2 , sensTempWrong2 = sensTempWrong1 ,
actuationTempWrong1 = actuationTempWrong2 , actuationTempWrong2 =

actuationTempWrong1 ,
consActuationTempWrong1 = consActuationTempWrong2 ,

consActuationTempWrong2 = consActuationTempWrong1 ,
r e p l i c a F a i l e d 1 = r e p l i c a F a i l e d 2 , r e p l i c a F a i l e d 2 = r e p l i c a F a i l e d 1 ,
r e s e t A c t i v e 1 = rese tAct ive2 , r e s e t A c t i v e 2 = rese tAct ive1 ,
l i n k s 1 = l inks2 , l i n k s 2 = l inks1 ,
oneSwitchOneLinkInterconnected1 = oneSwitchOneLinkInterconnected2 ,
tmProbabi l i ty1 = tmProbabi l i ty2 ,
ccVectRx11=ccVectRx12 , ccVectRx21=ccVectRx22 , ccVectRx12=ccVectRx11

, ccVectRx22=ccVectRx21 , ccVectRx13=ccVectRx23 , ccVectRx23=
ccVectRx13 ,

s y s F a i l 1 = s y s Fa i l 2 , s y s F a i l 2 = s y s F a i l 1
]
endmodule

module NodeReplica3 = NodeReplica1 [
s tep1 = step3 ,
sensTempWrong1 = sensTempWrong3 , sensTempWrong2 = sensTempWrong1 ,

sensTempWrong3 = sensTempWrong2 ,
actuationTempWrong1 = actuationTempWrong3 , actuationTempWrong2 =

actuationTempWrong1 , actuationTempWrong3 = actuationTempWrong2 ,
consActuationTempWrong1 = consActuationTempWrong3 ,

consActuationTempWrong2 = consActuationTempWrong1 ,
consActuationTempWrong3 = consActuationTempWrong2 ,

r e p l i c a F a i l e d 1 = r e p l i c a F a i l e d 3 , r e p l i c a F a i l e d 2 = r e p l i c a F a i l e d 1 ,
r e p l i c a F a i l e d 3 = r e p l i c a F a i l e d 2 ,

r e s e t A c t i v e 1 = rese tAct ive3 , r e s e t A c t i v e 2 = rese tAct ive1 ,
r e s e t A c t i v e 3 = rese tAct ive2 ,

l i n k s 1 = l inks3 , l i n k s 2 = l inks1 , l i n k s 3 = l inks2 ,
oneSwitchOneLinkInterconnected1 = oneSwitchOneLinkInterconnected3 ,
tmProbabi l i ty1 = tmProbabi l i ty3 ,
ccVectRx11=ccVectRx13 , ccVectRx21=ccVectRx23 , ccVectRx12=ccVectRx21

, ccVectRx22=ccVectRx11 , ccVectRx13=ccVectRx22 , ccVectRx23=
ccVectRx12 ,

s y s F a i l 1 = s y s Fa i l 3 , s y s F a i l 2 = s y s F a i l 1 , s y s F a i l 3 = s y s F a i l 2
] endmodule

Prism language defines a concept of formula. Formulas help to avoid code du-
plication and can be used anywhere an expression is expected. The next formulas
count the number of occurred errors and are used by this module in the system fail-
ure evaluation steps.

Formula A.2 counts the number of permanently failed replicas.

LISTING A.2: Formula counting the number of peramenntly failure
replicas

formula errorCounterRep = r e p l i c a F a i l e d 1 + r e p l i c a F a i l e d 2 +
r e p l i c a F a i l e d 3 ;

132 Appendix A. PRISM source code

Formula A.3 counts the number of replicas’ sensor value errors due to replica
permanent or transient failures.

LISTING A.3: Formula counting the number of replicas’ sensor value
errors

formula errorCounterSen =
c e i l ((r e p l i c a F a i l e d 1 + sensTempWrong1) /2) +
c e i l ((r e p l i c a F a i l e d 2 + sensTempWrong2) /2) +
c e i l ((r e p l i c a F a i l e d 3 + sensTempWrong3) /2) ;

Formula A.4 counts the number of replicas’ consensus sensor (actuation) value
errors due to replica permanent or transient failures.

LISTING A.4: Formula conting the number of replicas’ consensus sen-
sor (actuation) value errors

formula errorCounterCtr l =
c e i l ((r e p l i c a F a i l e d 1 + actuationTempWrong1) /2) +
c e i l ((r e p l i c a F a i l e d 2 + actuationTempWrong2) /2) +
c e i l ((r e p l i c a F a i l e d 3 + actuationTempWrong3) /2) ;

Formula A.5 counts the number of replicas’ consensus actuation value errors due
to replica permanent or transient failures.

LISTING A.5: Formula counting the number of replicas’ consensus
actuation value errors

formula errorCounterAct =
c e i l ((r e p l i c a F a i l e d 1 + consActuationTempWrong1) /2) +
c e i l ((r e p l i c a F a i l e d 2 + consActuationTempWrong2) /2) +
c e i l ((r e p l i c a F a i l e d 3 + consActuationTempWrong3) /2) ;

Formula A.6 counts the number of replicas’ lost cc-vectors. Only if both of the
cc-vectors are lost, this counts as an error.

LISTING A.6: Formula counting the number of replicas’ lost cc-
vectors

formula errorCounterComm =
f l o o r ((1− ccVectRx11 + 1−ccVectRx21) /2) +
f l o o r ((1− ccVectRx12 + 1−ccVectRx22) /2) +
f l o o r ((1− ccVectRx13 + 1−ccVectRx23) /2) ;

Now, we shall give a detailed description and PRISM command source code of
all the 29 sequentially executed steps.

The first step NetworkComponentFail is depicted in Listing A.7. This step models
the permanent failures of network components in a hypercycle. Particularly, in this
node replica module, any of the replica’s links may permanently fail with a proba-
bility pLinkFailHyperCycle.

LISTING A.7: Network components failures
// I f there are two l i n k s and the r e p l i c a has not f a i l e d −> any of

the l i n k s can f a i l
[netCompFail] s tep1 = NetworkComponentFail & l i n k s 1 = 2 &

r e p l i c a F a i l e d 1 = 0 −>
2∗pLinkFailHyperCycle∗(1−pLinkFailHyperCycle) : (l inks1 ’ = 1)

& (step1 ’= EvalNetCompSysFail)
+ pLinkFailHyperCycle∗pLinkFailHyperCycle : (l inks1 ’ = 0) & (

step1 ’= EvalNetCompSysFail)
+ (1−pLinkFailHyperCycle) ∗(1−pLinkFailHyperCycle) : (l inks1

’ = 2) & (step1 ’= EvalNetCompSysFail) ;

A.1. Main model 133

// I f there i s one l i n k and the r e p l i c a has not f a i l e d −> the l i n k
can f a i l

[netCompFail] s tep1 = NetworkComponentFail & l i n k s 1 = 1 &
r e p l i c a F a i l e d 1 = 0 −>

pLinkFailHyperCycle : (l inks1 ’ = 0) & (step1 ’=
EvalNetCompSysFail)

+ 1−pLinkFailHyperCycle : (l inks1 ’ = 1) & (step1 ’=
EvalNetCompSysFail) ;

// I f there no l i n k s or i f the r e p l i c a has f a i l e d −> continue
[netCompFail] s tep1 = NetworkComponentFail & (l i n k s 1 = 0 |

r e p l i c a F a i l e d 1 = 1) −>
(step1 ’= EvalNetCompSysFail) ;

The step EvalNetCompSysFail depicted in Listing A.8 evaluates if the replica is
deemed as permanently faulty or if the system has failed depending on the surviving
network components.

The first command can be interpreted as follows. On the one hand, if the replica
is no longer connected with the rest of the replicas, links1 = 0, it is deemed as perma-
nently faulty by setting all the local variables to the values as seen below in Listing
A.8. On the other hand, if the communication subsystem has failed, either by both
switches failing or by the connection between the switches failing while they are
both operational thus not allowing them to synchronize, switches = 0|switches =
2&interlinks = 0, each replica module will be deemed as permanently faulty.

The second command detects the case when there is one switch and link left
due to permanent faults of the former, switches = 1&links1 = 1. If this is the
first evaluation of this case, the variable oneSwitchOneLinkInterconnected1 is false
(initial value). Then, the replica and the switch might be interconnected or not with
a 50% chance. If they are not, the replica is deemed as permanently faulty.

The third command just moves to the next step since none of the above guards
were fulfilled.

LISTING A.8: Evaluation of replica and system permanent failures
depending on which components of network topology failed

// I f there are no more l i n k s or switches or i f there are 2
disconnected switches −> r e p l i c a i s deemed as permanently f a u l t y

[e v a l S y s F a i l] s tep1 = EvalNetCompSysFail & (l i n k s 1 = 0 | switches =
0 | switches = 2 & i n t e r l i n k s = 0) −>

(step1 ’= R e p l i c a F a i l i u r e)
& (sensTempWrong1 ’ = 1) & (actuationTempWrong1 ’ = 1) & (

consActuationTempWrong1 ’ = 1) & (r e p l i c a F a i l e d 1 ’ = 1)
& (l inks1 ’ = 0) & (oneSwitchOneLinkInterconnected1 ’= f a l s e) &

(rese tAct ive1 ’ = 0)
& (tmProbabi l i ty1 ’ = 1)
& (ccVectRx11 ’ = 0) & (ccVectRx21 ’ = 0) ;

// I f there i s one l i n k and one switch and they are not
in terconnec ted −> they w i l l be in terconnec ted or not (r e p l i c a i s
deemed as permantly f a u l t y)

[e v a l S y s F a i l] s tep1 = EvalNetCompSysFail & switches = 1 & l i n k s 1 =
1 & oneSwitchOneLinkInterconnected1 = f a l s e −>

0 . 5 : (step1 ’= R e p l i c a F a i l i u r e) & (
oneSwitchOneLinkInterconnected1 ’= true)

+ 0 . 5 : (step1 ’= R e p l i c a F a i l i u r e)
& (sensTempWrong1 ’ = 1) & (actuationTempWrong1 ’ = 1) & (

consActuationTempWrong1 ’ = 1) & (r e p l i c a F a i l e d 1 ’ = 1)
& (l inks1 ’ = 0) & (oneSwitchOneLinkInterconnected1 ’= f a l s e) &

(rese tAct ive1 ’ = 0)

134 Appendix A. PRISM source code

& (tmProbabi l i ty1 ’ = 1)
& (ccVectRx11 ’ = 0) & (ccVectRx21 ’ = 0) ;
// I f not of the above i s the case −> continue

[e v a l S y s F a i l] s tep1 = EvalNetCompSysFail & ! ((l i n k s 1 = 0 | switches
= 0 | switches = 2 & i n t e r l i n k s = 0)) & ! (switches = 1 & l i n k s 1
= 1 & oneSwitchOneLinkInterconnected1 = f a l s e) −>

(step1 ’= R e p l i c a F a i l i u r e) ;

The step ReplicaFailiure (Listing A.9) models the permanent failure of a replica in
a hypercycle. The replica may permanently fail with a probability pRepFailHyperCycle.
This failure may further cause the system failure with a coverage nodeFailSysFailCov
by setting the variable sysFail1 to true. This variable will be evaluated by the next
step.

LISTING A.9: Replica permanent failure
// I f the r e p l i c a has not f a i l e d −> i t can permanently f a i l which

may cause the system f a i l u r e with nodeFailSysFai lCov
[r e p F a i l u r e] s tep1 = R e p l i c a F a i l i u r e & r e p l i c a F a i l e d 1 = 0 −>

pRepFailHyperCycle ∗ (1−nodeFailSysFai lCov) : (step1 ’=
EvalRepSysFail)

& (sensTempWrong1 ’ = 1) & (actuationTempWrong1 ’ = 1) & (
consActuationTempWrong1 ’ = 1) & (r e p l i c a F a i l e d 1 ’ = 1)

& (l inks1 ’ = 0) & (oneSwitchOneLinkInterconnected1 ’= f a l s e) &
(rese tAct ive1 ’ = 0)

& (tmProbabi l i ty1 ’ = 1)
& (ccVectRx11 ’ = 0) & (ccVectRx21 ’ = 0)
+ pRepFailHyperCycle ∗ nodeFailSysFai lCov : (step1 ’=

EvalRepSysFail) & (s y s Fa i l 1 ’= true)
& (sensTempWrong1 ’ = 1) & (actuationTempWrong1 ’ = 1) & (

consActuationTempWrong1 ’ = 1) & (r e p l i c a F a i l e d 1 ’ = 1)
& (l inks1 ’ = 0) & (oneSwitchOneLinkInterconnected1 ’= f a l s e) &

(rese tAct ive1 ’ = 0)
& (tmProbabi l i ty1 ’ = 1)
& (ccVectRx11 ’ = 0) & (ccVectRx21 ’ = 0)
+ 1 − pRepFailHyperCycle : (step1 ’= EvalRepSysFail) ;

// I f the r e p l i c a has f a i l e d −> continue
[r e p F a i l u r e] s tep1 = R e p l i c a F a i l i u r e & r e p l i c a F a i l e d 1 = 1 −>

(step1 ’= EvalRepSysFail) ;

The step EvalRepSysFail (Listing A.10) evaluates if the system has failed either by
more than a majority of replica failing permanently, errorCounterRep >= majority,
or by a single replica permanent failure propagating and causing the system failure
sysFail1|sysFail2|sysFail3.

LISTING A.10: Evaluate the system failure
// I f there are more than a major i ty of permanent r e p l i c a f a i l u r e s

or i f the system has f a i l e d previously −> r e p l i c a i s deemed as
permanently f a u l t y

[e v a l S y s F a i l] s tep1 = EvalRepSysFail & (errorCounterRep >= major i ty
| s y s F a i l 1 | s y s F a i l 2 | s y s F a i l 3) −>

(step1 ’= R e p l i c a T r a n s i e n t F a i l)
& (sensTempWrong1 ’ = 1) & (actuationTempWrong1 ’ = 1) & (

consActuationTempWrong1 ’ = 1) & (r e p l i c a F a i l e d 1 ’ = 1)
& (l inks1 ’ = 0) & (oneSwitchOneLinkInterconnected1 ’= f a l s e) &

(rese tAct ive1 ’ = 0)
& (tmProbabi l i ty1 ’ = 1)
& (ccVectRx11 ’ = 0) & (ccVectRx21 ’ = 0)

A.1. Main model 135

& (s ys F a i l1 ’= true) ;
// I f not −> continue
[e v a l S y s F a i l] s tep1 = EvalRepSysFail & ! (errorCounterRep >=

major i ty | s y s F a i l 1 | s y s F a i l 2 | s y s F a i l 3) −>
(step1 ’= R e p l i c a T r a n s i e n t F a i l) ;

The step ReplicaTransientFail (Listing A.11) models the transient failure of a replica
in a hypercycle.

On the one hand, a replica may transiently fail with a probability pRepTransientFailHyperCycle.
If this is the case, we take the most pessimistic approach and assume that the out-
puts of all the computational control cycle phases (S, VS+C and VA+A) are wrong:
sense value, actuation value and consensus actuation value. This transient failure
may further cause the system failure with a coverage nodeTransFaultSysFailCov
by setting the variable sysFail1 to true.

On the other hand, this transient failure may be manifesting as permanent one
with a ratio transFailPermFailManifRatio. If this is the case, we do the same up-
dates as for permanent failure of a replica additionally setting the variable resetActive1
to 1 to differentiate it from permanent one. This failure may also further cause the
system failure with a coverage TNFPSysFailCov by setting the variable sysFail1
to true.

Lastly, we added a support for modeling the failure of sensor devices only, i.e.
with probability pRepTransientFailHyperCycle a sensor device may transiently
fail and set sensTempWrong1 to 1.s

The system failure will be evaluated by the next evaluation step as was the case
with the replica permanent failures.

LISTING A.11: Replica transient failure
// I f the r e p l i c a has not f a i l e d −> i t can t r a n s i e t l y f a i l (put a l l

temp v a r i a b l e s to 0) which may cause the system f a i l u r e with a
nodeTransFaultSysFailCov or i t can manifest as a TNFP which may
f u r t h e r cause the system f a i l u r e with a TNFPSysFailCov

[repTransFa i l] s tep1 = R e p l i c a T r a n s i e n t F a i l & r e p l i c a F a i l e d 1 = 0 −>
(1− t ransFai lPermFai lMani fRat io) ∗pRepTransientFailHyperCycle

∗(1−nodeTransFaultSysFailCov) : step1 ’=
EvalRepTransSysFail)

& (sensTempWrong1 ’ = 1) & (actuationTempWrong1 ’ = 1) & (
consActuationTempWrong1 ’ = 1)

+ (1− t ransFai lPermFai lMani fRat io) ∗
pRepTransientFailHyperCycle∗nodeTransFaultSysFailCov : (
step1 ’= EvalRepTransSysFail) & (s y s F a i l 1 ’= true)

+ transFa i lPermFai lMani fRat io ∗pRepTransientFailHyperCycle
∗(1−TNFPSysFailCov) : (step1 ’= EvalRepTransSysFail)

& (sensTempWrong1 ’ = 1) & (actuationTempWrong1 ’ = 1) & (
consActuationTempWrong1 ’ = 1) & (r e p l i c a F a i l e d 1 ’ = 1)

& (tmProbabi l i ty1 ’ = 1)
& (ccVectRx11 ’ = 0) & (ccVectRx21 ’ = 0)
& (rese tAct ive1 ’ = 1)
+ transFa i lPermFai lMani fRat io ∗pRepTransientFailHyperCycle∗

TNFPSysFailCov : (step1 ’= EvalRepTransSysFail) & (
s y sF a i l 1 ’= true)

+ (1 − pRepTransientFailHyperCycle) ∗(1− senTransFai lProb) :
(step1 ’= EvalRepTransSysFail)

+ (1 − pRepTransientFailHyperCycle) ∗ senTransFai lProb : (
step1 ’= EvalRepTransSysFail) & (sensTempWrong1 ’ = 1) ;

136 Appendix A. PRISM source code

// I f the r e p l i c a has f a i l e d −> continue
[repTransFa i l] s tep1 = R e p l i c a T r a n s i e n t F a i l & r e p l i c a F a i l e d 1 = 1 −>

(step1 ’= EvalRepTransSysFail) ;

The step EvalRepTransSysFail (Listing A.12) evaluates if the system has failed ei-
ther by more than a majority of replica failing transiently, errorCounterSen >=
majority or by a single replica transient failure propagating and causing the sys-
tem failure sysFail1|sysFail2|sysFail3. Note that by evaluation of the formula
errorCounterSen we only check one variable sensTempWrong(i). This is enough
since we know that all others (actuationTempWrong(i), consActuationTempWrong(i))
will be set to 1 as well in a case of a transient failure.

LISTING A.12: Evaluate the system failure
// I f there are more than a major i ty of permanent r e p l i c a f a i l u r e s

or i f the system has f a i l e d previously −> r e p l i c a i s deemed as
permanently f a u l t y

[e v a l S y s F a i l] s tep1 = EvalRepTransSysFail & (errorCounterSen >=
major i ty | s y s F a i l 1 | s y s F a i l 2 | s y s F a i l 3) −>

(step1 ’= TMProbCalculcation)
& (sensTempWrong1 ’ = 1) & (actuationTempWrong1 ’ = 1) & (

consActuationTempWrong1 ’ = 1) & (r e p l i c a F a i l e d 1 ’ = 1)
& (l inks1 ’ = 0) & (oneSwitchOneLinkInterconnected1 ’= f a l s e) &

(rese tAct ive1 ’ = 0)
& (tmProbabi l i ty1 ’ = 1)
& (ccVectRx11 ’ = 0) & (ccVectRx21 ’ = 0) ;

// I f not −> continue
[e v a l S y s F a i l] s tep1 = EvalRepTransSysFail & ! (errorCounterSen >=

major i ty | s y s F a i l 1 | s y s F a i l 2 | s y s F a i l 3) −>
(step1 ’= TMProbCalculcation) ;

The step TMProbCalculcation (Listing A.13) determines which of the precalcu-
lated TM probabilities pTMLost1...pTMLost3 will be used by the subsequent steps
depending on the surviving network components.

LISTING A.13: Determining the probability of losing all TMs depend-
ing on network topologty failures

[tmProb] step1 = TMProbCalculcation & r e p l i c a F a i l e d 1 = 0 & switches
= 2 & l i n k s 1 = 2 & i n t e r l i n k s = 1 −>

(tmProbabi l i ty1 ’ = 1) & (step1 ’= Sense) ;
[tmProb] step1 = TMProbCalculcation & r e p l i c a F a i l e d 1 = 0 & switches

= 2 & l i n k s 1 = 1 & i n t e r l i n k s = 1 −>
(tmProbabi l i ty1 ’ = 2) & (step1 ’= Sense) ;

[tmProb] step1 = TMProbCalculcation & r e p l i c a F a i l e d 1 = 0 & ! (
switches = 2 & l i n k s 1 = 2 & i n t e r l i n k s = 1) & ! (switches = 2 &
l i n k s 1 = 1 & i n t e r l i n k s = 1) −>

(tmProbabi l i ty1 ’ = 3) & (step1 ’= Sense) ;
[tmProb] step1 = TMProbCalculcation & r e p l i c a F a i l e d 1 = 1 −>

(step1 ’= Sense) ;

The step Sense (Listing A.14) models the sense phase of the extended control ap-
plication cycle. Since we have already modeled the transient faults in the previous
ReplicaTransientFail step, the only thing that can affect the output of this step, sensor
values produced by the replicas, is the reception of the TMs. If no TM is received, this
phase will not be activated and no output will be produced as a result. Therefore,
depending on network topology configuration and predetermined TM loss proba-
bility tmProbability1, all TM replicas can be lost with a corresponding probability

A.1. Main model 137

pTMLost1...pTMLost3 and as a result the variable sensTempWrong1 can be set to
1.

LISTING A.14: Extended control application cycle Sense phase
// I f the r e p l i c a has not f a i l e d permanently or t r a n s i e n t l y −>

sensor value can be wrong due to l o s t TMs
[sense] s tep1 = Sense & r e p l i c a F a i l e d 1 = 0 & sensTempWrong1 = 0 &

tmProbabi l i ty1 = 1 −>
pTMLost1 : (sensTempWrong1 ’ = 1) & (step1 ’= EvalSenseSysFai l)
+ 1 − pTMLost1 : (step1 ’= EvalSenseSysFai l) ;

[sense] s tep1 = Sense & r e p l i c a F a i l e d 1 = 0 & sensTempWrong1 = 0 &
tmProbabi l i ty1 = 2 −>

pTMLost2 : (sensTempWrong1 ’ = 1) & (step1 ’= EvalSenseSysFai l)
+ 1 − pTMLost2 : (step1 ’= EvalSenseSysFai l) ;

[sense] s tep1 = Sense & r e p l i c a F a i l e d 1 = 0 & sensTempWrong1 = 0 &
tmProbabi l i ty1 = 3 −>

pTMLost3 : (sensTempWrong1 ’ = 1) & (step1 ’= EvalSenseSysFai l)
+ 1 − pTMLost3 : (step1 ’= EvalSenseSysFai l) ;

// I f the r e p l i c a has f a i l e d permanently or t r a n s i e n t l y −> continue
[sense] s tep1 = Sense & (r e p l i c a F a i l e d 1 = 1 | sensTempWrong1 = 1)
−>

(step1 ’= EvalSenseSysFai l) ;

The step EvalSenseSysFail (Listing A.15) evaluates if the system will fail after
the Sense step by checking if more than a majority of of sensor values are wrong,
errorCounterSen >= majority.

LISTING A.15: Evaluate the system failure
// I f there are more than a major i ty of permanent r e p l i c a f a i l u r e s

or sensor value e r r o r s or i f the system has f a i l e d previously −>
r e p l i c a i s deemed as permanently f a u l t y

[e v a l S y s F a i l] s tep1 = EvalSenseSysFai l & errorCounterSen >=
major i ty −>

(step1 ’= DiscrepancySense)
& (sensTempWrong1 ’ = 1) & (actuationTempWrong1 ’ = 1) & (

consActuationTempWrong1 ’ = 1) & (r e p l i c a F a i l e d 1 ’ = 1)
& (l inks1 ’ = 0) & (oneSwitchOneLinkInterconnected1 ’= f a l s e) &

(rese tAct ive1 ’ = 0)
& (tmProbabi l i ty1 ’ = 1)
& (ccVectRx11 ’ = 0) & (ccVectRx21 ’ = 0) ;

// I f not −> continue
[e v a l S y s F a i l] s tep1 = EvalSenseSysFai l & errorCounterSen < major i ty

−>
(step1 ’= DiscrepancySense) ;

The step DiscrepancySense (Listing A.16) models the occurrence of permanent
fault detection due to too many transient faults. If the sensor value was wrong due
to transient faults, there is a probability disThshFalsePosProb that due to too many
previously occurred consecutive transient faults discrepancy error counter (DEC)
reaches its threshold and needlessly resets a replica.

LISTING A.16: Discrepancy threshold reached after the sense phase
// I f the r e p l i c a has not f a i l e d and the the sensor value was wrong
−> r e p l i c a may r e s e t due to discrepancy e r r o r counter reaching
i t s threshold with a disThshFalsePosProb

[disSense] s tep1 = DiscrepancySense & r e p l i c a F a i l e d 1 = 0 &
sensTempWrong1 = 1 −>

138 Appendix A. PRISM source code

disThshFalsePosProb : (step1 ’= VCR1CCVectRx1Lost)
& (sensTempWrong1 ’ = 1) & (actuationTempWrong1 ’ = 1) & (

consActuationTempWrong1 ’ = 1) & (r e p l i c a F a i l e d 1 ’ = 1)
& (tmProbabi l i ty1 ’ = 1)
& (ccVectRx11 ’ = 0) & (ccVectRx21 ’ = 0)
& (rese tAct ive1 ’ = 1)
+ 1 − disThshFalsePosProb : (step1 ’= VCR1CCVectRx1Lost) ;

// I f the r e p l i c a has not f a i l e d and the the sensor value was not
wrong −> continue

[disSense] s tep1 = DiscrepancySense & r e p l i c a F a i l e d 1 = 0 &
sensTempWrong1 = 0 −>

(step1 ’= VCR1CCVectRx1Lost) ;
// I f the r e p l i c a has f a i l e d −> continue
[disSense] s tep1 = DiscrepancySense & r e p l i c a F a i l e d 1 = 1 −>

(step1 ’= VCR1CCVectRx1Lost) ;

The steps VCR1CCVectRx1Lost and VCR1CCVectRx2Lost (Listing A.17) model the
first VCR step of the extended control application cycle. Specifically, they model the
loss of cc-vectors received from the other two replicas. Depending on the surviv-
ing network component configurations there are 20 possible scenarios with specific
combinations of probabilities pCCV ectRx1 to pCCV ectRx4 that determine what are
the probabilities of losing these cc-vectors. How these 20 scenarios are detected will
be explained in Section A.2 when talking about the auxiliary VCR model.

LISTING A.17: VCR1
//Scenar io 1
[vcrProbRX1] step1 = VCR1CCVectRx1Lost & (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) −>
(step1 ’= VCR1CCVectRx2Lost) ;
[vcrProbRX2] step1 = VCR1CCVectRx2Lost & (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) −>
(step1 ’=CommErrVCR1) ;

//Scenar io 2
[vcrProbRX1] step1 = VCR1CCVectRx1Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 1 & l i n k s 2 = 0 & l i n k s 3 > 0 −>
(step1 ’= VCR1CCVectRx2Lost) ;
[vcrProbRX2] step1 = VCR1CCVectRx2Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 1 & l i n k s 2 = 0 & l i n k s 3 > 0 −>
pCCVectRx1 : (step1 ’=CommErrVCR1)
+ 1 − pCCVectRx1 : (ccVectRx21 ’ = 1) & (step1 ’=CommErrVCR1) ;

//Scenar io 3
[vcrProbRX1] step1 = VCR1CCVectRx1Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 1 & l i n k s 2 > 0 & l i n k s 3 = 0 −>
pCCVectRx1 : (step1 ’= VCR1CCVectRx2Lost)
+ 1 − pCCVectRx1 : (ccVectRx11 ’ = 1) & (step1 ’= VCR1CCVectRx2Lost) ;
[vcrProbRX2] step1 = VCR1CCVectRx2Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 1 & l i n k s 2 > 0 & l i n k s 3 = 0 −>
(step1 ’=CommErrVCR1) ;

//Scenar io 4
[vcrProbRX1] step1 = VCR1CCVectRx1Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 1 & l i n k s 2 > 0 & l i n k s 3 > 0 −>
pCCVectRx1 : (step1 ’= VCR1CCVectRx2Lost)
+ 1 − pCCVectRx1 : (ccVectRx11 ’ = 1) & (step1 ’= VCR1CCVectRx2Lost) ;

A.1. Main model 139

[vcrProbRX2] step1 = VCR1CCVectRx2Lost & ! (r e p l i c a F a i l e d 1 = 1 |
errorCounterRep > 1) & switches = 1 & l i n k s 2 > 0 & l i n k s 3 > 0 −>

pCCVectRx1 : (step1 ’=CommErrVCR1)
+ 1 − pCCVectRx1 : (ccVectRx21 ’ = 1) & (step1 ’=CommErrVCR1) ;

//Scenar io 5
[vcrProbRX1] step1 = VCR1CCVectRx1Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
1 & l i n k s 2 = 0 & l i n k s 3 = 1 −>

(step1 ’= VCR1CCVectRx2Lost) ;
[vcrProbRX2] step1 = VCR1CCVectRx2Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
1 & l i n k s 2 = 0 & l i n k s 3 = 1 −>

pCCVectRx1 : (step1 ’=CommErrVCR1)
+ 1 − pCCVectRx1 : (ccVectRx21 ’ = 1) & (step1 ’=CommErrVCR1) ;

//Scenar io 6
[vcrProbRX1] step1 = VCR1CCVectRx1Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
1 & l i n k s 2 = 0 & l i n k s 3 = 2 −>

(step1 ’= VCR1CCVectRx2Lost) ;
[vcrProbRX2] step1 = VCR1CCVectRx2Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
1 & l i n k s 2 = 0 & l i n k s 3 = 2 −>

pCCVectRx4 : (step1 ’=CommErrVCR1)
+ 1 − pCCVectRx4 : (ccVectRx21 ’ = 1) & (step1 ’=CommErrVCR1) ;

//Scenar io 7
[vcrProbRX1] step1 = VCR1CCVectRx1Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
2 & l i n k s 2 = 0 & l i n k s 3 = 1 −>

(step1 ’= VCR1CCVectRx2Lost) ;
[vcrProbRX2] step1 = VCR1CCVectRx2Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
2 & l i n k s 2 = 0 & l i n k s 3 = 1 −>

pCCVectRx2 : (step1 ’=CommErrVCR1)
+ 1 − pCCVectRx2 : (ccVectRx21 ’ = 1) & (step1 ’=CommErrVCR1) ;

//Scenar io 8
[vcrProbRX1] step1 = VCR1CCVectRx1Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
2 & l i n k s 2 = 0 & l i n k s 3 = 2 −>

(step1 ’= VCR1CCVectRx2Lost) ;
[vcrProbRX2] step1 = VCR1CCVectRx2Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
2 & l i n k s 2 = 0 & l i n k s 3 = 2 −>

pCCVectRx3 : (step1 ’=CommErrVCR1)
+ 1 − pCCVectRx3 : (ccVectRx21 ’ = 1) & (step1 ’=CommErrVCR1) ;

//Scenar io 9
[vcrProbRX1] step1 = VCR1CCVectRx1Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
1 & l i n k s 2 = 1 & l i n k s 3 = 0 −>

pCCVectRx1 : (step1 ’= VCR1CCVectRx2Lost)
+ 1 − pCCVectRx1 : (ccVectRx11 ’ = 1) & (step1 ’= VCR1CCVectRx2Lost) ;

140 Appendix A. PRISM source code

[vcrProbRX2] step1 = VCR1CCVectRx2Lost & ! (r e p l i c a F a i l e d 1 = 1 |
errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
1 & l i n k s 2 = 1 & l i n k s 3 = 0 −>

(step1 ’=CommErrVCR1) ;

//Scenar io 10
[vcrProbRX1] step1 = VCR1CCVectRx1Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
1 & l i n k s 2 = 2 & l i n k s 3 = 0 −>

pCCVectRx4 : (step1 ’= VCR1CCVectRx2Lost)
+ 1 − pCCVectRx4 : (ccVectRx11 ’ = 1) & (step1 ’= VCR1CCVectRx2Lost) ;
[vcrProbRX2] step1 = VCR1CCVectRx2Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
1 & l i n k s 2 = 2 & l i n k s 3 = 0 −>

(step1 ’=CommErrVCR1) ;

//Scenar io 11
[vcrProbRX1] step1 = VCR1CCVectRx1Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
2 & l i n k s 2 = 1 & l i n k s 3 = 0 −>

pCCVectRx2 : (step1 ’= VCR1CCVectRx2Lost)
+ 1 − pCCVectRx2 : (ccVectRx11 ’ = 1) & (step1 ’= VCR1CCVectRx2Lost) ;
[vcrProbRX2] step1 = VCR1CCVectRx2Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
2 & l i n k s 2 = 1 & l i n k s 3 = 0 −>

(step1 ’=CommErrVCR1) ;

//Scenar io 12
[vcrProbRX1] step1 = VCR1CCVectRx1Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
2 & l i n k s 2 = 2 & l i n k s 3 = 0 −>

pCCVectRx3 : (step1 ’= VCR1CCVectRx2Lost)
+ 1 − pCCVectRx3 : (ccVectRx11 ’ = 1) & (step1 ’= VCR1CCVectRx2Lost) ;
[vcrProbRX2] step1 = VCR1CCVectRx2Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
2 & l i n k s 2 = 2 & l i n k s 3 = 0 −>

(step1 ’=CommErrVCR1) ;

//Scenar io 13
[vcrProbRX1] step1 = VCR1CCVectRx1Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
1 & l i n k s 2 = 1 & l i n k s 3 = 1 −>

pCCVectRx1 : (step1 ’= VCR1CCVectRx2Lost)
+ 1 − pCCVectRx1 : (ccVectRx11 ’ = 1) & (step1 ’= VCR1CCVectRx2Lost) ;
[vcrProbRX2] step1 = VCR1CCVectRx2Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
1 & l i n k s 2 = 1 & l i n k s 3 = 1 −>

pCCVectRx1 : (step1 ’=CommErrVCR1)
+ 1 − pCCVectRx1 : (ccVectRx21 ’ = 1) & (step1 ’=CommErrVCR1) ;

//Scenar io 14
[vcrProbRX1] step1 = VCR1CCVectRx1Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
1 & l i n k s 2 = 1 & l i n k s 3 = 2 −>

pCCVectRx1 : (step1 ’= VCR1CCVectRx2Lost)
+ 1 − pCCVectRx1 : (ccVectRx11 ’ = 1) & (step1 ’= VCR1CCVectRx2Lost) ;

A.1. Main model 141

[vcrProbRX2] step1 = VCR1CCVectRx2Lost & ! (r e p l i c a F a i l e d 1 = 1 |
errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
1 & l i n k s 2 = 1 & l i n k s 3 = 2 −>

pCCVectRx4 : (step1 ’=CommErrVCR1)
+ 1 − pCCVectRx4 : (ccVectRx21 ’ = 1) & (step1 ’=CommErrVCR1) ;

//Scenar io 15
[vcrProbRX1] step1 = VCR1CCVectRx1Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
1 & l i n k s 2 = 2 & l i n k s 3 = 1 −>

pCCVectRx4 : (step1 ’= VCR1CCVectRx2Lost)
+ 1 − pCCVectRx4 : (ccVectRx11 ’ = 1) & (step1 ’= VCR1CCVectRx2Lost) ;
[vcrProbRX2] step1 = VCR1CCVectRx2Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
1 & l i n k s 2 = 2 & l i n k s 3 = 1 −>

pCCVectRx1 : (step1 ’=CommErrVCR1)
+ 1 − pCCVectRx1 : (ccVectRx21 ’ = 1) & (step1 ’=CommErrVCR1) ;

//Scenar io 16
[vcrProbRX1] step1 = VCR1CCVectRx1Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
1 & l i n k s 2 = 2 & l i n k s 3 = 2 −>

pCCVectRx4 : (step1 ’= VCR1CCVectRx2Lost)
+ 1 − pCCVectRx4 : (ccVectRx11 ’ = 1) & (step1 ’= VCR1CCVectRx2Lost) ;
[vcrProbRX2] step1 = VCR1CCVectRx2Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
1 & l i n k s 2 = 2 & l i n k s 3 = 2 −>

pCCVectRx4 : (step1 ’=CommErrVCR1)
+ 1 − pCCVectRx4 : (ccVectRx21 ’ = 1) & (step1 ’=CommErrVCR1) ;

//Scenar io 17
[vcrProbRX1] step1 = VCR1CCVectRx1Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
2 & l i n k s 2 = 1 & l i n k s 3 = 1 −>

pCCVectRx2 : (step1 ’= VCR1CCVectRx2Lost)
+ 1 − pCCVectRx2 : (ccVectRx11 ’ = 1) & (step1 ’= VCR1CCVectRx2Lost) ;
[vcrProbRX2] step1 = VCR1CCVectRx2Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
2 & l i n k s 2 = 1 & l i n k s 3 = 1 −>

pCCVectRx2 : (step1 ’=CommErrVCR1)
+ 1 − pCCVectRx2 : (ccVectRx21 ’ = 1) & (step1 ’=CommErrVCR1) ;

//Scenar io 18
[vcrProbRX1] step1 = VCR1CCVectRx1Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
2 & l i n k s 2 = 1 & l i n k s 3 = 2 −>

pCCVectRx2 : (step1 ’= VCR1CCVectRx2Lost)
+ 1 − pCCVectRx2 : (ccVectRx11 ’ = 1) & (step1 ’= VCR1CCVectRx2Lost) ;
[vcrProbRX2] step1 = VCR1CCVectRx2Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
2 & l i n k s 2 = 1 & l i n k s 3 = 2 −>

pCCVectRx3 : (step1 ’=CommErrVCR1)
+ 1 − pCCVectRx3 : (ccVectRx21 ’ = 1) & (step1 ’=CommErrVCR1) ;

//Scenar io 19

142 Appendix A. PRISM source code

[vcrProbRX1] step1 = VCR1CCVectRx1Lost & ! (r e p l i c a F a i l e d 1 = 1 |
errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
2 & l i n k s 2 = 2 & l i n k s 3 = 1 −>

pCCVectRx3 : (step1 ’= VCR1CCVectRx2Lost)
+ 1 − pCCVectRx3 : (ccVectRx11 ’ = 1) & (step1 ’= VCR1CCVectRx2Lost) ;
[vcrProbRX2] step1 = VCR1CCVectRx2Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
2 & l i n k s 2 = 2 & l i n k s 3 = 1 −>

pCCVectRx2 : (step1 ’=CommErrVCR1)
+ 1 − pCCVectRx2 : (ccVectRx21 ’ = 1) & (step1 ’=CommErrVCR1) ;

//Scenar io 20
[vcrProbRX1] step1 = VCR1CCVectRx1Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
2 & l i n k s 2 = 2 & l i n k s 3 = 2 −>

pCCVectRx3 : (step1 ’= VCR1CCVectRx2Lost)
+ 1 − pCCVectRx3 : (ccVectRx11 ’ = 1) & (step1 ’= VCR1CCVectRx2Lost) ;
[vcrProbRX2] step1 = VCR1CCVectRx2Lost & ! (r e p l i c a F a i l e d 1 = 1 |

errorCounterRep > 1) & switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 =
2 & l i n k s 2 = 2 & l i n k s 3 = 2 −>

pCCVectRx3 : (step1 ’=CommErrVCR1)
+ 1 − pCCVectRx3 : (ccVectRx21 ’ = 1) & (step1 ’=CommErrVCR1) ;

The step CommErrVCR1 (Listing A.18) models the occurrence of permanent fault
detection ad reset after the first VCR due to too many transient faults. If one of the cc-
vector values was wrong due to transient faults, there is a probability commThshFalsePosProb
that due to too many previously occurred consecutive transient faults communica-
tion error counter (CEC) reaches its threshold and needlessly resets a replica.

LISTING A.18: Communication error threshold reached after the 1st
VCR phase

// I f the r e p l i c a has not f a i l e d and there were a t l e a s t one
communication e r r o r (l o s t cc−vector) −> r e p l i c a may r e s e t due to
communication e r r o r counter reaching i t s threshold with a
commThshFalsePosProb

[disVCR] step1 = CommErrVCR1 & r e p l i c a F a i l e d 1 = 0 & ((
r e p l i c a F a i l e d 2 = 0 & ccVectRx11 = 0) | (r e p l i c a F a i l e d 3 = 0 &
ccVectRx21 = 0)) −>

commThshFalsePosProb : (step1 ’=UpdateRXVCR1)
& (sensTempWrong1 ’ = 1) & (actuationTempWrong1 ’ = 1) & (

consActuationTempWrong1 ’ = 1) & (r e p l i c a F a i l e d 1 ’ = 1)
& (tmProbabi l i ty1 ’ = 1)
& (ccVectRx11 ’ = 0) & (ccVectRx21 ’ = 0)
& (rese tAct ive1 ’ = 1)
+ 1 − commThshFalsePosProb : (step1 ’=UpdateRXVCR1) ;

// I f the r e p l i c a has not f a i l e d and there were no communication
e r r o r s −> continue

[disVCR] step1 = CommErrVCR1 & r e p l i c a F a i l e d 1 = 0 & ! ((
r e p l i c a F a i l e d 2 = 0 & ccVectRx11 = 0) | (r e p l i c a F a i l e d 3 = 0 &
ccVectRx21 = 0)) −>

(step1 ’=UpdateRXVCR1) ;
// I f the r e p l i c a has f a i l e d −> continue
[disVCR] step1 = CommErrVCR1 & r e p l i c a F a i l e d 1 = 1 −>

(step1 ’=UpdateRXVCR1) ;

The step UpdateRXVCR1 (Listing A.19) facilitates the execution of the following
steps by transforming the wrong cc-vectors of the other replicas into a failure to
receive these cc-vectors. Since a wrong cc-vector propagates to all the replicas, it can

A.1. Main model 143

be assumed that the cc-vector has not been received in the first place. If the cc-vector
is wrong, it is useless. As a result, this will reduce the predicate condition complexity
of the following steps.

LISTING A.19: Update the received cc-vectors due to wrong value of
the other node replicas after the 1st VCR step

// I f any of the sensor values i s wrong −> update the correspodning
rece ived cc−vector v a r i a b l e s

[updateRxVCRSen] step1 = UpdateRXVCR1 & sensTempWrong1 = 0 &
sensTempWrong2 = 1 & sensTempWrong3 = 0 −>

(step1 ’= EvalVCR1SysFail) & (ccVectRx11 ’ = 0) ;
[updateRxVCRSen] step1 = UpdateRXVCR1 & sensTempWrong1 = 0 &

sensTempWrong2 = 0 & sensTempWrong3 = 1 −>
(step1 ’= EvalVCR1SysFail) & (ccVectRx21 ’ = 0) ;

[updateRxVCRSen] step1 = UpdateRXVCR1 & sensTempWrong1 = 0 &
sensTempWrong2 = 1 & sensTempWrong3 = 1 −>

(step1 ’= EvalVCR1SysFail) & (ccVectRx11 ’ = 0) & (ccVectRx21
’ = 0) ;

// I f not −> continue
[updateRxVCRSen] step1 = UpdateRXVCR1 & (sensTempWrong1 = 1 |

sensTempWrong2 = 0 & sensTempWrong3 = 0) −>
(step1 ’= EvalVCR1SysFail) ;

The step EvalVCR1SysFail (Listing A.20) evaluates if the system will fail after the
first VCR step.

The values being exchanged are the sensor values. Each of the obtained values
might differ. The voting that is performed on these values afterwards includes inex-
act matching. This means that a voting comparison must include these differences.
Usually a function of bounded average is being used. In order for all the non-faulty
replicas to obtain the same voting result, they have to use the exact same set of val-
ues.

To explain this step we use the MS vector defined in Section 5.3.4 with substitute
values true/false with 1/0. As can be seen by Figure A.1 there are 3 cases that
correspond to the first 3 group of commands from Listing A.20. They are represented
by different values in the matrix that represents the MS vector.

The last matrix (bottom-rigth) shows the connection with prism variables. The
numbers represent the i and j from ccV ectRxij variables. Note that diagonal val-
ues are always fixed. This is the case because we assume that a permanently failed
replica does not have a value that can be used and the non-failed replicas always
have their own value whether it is wrong or not. This matrix is interpreted a bit
differently for this step, since now the diagonal values represent if the node replicas
have their own cc-vectors or not, not the switch replicas.

Following are the explanation of the three cases and the corresponding group of
commands:

First, if a replica has failed, we can see that the corresponding row and the col-
umn have fixed values, all 0. This means that other replicas cannot use the values
produced by this one and the replica itself is useless (it has no correct values). In this
scenario, if at least one cc-vector is lost, that replica will be unable to vote and as a
result only one voting capable replica will remain. This leads to the system failure.

Second, if one replica has produced a wrong sensor value, this value will prop-
agate and all the replicas will use the same wrong value. This is equivalent as not
having a cc-vector received. Remember that this optimization was done by the pre-
vious step UpdateRXVCR1. Now, if any two values from different replicas (rows) are

144 Appendix A. PRISM source code

FIGURE A.1: Evaluate messages lost in the VCR

lost, there is no majority of voting capable replicas and as a result the system will
fail.

Last, we evaluate the case where no replica has failed and no wrong sensor val-
ues were produced. If any two values from different replicas (rows) are lost that do
not correspond to the same cc-vector (different columns), the system will fail. Note
that now all the replicas are voting capable. However, since the matching used by
the voting is inexact, all the replicas have to vote with the exact same set of values
in order to yield the same voting results. If we have two cc-vector losses by two
different replicas not corresponding to the same cc-vector, this is not the case, i.e.
if ccV ectRx11 = 0 and ccV ectRx22 = 0, this means that each replica will have a
different set of values: replica 1:1,3; replica 2:1,2; replica 3:1,2,3;. Each replica might
yield a different voting result and this eventually leads to the system failure.

LISTING A.20: Evaluate if the system will fail after the 1st VCR phase
// I f the r e p l i c a has f a i l e d and any of the surviving r e p l i c a s l o s t

a cc−vector −> r e p l i c a i s deemed as permanently f a u l t y (2
r e p l i c a s unable to vote)

[evalVCRSen] step1 = EvalVCR1SysFail & r e p l i c a F a i l e d 1 = 1 &
r e p l i c a F a i l e d 2 = 0 & r e p l i c a F a i l e d 3 = 0 & (ccVectRx22 = 0 |
ccVectRx23 = 0) −>

(step1 ’= VoteSenControl)
& (sensTempWrong1 ’ = 1) & (actuationTempWrong1 ’ = 1) & (

consActuationTempWrong1 ’ = 1) & (r e p l i c a F a i l e d 1 ’ = 1)
& (l inks1 ’ = 0) & (oneSwitchOneLinkInterconnected1 ’= f a l s e) & (

rese tAct ive1 ’ = 0)
& (tmProbabi l i ty1 ’ = 1)

A.1. Main model 145

& (ccVectRx11 ’ = 0) & (ccVectRx21 ’ = 0) ;
[evalVCRSen] step1 = EvalVCR1SysFail & r e p l i c a F a i l e d 1 = 0 &

r e p l i c a F a i l e d 2 = 1 & r e p l i c a F a i l e d 3 = 0 & (ccVectRx21 = 0 |
ccVectRx13 = 0) −>

(step1 ’= VoteSenControl)
& (sensTempWrong1 ’ = 1) & (actuationTempWrong1 ’ = 1) & (

consActuationTempWrong1 ’ = 1) & (r e p l i c a F a i l e d 1 ’ = 1)
& (l inks1 ’ = 0) & (oneSwitchOneLinkInterconnected1 ’= f a l s e) & (

rese tAct ive1 ’ = 0)
& (tmProbabi l i ty1 ’ = 1)
& (ccVectRx11 ’ = 0) & (ccVectRx21 ’ = 0) ;
[evalVCRSen] step1 = EvalVCR1SysFail & r e p l i c a F a i l e d 1 = 0 &

r e p l i c a F a i l e d 2 = 0 & r e p l i c a F a i l e d 3 = 1 & (ccVectRx11 = 0 |
ccVectRx12 = 0) −>

(step1 ’= VoteSenControl)
& (sensTempWrong1 ’ = 1) & (actuationTempWrong1 ’ = 1) & (

consActuationTempWrong1 ’ = 1) & (r e p l i c a F a i l e d 1 ’ = 1)
& (l inks1 ’ = 0) & (oneSwitchOneLinkInterconnected1 ’= f a l s e) & (

rese tAct ive1 ’ = 0)
& (tmProbabi l i ty1 ’ = 1)
& (ccVectRx11 ’ = 0) & (ccVectRx21 ’ = 0) ;

// I f no r e p l i c a has f a i l e d and a sensor value i s wrong (e n t i r e
column) and any of the other cc−vecors are l o s t (not
correspodning to wrong sensor value) −> r e p l i c a i s deemed as
permanently f a u l t y (2 r e p l i c a s unable to vote)

[evalVCRSen] step1 = EvalVCR1SysFail & r e p l i c a F a i l e d 1 = 0 &
r e p l i c a F a i l e d 2 = 0 & r e p l i c a F a i l e d 3 = 0

& sensTempWrong1 = 1 & sensTempWrong2 = 0 & sensTempWrong3 = 0
& ((ccVectRx11 = 0 & ccVectRx22 = 0) | (ccVectRx11 = 0 &

ccVectRx23 = 0) | (ccVectRx21 = 0 & ccVectRx22 = 0) | (
ccVectRx21 = 0 & ccVectRx23 = 0)

| (ccVectRx22 = 0 & ccVectRx23 = 0)) −>
(step1 ’= VoteSenControl)
& (sensTempWrong1 ’ = 1) & (actuationTempWrong1 ’ = 1) & (

consActuationTempWrong1 ’ = 1) & (r e p l i c a F a i l e d 1 ’ = 1)
& (l inks1 ’ = 0) & (oneSwitchOneLinkInterconnected1 ’= f a l s e) & (

rese tAct ive1 ’ = 0)
& (tmProbabi l i ty1 ’ = 1)
& (ccVectRx11 ’ = 0) & (ccVectRx21 ’ = 0) ;
[evalVCRSen] step1 = EvalVCR1SysFail & r e p l i c a F a i l e d 1 = 0 &

r e p l i c a F a i l e d 2 = 0 & r e p l i c a F a i l e d 3 = 0
& sensTempWrong1 = 0 & sensTempWrong2 = 1 & sensTempWrong3 = 0
& ((ccVectRx21 = 0 & ccVectRx12 = 0) | (ccVectRx21 = 0 &

ccVectRx22 = 0) | (ccVectRx21 = 0 & ccVectRx13 = 0)
| (ccVectRx11 = 0 & ccVectRx13 = 0) | (ccVectRx22 = 0 &

ccVectRx13 = 0)) −>
(step1 ’= VoteSenControl)
& (sensTempWrong1 ’ = 1) & (actuationTempWrong1 ’ = 1) & (

consActuationTempWrong1 ’ = 1) & (r e p l i c a F a i l e d 1 ’ = 1)
& (l inks1 ’ = 0) & (oneSwitchOneLinkInterconnected1 ’= f a l s e) & (

rese tAct ive1 ’ = 0)
& (tmProbabi l i ty1 ’ = 1)
& (ccVectRx11 ’ = 0) & (ccVectRx21 ’ = 0) ;
[evalVCRSen] step1 = EvalVCR1SysFail & r e p l i c a F a i l e d 1 = 0 &

r e p l i c a F a i l e d 2 = 0 & r e p l i c a F a i l e d 3 = 0
& sensTempWrong1 = 0 & sensTempWrong2 = 0 & sensTempWrong3 = 1

146 Appendix A. PRISM source code

& ((ccVectRx11 = 0 & ccVectRx12 = 0) | (ccVectRx11 = 0 &
ccVectRx13 = 0) | (ccVectRx11 = 0 & ccVectRx23 = 0)

| (ccVectRx12 = 0 & ccVectRx13 = 0) | (ccVectRx12 = 0 &
ccVectRx23 = 0)) −>

(step1 ’= VoteSenControl)
& (sensTempWrong1 ’ = 1) & (actuationTempWrong1 ’ = 1) & (

consActuationTempWrong1 ’ = 1) & (r e p l i c a F a i l e d 1 ’ = 1)
& (l inks1 ’ = 0) & (oneSwitchOneLinkInterconnected1 ’= f a l s e) & (

rese tAct ive1 ’ = 0)
& (tmProbabi l i ty1 ’ = 1)
& (ccVectRx11 ’ = 0) & (ccVectRx21 ’ = 0) ;

// I f no r e p l i c a has f a i l e d and no sensor value i s wrong and two
r e p l i c a l o s t two cc−vecors or two asymmetric cc−v e c t o r s are l o s t
(sensor voting cons i tency not guaranteed) −> r e p l i c a i s deemed
as permanently f a u l t y (2 r e p l i c a s unable to vote)

[evalVCRSen] step1 = EvalVCR1SysFail & r e p l i c a F a i l e d 1 = 0 &
r e p l i c a F a i l e d 2 = 0 & r e p l i c a F a i l e d 3 = 0

& sensTempWrong1 = 0 & sensTempWrong2 = 0 & sensTempWrong3 = 0
& ((errorCounterComm >= major i ty)

| (ccVectRx11 = 0 & ccVectRx12 = 0) | (ccVectRx11 = 0 &
ccVectRx22 = 0) | (ccVectRx11 = 0 & ccVectRx13 = 0)

| (ccVectRx21 = 0 & ccVectRx12 = 0) | (ccVectRx21 = 0 &
ccVectRx13 = 0) | (ccVectRx21 = 0 & ccVectRx23 = 0)

| (ccVectRx12 = 0 & ccVectRx23 = 0) | (ccVectRx22 = 0 &
ccVectRx13 = 0) | (ccVectRx22 = 0 & ccVectRx23 = 0)) −>

(step1 ’= VoteSenControl)
& (sensTempWrong1 ’ = 1) & (actuationTempWrong1 ’ = 1) & (

consActuationTempWrong1 ’ = 1) & (r e p l i c a F a i l e d 1 ’ = 1)
& (l inks1 ’ = 0) & (oneSwitchOneLinkInterconnected1 ’= f a l s e) & (

rese tAct ive1 ’ = 0)
& (tmProbabi l i ty1 ’ = 1)
& (ccVectRx11 ’ = 0) & (ccVectRx21 ’ = 0) ;

// I f none of the above ocurred −> continue
[evalVCRSen] step1 = EvalVCR1SysFail
& ! (r e p l i c a F a i l e d 1 = 1 & r e p l i c a F a i l e d 2 = 0 & r e p l i c a F a i l e d 3 = 0 &

(ccVectRx22 = 0 | ccVectRx23 = 0))
& ! (r e p l i c a F a i l e d 1 = 0 & r e p l i c a F a i l e d 2 = 1 & r e p l i c a F a i l e d 3 = 0 &

(ccVectRx21 = 0 | ccVectRx13 = 0))
& ! (r e p l i c a F a i l e d 1 = 0 & r e p l i c a F a i l e d 2 = 0 & r e p l i c a F a i l e d 3 = 1 &

(ccVectRx11 = 0 | ccVectRx12 = 0))
& ! (r e p l i c a F a i l e d 1 = 0 & r e p l i c a F a i l e d 2 = 0 & r e p l i c a F a i l e d 3 = 0

& sensTempWrong1 = 1 & sensTempWrong2 = 0 & sensTempWrong3 = 0
& ((ccVectRx11 = 0 & ccVectRx22 = 0) | (ccVectRx11 = 0 &

ccVectRx23 = 0) | (ccVectRx21 = 0 & ccVectRx22 = 0) | (
ccVectRx21 = 0 & ccVectRx23 = 0) | (ccVectRx22 = 0 &
ccVectRx23 = 0)))

& ! (r e p l i c a F a i l e d 1 = 0 & r e p l i c a F a i l e d 2 = 0 & r e p l i c a F a i l e d 3 = 0
& sensTempWrong1 = 0 & sensTempWrong2 = 1 & sensTempWrong3 = 0

& ((ccVectRx21 = 0 & ccVectRx12 = 0) | (ccVectRx21 = 0 &
ccVectRx22 = 0) | (ccVectRx21 = 0 & ccVectRx13 = 0) | (
ccVectRx11 = 0 & ccVectRx13 = 0) | (ccVectRx22 = 0 &
ccVectRx13 = 0)))

& ! (r e p l i c a F a i l e d 1 = 0 & r e p l i c a F a i l e d 2 = 0 & r e p l i c a F a i l e d 3 = 0
& sensTempWrong1 = 0 & sensTempWrong2 = 0 & sensTempWrong3 = 1

A.1. Main model 147

& ((ccVectRx11 = 0 & ccVectRx12 = 0) | (ccVectRx11 = 0 &
ccVectRx13 = 0) | (ccVectRx11 = 0 & ccVectRx23 = 0) | (
ccVectRx12 = 0 & ccVectRx13 = 0) | (ccVectRx12 = 0 &
ccVectRx23 = 0)))

& ! (r e p l i c a F a i l e d 1 = 0 & r e p l i c a F a i l e d 2 = 0 & r e p l i c a F a i l e d 3 = 0 &
sensTempWrong1 = 0 & sensTempWrong2 = 0 & sensTempWrong3 = 0

& ((errorCounterComm >= major i ty)
| (ccVectRx11 = 0 & ccVectRx12 = 0) | (ccVectRx11 = 0 &

ccVectRx22 = 0) | (ccVectRx11 = 0 & ccVectRx13 = 0)
| (ccVectRx21 = 0 & ccVectRx12 = 0) | (ccVectRx21 = 0 &

ccVectRx13 = 0) | (ccVectRx21 = 0 & ccVectRx23 = 0)
| (ccVectRx12 = 0 & ccVectRx23 = 0) | (ccVectRx22 = 0 &

ccVectRx13 = 0) | (ccVectRx22 = 0 & ccVectRx23 = 0))) −>
(step1 ’= VoteSenControl) ;

The step VoteSenControl (Listing A.21) models the merged vote on sensor values
and control phases of the extended control application cycle.

The first command evaluates if there are at least a majority of sensor values. If
there are not, the output of this phase will be wrong, actuationTempWrong1 = 1.

The next three commands model the loss of TMs, same as in step Sense. De-
pending on network topology configuration and predetermined TM loss probabil-
ity tmProbability1, all TM replicas can be lost with a corresponding probability
pTMLost1...pTMLost3 and as a result the variable actuationTempWrong1 can be
set to 1.

LISTING A.21: Vote on sensor values and control phase of the ex-
tended control application cycle

// I f the r e p l i c a has not f a i l e d permanently or t r a n s i e n t l y and
there i s not enough messages f o r voting −> a c t u a t i o n value w i l l
be wrong

[voteSenControl] s tep1 = VoteSenControl & r e p l i c a F a i l e d 1 = 0 &
actuationTempWrong1 = 0 & (ccVectRx11 + ccVectRx21 = 0 |
ccVectRx11 + ccVectRx21 = 1 & sensTempWrong1 = 1) −>

(actuationTempWrong1 ’ = 1) & (step1 ’= EvalVoteSenControlSysFai l) ;
// I f the r e p l i c a has not f a i l e d permanently or t r a n s i e n t l y and

there i s enough messages f o r voting −> a c t u a t i o n value may be
wrong due to l o s t TMs

[voteSenControl] s tep1 = VoteSenControl & r e p l i c a F a i l e d 1 = 0 &
actuationTempWrong1 = 0 & tmProbabi l i ty1 = 1 & ! (ccVectRx11 +
ccVectRx21 = 0 | ccVectRx11 + ccVectRx21 = 1 & sensTempWrong1 =
1) −>

pTMLost1 : (actuationTempWrong1 ’ = 1) & (step1 ’=
EvalVoteSenControlSysFai l)

+ 1 − pTMLost1 : (step1 ’= EvalVoteSenControlSysFai l) ;
[voteSenControl] s tep1 = VoteSenControl & r e p l i c a F a i l e d 1 = 0 &

actuationTempWrong1 = 0 & tmProbabi l i ty1 = 2 & ! (ccVectRx11 +
ccVectRx21 = 0 | ccVectRx11 + ccVectRx21 = 1 & sensTempWrong1 =
1) −>

pTMLost2 : (actuationTempWrong1 ’ = 1) & (step1 ’=
EvalVoteSenControlSysFai l)

+ 1 − pTMLost2 : (step1 ’= EvalVoteSenControlSysFai l) ;
[voteSenControl] s tep1 = VoteSenControl & r e p l i c a F a i l e d 1 = 0 &

actuationTempWrong1 = 0 & tmProbabi l i ty1 = 3 & ! (ccVectRx11 +
ccVectRx21 = 0 | ccVectRx11 + ccVectRx21 = 1 & sensTempWrong1 =
1) −>

pTMLost3 : (actuationTempWrong1 ’ = 1) & (step1 ’=
EvalVoteSenControlSysFai l)

148 Appendix A. PRISM source code

+ 1 − pTMLost3 : (step1 ’= EvalVoteSenControlSysFai l) ;
// I f the r e p l i c a has f a i l e d permanently or t r a n s i e n t l y −> continue
[voteSenControl] s tep1 = VoteSenControl & (r e p l i c a F a i l e d 1 = 1 |

actuationTempWrong1 = 1) −>
(step1 ’= EvalVoteSenControlSysFai l) ;

The step EvalVoteSenControlSysFail (Listing A.22) evaluates if the system will fail
after the VoteSenControl step by checking if more than a majority of of actuation
(consensus sensor) values are wrong, errorCounterCtrl >= majority.

LISTING A.22: Evaluate the system failure
// I f there are more than a major i ty of a c t u a t i o n or r e p l i c a

f a i l u r e s −> r e p l i c a i s deemed as permanently f a u l t y
[e v a l S y s F a i l] s tep1 = EvalVoteSenControlSysFai l & errorCounterCtr l

>= major i ty −>
(step1 ’= DiscrepancyVoteSensControl)
& (sensTempWrong1 ’ = 1) & (actuationTempWrong1 ’ = 1) & (

consActuationTempWrong1 ’ = 1) & (r e p l i c a F a i l e d 1 ’ = 1)
& (l inks1 ’ = 0) & (oneSwitchOneLinkInterconnected1 ’= f a l s e) &

(rese tAct ive1 ’ = 0)
& (tmProbabi l i ty1 ’ = 1)
& (ccVectRx11 ’ = 0) & (ccVectRx21 ’ = 0) ;

// I f not −> continue
[e v a l S y s F a i l] s tep1 = EvalVoteSenControlSysFai l & errorCounterCtr l

< major i ty −>
(step1 ’= DiscrepancyVoteSensControl) & (ccVectRx11 ’ = 0) & (

ccVectRx21 ’ = 0) ;

The step DiscrepancyVoteSensControl (Listing A.23) models the occurrence of per-
manent fault detection due to too many transient faults. If the actuation (consensus
sensor) value was wrong due to transient faults, there is a probability disThshFalsePosProb
that due to too many previously occurred consecutive transient faults discrepancy
error counter (DEC) reaches its threshold and needlessly resets a replica.

LISTING A.23: Discrepancy threshold reached after the vote on sen-
sor and control phase

// I f the r e p l i c a has not f a i l e d and the the a c t u a t i o n value was
wrong −> r e p l i c a may r e s e t due to discrepancy e r r o r counter
reaching i t s threshold with a disThshFalsePosProb

[d i s C t r l] s tep1 = DiscrepancyVoteSensControl & r e p l i c a F a i l e d 1 = 0 &
actuationTempWrong1 = 1 −>

disThshFalsePosProb : (step1 ’= VCR2CCVectRx1Lost)
& (sensTempWrong1 ’ = 1) & (actuationTempWrong1 ’ = 1) & (

consActuationTempWrong1 ’ = 1) & (r e p l i c a F a i l e d 1 ’ = 1)
& (tmProbabi l i ty1 ’ = 1)
& (ccVectRx11 ’ = 0) & (ccVectRx21 ’ = 0)
& (rese tAct ive1 ’ = 1)
+ 1 − disThshFalsePosProb : (step1 ’= VCR2CCVectRx1Lost) ;

// I f the r e p l i c a has not f a i l e d and the the a c t u a t i o n value was not
wrong −> continue

[d i s C t r l] s tep1 = DiscrepancyVoteSensControl & r e p l i c a F a i l e d 1 = 0 &
actuationTempWrong1 = 0 −>

(step1 ’= VCR2CCVectRx1Lost) ;
// I f the r e p l i c a has f a i l e d −> continue
[d i s C t r l] s tep1 = DiscrepancyVoteSensControl & r e p l i c a F a i l e d 1 = 1
−>

(step1 ’= VCR2CCVectRx1Lost) ;

A.1. Main model 149

The step VCR2CCVectRx1Lost and VCR2CCVectRx2Lost are completely identical
to the steps VCR1CCVectRx1Lost and VCR1CCVectRx2Lost from Listing A.17 and
they model the second VCR phase of the extended control application cycle.

The step CommErrVCR2 is identical to the step CommErrVCR1 from Listing A.18.
It models the occurrence of false positive detection of permanent fault after the sec-
ond VCR.

The step UpdateRXVCR2 is identical to the step UpdateRXVCR1 from Listing A.19
and the modeling logic is completely the same, i.e. the transformation of the wrong
cc-vectors of the other replicas into the failed reception of those cc-vector is per-
formed.

The step EvalVCR2SysFail (Listing A.24) evaluates if the system will fail after the
second VCR phase.

The values being exchanged now are the actuation values. Since replica deter-
minism is being enforced, each replica will produce exactly the same actuation value.
The voting that is performed on these values afterwards includes exact matching.
The voting comparison is much simpler since the values are expected to be identi-
cal. Now, this means that the set of values does not have to be exactly the same for
all the replicas. It is sufficient that at least a majority of replicas (2) vote with at least
a majority of values (2).

As can be seen by Figure A.1 there are 3 cases that correspond to the first 3 group
of commands from Listing A.24.

The first two set of commands are equivalent to the step EvalVCR1SysFail. The
last set of commands is now different since replicas do not need to use the same
set of values for the successful voting. Now, the condition that leads to the system
failure is that at least a majority of replicas will be unable to vote due to too many
cc-vectors lost, errorCounterComm >= majority.

LISTING A.24: Evaluate if the system will fail after the 2nd VCR
phase

// I f the r e p l i c a has f a i l e d and any of the surviving r e p l i c a s l o s t
a cc−vector −> r e p l i c a i s deemed as permanently f a u l t y (2
r e p l i c a s unable to vote)

[evalVCRAct] s tep1 = EvalVCR2SysFail & r e p l i c a F a i l e d 1 = 1 &
r e p l i c a F a i l e d 2 = 0 & r e p l i c a F a i l e d 3 = 0 & (ccVectRx22 = 0 |
ccVectRx23 = 0) −>

(step1 ’= VoteActActuate)
& (sensTempWrong1 ’ = 1) & (actuationTempWrong1 ’ = 1) & (

consActuationTempWrong1 ’ = 1) & (r e p l i c a F a i l e d 1 ’ = 1)
& (l inks1 ’ = 0) & (oneSwitchOneLinkInterconnected1 ’= f a l s e) & (

rese tAct ive1 ’ = 0)
& (tmProbabi l i ty1 ’ = 1)
& (ccVectRx11 ’ = 0) & (ccVectRx21 ’ = 0) ;
[evalVCRAct] s tep1 = EvalVCR2SysFail & r e p l i c a F a i l e d 1 = 0 &

r e p l i c a F a i l e d 2 = 1 & r e p l i c a F a i l e d 3 = 0 & (ccVectRx21 = 0 |
ccVectRx13 = 0) −>

(step1 ’= VoteActActuate)
& (sensTempWrong1 ’ = 1) & (actuationTempWrong1 ’ = 1) & (

consActuationTempWrong1 ’ = 1) & (r e p l i c a F a i l e d 1 ’ = 1)
& (l inks1 ’ = 0) & (oneSwitchOneLinkInterconnected1 ’= f a l s e) & (

rese tAct ive1 ’ = 0)
& (tmProbabi l i ty1 ’ = 1)
& (ccVectRx11 ’ = 0) & (ccVectRx21 ’ = 0) ;

150 Appendix A. PRISM source code

[evalVCRAct] s tep1 = EvalVCR2SysFail & r e p l i c a F a i l e d 1 = 0 &
r e p l i c a F a i l e d 2 = 0 & r e p l i c a F a i l e d 3 = 1 & (ccVectRx11 = 0 |
ccVectRx12 = 0) −>

(step1 ’= VoteActActuate)
& (sensTempWrong1 ’ = 1) & (actuationTempWrong1 ’ = 1) & (

consActuationTempWrong1 ’ = 1) & (r e p l i c a F a i l e d 1 ’ = 1)
& (l inks1 ’ = 0) & (oneSwitchOneLinkInterconnected1 ’= f a l s e) & (

rese tAct ive1 ’ = 0)
& (tmProbabi l i ty1 ’ = 1)
& (ccVectRx11 ’ = 0) & (ccVectRx21 ’ = 0) ;

// I f no r e p l i c a has f a i l e d and a sensor value i s wrong (e n t i r e
column) and any of the other cc−vecors are l o s t (not
correspodning to wrong sensor value) −> r e p l i c a i s deemed as
permanently f a u l t y (2 r e p l i c a s unable to vote)

[evalVCRAct] s tep1 = EvalVCR2SysFail & r e p l i c a F a i l e d 1 = 0 &
r e p l i c a F a i l e d 2 = 0 & r e p l i c a F a i l e d 3 = 0

& sensTempWrong1 = 1 & sensTempWrong2 = 0 & sensTempWrong3 = 0
& ((ccVectRx11 = 0 & ccVectRx22 = 0) | (ccVectRx11 = 0 &

ccVectRx23 = 0) | (ccVectRx21 = 0 & ccVectRx22 = 0) | (
ccVectRx21 = 0 & ccVectRx23 = 0)

| (ccVectRx22 = 0 & ccVectRx23 = 0)) −>
(step1 ’= VoteActActuate)
& (sensTempWrong1 ’ = 1) & (actuationTempWrong1 ’ = 1) & (

consActuationTempWrong1 ’ = 1) & (r e p l i c a F a i l e d 1 ’ = 1)
& (l inks1 ’ = 0) & (oneSwitchOneLinkInterconnected1 ’= f a l s e) & (

rese tAct ive1 ’ = 0)
& (tmProbabi l i ty1 ’ = 1)
& (ccVectRx11 ’ = 0) & (ccVectRx21 ’ = 0) ;
[evalVCRAct] s tep1 = EvalVCR2SysFail & r e p l i c a F a i l e d 1 = 0 &

r e p l i c a F a i l e d 2 = 0 & r e p l i c a F a i l e d 3 = 0
& sensTempWrong1 = 0 & sensTempWrong2 = 1 & sensTempWrong3 = 0
& ((ccVectRx21 = 0 & ccVectRx12 = 0) | (ccVectRx21 = 0 &

ccVectRx22 = 0) | (ccVectRx21 = 0 & ccVectRx13 = 0)
| (ccVectRx11 = 0 & ccVectRx13 = 0) | (ccVectRx22 = 0 &

ccVectRx13 = 0)) −>
(step1 ’= VoteActActuate)
& (sensTempWrong1 ’ = 1) & (actuationTempWrong1 ’ = 1) & (

consActuationTempWrong1 ’ = 1) & (r e p l i c a F a i l e d 1 ’ = 1)
& (l inks1 ’ = 0) & (oneSwitchOneLinkInterconnected1 ’= f a l s e) & (

rese tAct ive1 ’ = 0)
& (tmProbabi l i ty1 ’ = 1)
& (ccVectRx11 ’ = 0) & (ccVectRx21 ’ = 0) ;
[evalVCRAct] s tep1 = EvalVCR2SysFail & r e p l i c a F a i l e d 1 = 0 &

r e p l i c a F a i l e d 2 = 0 & r e p l i c a F a i l e d 3 = 0
& sensTempWrong1 = 0 & sensTempWrong2 = 0 & sensTempWrong3 = 1
& ((ccVectRx11 = 0 & ccVectRx12 = 0) | (ccVectRx11 = 0 &

ccVectRx13 = 0) | (ccVectRx11 = 0 & ccVectRx23 = 0)
| (ccVectRx12 = 0 & ccVectRx13 = 0) | (ccVectRx12 = 0 &

ccVectRx23 = 0)) −>
(step1 ’= VoteActActuate)
& (sensTempWrong1 ’ = 1) & (actuationTempWrong1 ’ = 1) & (

consActuationTempWrong1 ’ = 1) & (r e p l i c a F a i l e d 1 ’ = 1)
& (l inks1 ’ = 0) & (oneSwitchOneLinkInterconnected1 ’= f a l s e) & (

rese tAct ive1 ’ = 0)
& (tmProbabi l i ty1 ’ = 1)
& (ccVectRx11 ’ = 0) & (ccVectRx21 ’ = 0) ;

A.1. Main model 151

// I f no r e p l i c a has f a i l e d and no sensor value i s wrong and two
r e p l i c a l o s t two cc−vecors −> r e p l i c a i s deemed as permanently
f a u l t y (2 r e p l i c a s unable to vote)

[evalVCRAct] s tep1 = EvalVCR2SysFail & r e p l i c a F a i l e d 1 = 0 &
r e p l i c a F a i l e d 2 = 0 & r e p l i c a F a i l e d 3 = 0

& sensTempWrong1 = 0 & sensTempWrong2 = 0 & sensTempWrong3 = 0
& errorCounterComm >= major i ty −>
(step1 ’= VoteActActuate)
& (sensTempWrong1 ’ = 1) & (actuationTempWrong1 ’ = 1) & (

consActuationTempWrong1 ’ = 1) & (r e p l i c a F a i l e d 1 ’ = 1)
& (l inks1 ’ = 0) & (oneSwitchOneLinkInterconnected1 ’= f a l s e) & (

rese tAct ive1 ’ = 0)
& (tmProbabi l i ty1 ’ = 1)
& (ccVectRx11 ’ = 0) & (ccVectRx21 ’ = 0) ;

// I f none of the above ocurred −> continue
[evalVCRAct] s tep1 = EvalVCR2SysFail
& ! (r e p l i c a F a i l e d 1 = 1 & r e p l i c a F a i l e d 2 = 0 & r e p l i c a F a i l e d 3 = 0 &

(ccVectRx22 = 0 | ccVectRx23 = 0))
& ! (r e p l i c a F a i l e d 1 = 0 & r e p l i c a F a i l e d 2 = 1 & r e p l i c a F a i l e d 3 = 0 &

(ccVectRx21 = 0 | ccVectRx13 = 0))
& ! (r e p l i c a F a i l e d 1 = 0 & r e p l i c a F a i l e d 2 = 0 & r e p l i c a F a i l e d 3 = 1 &

(ccVectRx11 = 0 | ccVectRx12 = 0))
& ! (r e p l i c a F a i l e d 1 = 0 & r e p l i c a F a i l e d 2 = 0 & r e p l i c a F a i l e d 3 = 0

& sensTempWrong1 = 1 & sensTempWrong2 = 0 & sensTempWrong3 = 0
& ((ccVectRx11 = 0 & ccVectRx22 = 0) | (ccVectRx11 = 0 &

ccVectRx23 = 0) | (ccVectRx21 = 0 & ccVectRx22 = 0) | (
ccVectRx21 = 0 & ccVectRx23 = 0) | (ccVectRx22 = 0 &
ccVectRx23 = 0)))

& ! (r e p l i c a F a i l e d 1 = 0 & r e p l i c a F a i l e d 2 = 0 & r e p l i c a F a i l e d 3 = 0
& sensTempWrong1 = 0 & sensTempWrong2 = 1 & sensTempWrong3 = 0

& ((ccVectRx21 = 0 & ccVectRx12 = 0) | (ccVectRx21 = 0 &
ccVectRx22 = 0) | (ccVectRx21 = 0 & ccVectRx13 = 0) | (
ccVectRx11 = 0 & ccVectRx13 = 0) | (ccVectRx22 = 0 &
ccVectRx13 = 0)))

& ! (r e p l i c a F a i l e d 1 = 0 & r e p l i c a F a i l e d 2 = 0 & r e p l i c a F a i l e d 3 = 0
& sensTempWrong1 = 0 & sensTempWrong2 = 0 & sensTempWrong3 = 1
& ((ccVectRx11 = 0 & ccVectRx12 = 0) | (ccVectRx11 = 0 &

ccVectRx13 = 0) | (ccVectRx11 = 0 & ccVectRx23 = 0) | (
ccVectRx12 = 0 & ccVectRx13 = 0) | (ccVectRx12 = 0 &
ccVectRx23 = 0)))

& ! (r e p l i c a F a i l e d 1 = 0 & r e p l i c a F a i l e d 2 = 0 & r e p l i c a F a i l e d 3 = 0 &
sensTempWrong1 = 0 & sensTempWrong2 = 0 & sensTempWrong3 = 0 &
errorCounterComm >= major i ty) −>

(step1 ’= VoteActActuate) ;

The step VoteActActuate (Listing A.25) models the merged vote on actuation val-
ues and actuate phases of the extended control application cycle.

The first command evaluates if there are at least a majority of actuation values. If
there are not, the output of this phase will be wrong, consActuationTempWrong1 =
1.

The next three commands model the loss of TMs, same as in step Sense. De-
pending on network topology configuration and predetermined TM loss probabil-
ity tmProbability1, all TM replicas can be lost with a corresponding probability
pTMLost1...pTMLost3 and as a result the variable consActuationTempWrong1 can
be set to 1.

152 Appendix A. PRISM source code

LISTING A.25: Vote on actuation values and actuate phase of the ex-
tended control application cycle

// I f the r e p l i c a has not f a i l e d permanently or t r a n s i e n t l y and
there i s not enough messages f o r voting −> consensus a c t u a t i o n
value w i l l be wrong

[voteActActuate] s tep1 = VoteActActuate & r e p l i c a F a i l e d 1 = 0 &
consActuationTempWrong1 = 0 & (ccVectRx11 + ccVectRx21 = 0 |
ccVectRx11 + ccVectRx21 = 1 & actuationTempWrong1 = 1) −>

(consActuationTempWrong1 ’ = 1) & (step1 ’= EvalVoteActActuateSysFai l) ;
// I f the r e p l i c a has not f a i l e d permanently or t r a n s i e n t l y and

there i s enough messages f o r voting −> consensus a c t u a t i o n value
may be wrong due to l o s t TMs

[voteActActuate] s tep1 = VoteActActuate & r e p l i c a F a i l e d 1 = 0 &
consActuationTempWrong1 = 0 & tmProbabi l i ty1 = 1 & ! (ccVectRx11
+ ccVectRx21 = 0 | ccVectRx11 + ccVectRx21 = 1 &
actuationTempWrong1 = 1) −>

pTMLost1 : (consActuationTempWrong1 ’ = 1) & (step1 ’=
EvalVoteActActuateSysFai l)

+ 1 − pTMLost1 : (step1 ’= EvalVoteActActuateSysFai l) ;
[voteActActuate] s tep1 = VoteActActuate & r e p l i c a F a i l e d 1 = 0 &

consActuationTempWrong1 = 0 & tmProbabi l i ty1 = 2 & ! (ccVectRx11
+ ccVectRx21 = 0 | ccVectRx11 + ccVectRx21 = 1 &
actuationTempWrong1 = 1) −>

pTMLost2 : (consActuationTempWrong1 ’ = 1) & (step1 ’=
EvalVoteActActuateSysFai l)

+ 1 − pTMLost2 : (step1 ’= EvalVoteActActuateSysFai l) ;
[voteActActuate] s tep1 = VoteActActuate & r e p l i c a F a i l e d 1 = 0 &

consActuationTempWrong1 = 0 & tmProbabi l i ty1 = 3 & ! (ccVectRx11
+ ccVectRx21 = 0 | ccVectRx11 + ccVectRx21 = 1 &
actuationTempWrong1 = 1) −>

pTMLost3 : (consActuationTempWrong1 ’ = 1) & (step1 ’=
EvalVoteActActuateSysFai l)

+ 1 − pTMLost3 : (step1 ’= EvalVoteActActuateSysFai l) ;
// I f the r e p l i c a has f a i l e d permanently or t r a n s i e n t l y −> continue
[voteActActuate] s tep1 = VoteActActuate & (r e p l i c a F a i l e d 1 = 1 |

consActuationTempWrong1 = 1) −>
(step1 ’= EvalVoteActActuateSysFai l) ;

The step EvalVoteActActuateSysFail (Listing A.26) evaluates if the system will fail
after the VoteActActuate step by checking if more than a majority of of consensus
actuation values are wrong, errorCounterAct >= majority.

LISTING A.26: Evaluate the system failure
// I f there are more than a major i ty of consensus a c t u a t i o n or

r e p l i c a f a i l u r e s −> r e p l i c a i s deemed as permanently f a u l t y
[evalAct] s tep1 = EvalVoteActActuateSysFai l & errorCounterAct >=

major i ty −>
(step1 ’= DiscrepancyVoteActActuate)
& (sensTempWrong1 ’ = 1) & (actuationTempWrong1 ’ = 1) & (

consActuationTempWrong1 ’ = 1) & (r e p l i c a F a i l e d 1 ’ = 1)
& (l inks1 ’ = 0) & (oneSwitchOneLinkInterconnected1 ’= f a l s e) &

(rese tAct ive1 ’ = 0)
& (tmProbabi l i ty1 ’ = 1)
& (ccVectRx11 ’ = 0) & (ccVectRx21 ’ = 0) ;

// I f not −> continue
[evalAct] s tep1 = EvalVoteActActuateSysFai l & errorCounterAct <

major i ty −>

A.1. Main model 153

(step1 ’= DiscrepancyVoteActActuate) & (ccVectRx11 ’ = 0) & (
ccVectRx21 ’ = 0) ;

The step DiscrepancyVoteActActuate (Listing A.27) models the occurrence of per-
manent fault detection due to too many transient faults. If the consensus actuation
value was wrong due to transient faults, there is a probability disThshFalsePosProb
that due to too many previously occurred consecutive transient faults discrepancy
error counter (DEC) reaches its threshold and needlessly resets a replica.

LISTING A.27: Discrepancy threshold reached after the vote on actu-
ation and actuate phase

// I f the r e p l i c a has not f a i l e d and the the consensus a c t u a t i o n
value was wrong −> r e p l i c a may r e s e t due to discrepancy e r r o r
counter reaching i t s threshold with a disThshFalsePosProb

[disActuate] s tep1 = DiscrepancyVoteActActuate & r e p l i c a F a i l e d 1 = 0
& consActuationTempWrong1 = 1 −>

disThshFalsePosProb : (step1 ’= Eva lRese tSysFa i l)
& (sensTempWrong1 ’ = 1) & (actuationTempWrong1 ’ = 1) & (

consActuationTempWrong1 ’ = 1) & (r e p l i c a F a i l e d 1 ’ = 1)
& (tmProbabi l i ty1 ’ = 1)
& (ccVectRx11 ’ = 0) & (ccVectRx21 ’ = 0)
& (rese tAct ive1 ’ = 1)
+ 1 − disThshFalsePosProb : (step1 ’= Eva lRese tSysFa i l) ;

// I f the r e p l i c a has not f a i l e d and the the a c t u a t i o n value was not
wrong −> continue

[disActuate] s tep1 = DiscrepancyVoteActActuate & r e p l i c a F a i l e d 1 = 0
& consActuationTempWrong1 = 0 −>

(step1 ’= Eva lRese tSysFa i l) ;
// I f the r e p l i c a has f a i l e d −> continue
[disActuate] s tep1 = DiscrepancyVoteActActuate & r e p l i c a F a i l e d 1 = 1

−>
(step1 ’= Eva lRese tSysFa i l) ;

The step EvalResetSysFail (Listing A.28) evaluates if the system will fail due to
transient and permanent failure occurrence of all the components during the reset
of one replica. Note that if two or more replicas are reset, the system will fail and
this was already evaluated by the step EvalRepTransSysFail. This condition has to
be evaluated again in this step because of all the guards of a step have to form a
universal set, i.e. they have to be mutually exclusive. There are 8 possible net-
work configurations detected by the auxiliary reset model and thus 8 probabilities
pResetSysFail1...pResetSysFail8 for each of these configurations in which the sys-
tem fails. How these probabilities are obtained will be clarified by Section A.2 when
talking about the auxiliary reset model.

LISTING A.28: Evaluate the system failure during the reset
// I f the combination of f a u l t s t h a t can lead to the system f a i l u r e

during the r e s e t happened with one of the c o n f i g u r a t i o n s −> the
system has f a i l e d

[e v a l R e s e t S y s F a i l] s tep1 = EvalRese tSysFa i l & r e s e t A c t i v e 1 = 1 &
r e s e t A c t i v e 2 + r e s e t A c t i v e 3 = 0 & switches = 2 & i n t e r l i n k s = 1
& l i n k s 2 = 2 & l i n k s 3 = 2 −>

pResetSysFai l1 : (step1 ’= EvalRese tFaul t s) & (s y s F a i l 1 ’= t rue)
+ 1 −pResetSysFai l1 : (step1 ’= EvalRese tFaul t s) ;
[e v a l R e s e t S y s F a i l] s tep1 = EvalRese tSysFa i l & r e s e t A c t i v e 1 = 1 &

r e s e t A c t i v e 2 + r e s e t A c t i v e 3 = 0 & switches = 2 & i n t e r l i n k s = 1
& l i n k s 2 = 2 & l i n k s 3 = 1 −>

pResetSysFai l2 : (step1 ’= EvalRese tFaul t s) & (s y s F a i l 1 ’= t rue)

154 Appendix A. PRISM source code

+ 1 −pResetSysFai l2 : (step1 ’= EvalRese tFaul t s) ;
[e v a l R e s e t S y s F a i l] s tep1 = EvalRese tSysFa i l & r e s e t A c t i v e 1 = 1 &

r e s e t A c t i v e 2 + r e s e t A c t i v e 3 = 0 & switches = 2 & i n t e r l i n k s = 1
& l i n k s 2 = 1 & l i n k s 3 = 2 −>

pResetSysFai l3 : (step1 ’= EvalRese tFaul t s) & (s y s F a i l 1 ’= t rue)
+ 1 −pResetSysFai l3 : (step1 ’= EvalRese tFaul t s) ;
[e v a l R e s e t S y s F a i l] s tep1 = EvalRese tSysFa i l & r e s e t A c t i v e 1 = 1 &

r e s e t A c t i v e 2 + r e s e t A c t i v e 3 = 0 & switches = 2 & i n t e r l i n k s = 1
& l i n k s 2 = 1 & l i n k s 3 = 1 −>

pResetSysFai l4 : (step1 ’= EvalRese tFaul t s) & (s y s F a i l 1 ’= t rue)
+ 1 −pResetSysFai l4 : (step1 ’= EvalRese tFaul t s) ;
[e v a l R e s e t S y s F a i l] s tep1 = EvalRese tSysFa i l & r e s e t A c t i v e 1 = 1 &

r e s e t A c t i v e 2 + r e s e t A c t i v e 3 = 0 & switches = 1 & l i n k s 2 = 2 &
l i n k s 3 = 2 −>

pResetSysFai l5 : (step1 ’= EvalRese tFaul t s) & (s y s F a i l 1 ’= t rue)
+ 1 −pResetSysFai l5 : (step1 ’= EvalRese tFaul t s) ;
[e v a l R e s e t S y s F a i l] s tep1 = EvalRese tSysFa i l & r e s e t A c t i v e 1 = 1 &

r e s e t A c t i v e 2 + r e s e t A c t i v e 3 = 0 & switches = 1 & l i n k s 2 = 2 &
l i n k s 3 = 1 −>

pResetSysFai l6 : (step1 ’= EvalRese tFaul t s) & (s y s F a i l 1 ’= t rue)
+ 1 −pResetSysFai l6 : (step1 ’= EvalRese tFaul t s) ;
[e v a l R e s e t S y s F a i l] s tep1 = EvalRese tSysFa i l & r e s e t A c t i v e 1 = 1 &

r e s e t A c t i v e 2 + r e s e t A c t i v e 3 = 0 & switches = 1 & l i n k s 2 = 1 &
l i n k s 3 = 2 −>

pResetSysFai l7 : (step1 ’= EvalRese tFaul t s) & (s y s F a i l 1 ’= t rue)
+ 1 −pResetSysFai l7 : (step1 ’= EvalRese tFaul t s) ;
[e v a l R e s e t S y s F a i l] s tep1 = EvalRese tSysFa i l & r e s e t A c t i v e 1 = 1 &

r e s e t A c t i v e 2 + r e s e t A c t i v e 3 = 0 & switches = 1 & l i n k s 2 = 1 &
l i n k s 3 = 1 −>

pResetSysFai l8 : (step1 ’= EvalRese tFaul t s) & (s y s F a i l 1 ’= t rue)
+ 1 −pResetSysFai l8 : (step1 ’= EvalRese tFaul t s) ;
// I f not −> contiune
[e v a l R e s e t S y s F a i l] s tep1 = EvalRese tSysFa i l
& r e s e t A c t i v e 1 = 1 & r e s e t A c t i v e 2 + r e s e t A c t i v e 3 = 0
& ! (switches = 2 & i n t e r l i n k s = 1 & l i n k s 2 = 2 & l i n k s 3 = 2)
& ! (switches = 2 & i n t e r l i n k s = 1 & l i n k s 2 = 2 & l i n k s 3 = 1)
& ! (switches = 2 & i n t e r l i n k s = 1 & l i n k s 2 = 1 & l i n k s 3 = 2)
& ! (switches = 2 & i n t e r l i n k s = 1 & l i n k s 2 = 1 & l i n k s 3 = 1)
& ! (switches = 1 & l i n k s 2 = 2 & l i n k s 3 = 2)
& ! (switches = 1 & l i n k s 2 = 2 & l i n k s 3 = 1)
& ! (switches = 1 & l i n k s 2 = 1 & l i n k s 3 = 2)
& ! (switches = 1 & l i n k s 2 = 1 & l i n k s 3 = 1) −>
(step1 ’= EvalRese tFaul t s) ;
// I f two or more r e s e t s happened −> the system has f a i l e d
[e v a l R e s e t S y s F a i l] s tep1 = EvalRese tSysFa i l & r e s e t A c t i v e 1 +

r e s e t A c t i v e 2 + r e s e t A c t i v e 3 > 1 −>
(step1 ’= EvalRese tFaul t s) & (sy s F a i l 1 ’= t rue) ;
// I f only one or only one r e s e t happened −> continue
[e v a l R e s e t S y s F a i l] s tep1 = EvalRese tSysFa i l & ! (r e s e t A c t i v e 1 = 1 &

r e s e t A c t i v e 2 + r e s e t A c t i v e 3 = 0) & ! (r e s e t A c t i v e 1 + r e s e t A c t i v e 2
+ r e s e t A c t i v e 3 > 1) −>

(step1 ’= EvalRese tFaul t s) ;

The step EvalResetFaults (Listing A.29) evaluates the failures that could have hap-
pened during the reset of one replica and updates the corresponding local variables.
Depending on the number of the surviving links all the faults have to be evaluated
for both the replica being reset and the replicas not being reset.

A.1. Main model 155

LISTING A.29: Evaluate faults that could have happened during the
reset for each of the network components and for reseting and non-

reseting replicas
// I f the system has f a i l e d in the previous step −> r e p l i c a i s

deemed as permanently f a u l t y
[e v a l R e s e t F a u l t s] s tep1 = EvalRese tFaul t s & (s y s F a i l 1 | s y s F a i l 2 |

s y s F a i l 3) −>
(step1 ’= TransFaultProp)
& (sensTempWrong1 ’ = 1) & (actuationTempWrong1 ’ = 1) & (

consActuationTempWrong1 ’ = 1) & (r e p l i c a F a i l e d 1 ’ = 1)
& (l inks1 ’ = 0) & (oneSwitchOneLinkInterconnected1 ’= f a l s e) & (

rese tAct ive1 ’ = 0)
& (tmProbabi l i ty1 ’ = 1)
& (ccVectRx11 ’ = 0) & (ccVectRx21 ’ = 0)
& (s ys F a i l1 ’= t rue) ;

// I f the system has not f a i l e d in the previous step and t h i s
r e p l i c a was r e s e t f o r d i f f e r e n t network c o n f i g u r a t i o n s −>
evaluate f a u l t s t h a t could have happened during the r e s e t

[e v a l R e s e t F a u l t s] s tep1 = EvalRese tFaul t s & ! (s y s F a i l 1 | s y s F a i l 2 |
s y s F a i l 3) & r e s e t A c t i v e 1 = 1 & l i n k s 1 = 2 −>

2∗ pLinkFai lReset ∗(1−pLinkFai lReset) ∗pRepFailReset ∗
nodeFailSysFai lCov : (step1 ’= TransFaultProp) & (rese tAct ive1 ’ = 0)
& (s ys F a i l1 ’= t rue)

+ 2∗ pLinkFai lReset ∗(1−pLinkFai lReset) ∗pRepFailReset ∗(1−
nodeFailSysFai lCov) : (step1 ’= TransFaultProp) & (rese tAct ive1
’ = 0)

+ 2∗ pLinkFai lReset ∗(1−pLinkFai lReset) ∗pTNFPReset∗TNFPSysFailCov : (
step1 ’= TransFaultProp) & (rese tAct ive1 ’ = 0) & (s y s F a i l 1 ’= t rue)

+ 2∗ pLinkFai lReset ∗(1−pLinkFai lReset) ∗pTNFPReset∗(1−TNFPSysFailCov)
: (step1 ’= TransFaultProp) & (rese tAct ive1 ’ = 1)

+ 2∗ pLinkFai lReset ∗(1−pLinkFai lReset) ∗pRepTransientReset∗
nodeTransFaultSysFailCov : (step1 ’= TransFaultProp) & (
rese tAct ive1 ’ = 0) & (sy s F a i l 1 ’= t rue)

+ 2∗ pLinkFai lReset ∗(1−pLinkFai lReset) ∗(1−pRepFailReset−pTNFPReset−
pRepTransientReset∗nodeTransFaultSysFailCov) : (l inks1 ’ = 1) & (
step1 ’= TransFaultProp)

& (sensTempWrong1 ’ = 0) & (actuationTempWrong1 ’ = 0) & (
consActuationTempWrong1 ’ = 0) & (r e p l i c a F a i l e d 1 ’ = 0) & (ccVectRx11
’ = 0) & (ccVectRx21 ’ = 0)

& (rese tAct ive1 ’ = 0)

+ pLinkFai lReset ∗pLinkFai lReset : (step1 ’= TransFaultProp) & (l inks1
’ = 0) & (rese tAct ive1 ’ = 0)

+ (1−pLinkFai lReset) ∗(1−pLinkFai lReset) ∗pRepFailReset ∗
nodeFailSysFai lCov : (step1 ’= TransFaultProp) & (rese tAct ive1 ’ = 0)
& (s ys F a i l1 ’= t rue)

+ (1−pLinkFai lReset) ∗(1−pLinkFai lReset) ∗pRepFailReset ∗(1−
nodeFailSysFai lCov) : (step1 ’= TransFaultProp) & (rese tAct ive1
’ = 0)

+ (1−pLinkFai lReset) ∗(1−pLinkFai lReset) ∗pTNFPReset∗TNFPSysFailCov :
(step1 ’= TransFaultProp) & (rese tAct ive1 ’ = 0) & (s ys F a i l1 ’= t rue)

156 Appendix A. PRISM source code

+ (1−pLinkFai lReset) ∗(1−pLinkFai lReset) ∗pTNFPReset∗(1−
TNFPSysFailCov) : (step1 ’= TransFaultProp) & (rese tAct ive1 ’ = 1)

+ (1−pLinkFai lReset) ∗(1−pLinkFai lReset) ∗pRepTransientReset∗
nodeTransFaultSysFailCov : (step1 ’= TransFaultProp) & (
rese tAct ive1 ’ = 0) & (sy s F a i l 1 ’= t rue)

+ (1−pLinkFai lReset) ∗(1−pLinkFai lReset) ∗(1−pRepFailReset−pTNFPReset
−pRepTransientReset∗nodeTransFaultSysFailCov) : (l inks1 ’ = 2) & (
step1 ’= TransFaultProp)

& (sensTempWrong1 ’ = 0) & (actuationTempWrong1 ’ = 0) & (
consActuationTempWrong1 ’ = 0) & (r e p l i c a F a i l e d 1 ’ = 0) & (ccVectRx11
’ = 0) & (ccVectRx21 ’ = 0)

& (rese tAct ive1 ’ = 0) ;

[e v a l R e s e t F a u l t s] s tep1 = EvalRese tFaul t s & ! (s y s F a i l 1 | s y s F a i l 2 |
s y s F a i l 3) & r e s e t A c t i v e 1 = 1 & l i n k s 1 = 1 −>

pLinkFai lReset : (step1 ’= TransFaultProp) & (l inks1 ’ = 0) & (
rese tAct ive1 ’ = 0)

+ (1−pLinkFai lReset) ∗pRepFailReset ∗nodeFailSysFai lCov : (step1 ’=
TransFaultProp) & (rese tAct ive1 ’ = 0) & (sy s F a i l 1 ’= t rue)

+ (1−pLinkFai lReset) ∗pRepFailReset ∗(1−nodeFailSysFai lCov) : (step1
’= TransFaultProp) & (rese tAct ive1 ’ = 0)

+ (1−pLinkFai lReset) ∗pTNFPReset∗TNFPSysFailCov : (step1 ’=
TransFaultProp) & (rese tAct ive1 ’ = 0) & (sy s F a i l 1 ’= t rue)

+ (1−pLinkFai lReset) ∗pTNFPReset∗(1−TNFPSysFailCov) : (step1 ’=
TransFaultProp) & (rese tAct ive1 ’ = 1)

+ (1−pLinkFai lReset) ∗pRepTransientReset∗nodeTransFaultSysFailCov :
(step1 ’= TransFaultProp) & (rese tAct ive1 ’ = 0) & (sy s F a i l1 ’= t rue)

+ (1−pLinkFai lReset) ∗(1−pRepFailReset−pTNFPReset−pRepTransientReset
∗nodeTransFaultSysFailCov) : (l inks1 ’ = 1) & (step1 ’=
TransFaultProp)

& (sensTempWrong1 ’ = 0) & (actuationTempWrong1 ’ = 0) & (
consActuationTempWrong1 ’ = 0) & (r e p l i c a F a i l e d 1 ’ = 0) & (ccVectRx11
’ = 0) & (ccVectRx21 ’ = 0)

& (rese tAct ive1 ’ = 0) ;

[e v a l R e s e t F a u l t s] s tep1 = EvalRese tFaul t s & ! (s y s F a i l 1 | s y s F a i l 2 |
s y s F a i l 3) & r e s e t A c t i v e 1 = 1 & l i n k s 1 = 0 −>

(step1 ’= TransFaultProp) & (rese tAct ive1 ’ = 0) ;

// I f the system has not f a i l e d in the previous step and the r e p l i c a
has not f a i l e d and t h i s r e p l i c a was not r e s e t but the other one
was −> evaluate f a u l t s t h a t could have happened during the

r e s e t
[e v a l R e s e t F a u l t s] s tep1 = EvalRese tFaul t s & ! (s y s F a i l 1 | s y s F a i l 2 |

s y s F a i l 3) & r e p l i c a F a i l e d 1 = 0 & r e s e t A c t i v e 1 = 0 &
r e s e t A c t i v e 2 + r e s e t A c t i v e 3 = 1 & l i n k s 1 = 2 −>

2∗ pLinkFai lReset ∗(1−pLinkFai lReset) : (l inks1 ’ = 1) & (step1 ’=
TransFaultProp)

+ pLinkFai lReset ∗pLinkFai lReset : (l inks1 ’ = 2) & (step1 ’=
TransFaultProp) //updated − already included in the
systemFai lure

A.1. Main model 157

+ (1−pLinkFai lReset) ∗(1−pLinkFai lReset) : (l inks1 ’ = 2) & (step1 ’=
TransFaultProp) ; //updated − already included in the
systemFai lure

// I f the system has not f a i l e d in the previous step and the r e p l i c a
has not f a i l e d and t h i s r e p l i c a was not r e s e t but the other one
was but with l e s s than 2 l i n k s (evaluated in the prevouse step)

or no r e p l i c a was r e s e t −> r e s e t the temporar i ly wrong v a r i a b l e s
[e v a l R e s e t F a u l t s] s tep1 = EvalRese tFaul t s & ! (s y s F a i l 1 | s y s F a i l 2 |

s y s F a i l 3) & (
(r e p l i c a F a i l e d 1 = 0 & r e s e t A c t i v e 1 = 0 & r e s e t A c t i v e 2 +

r e s e t A c t i v e 3 = 1 & l i n k s 1 != 2)
| (r e p l i c a F a i l e d 1 = 0 & r e s e t A c t i v e 1 = 0 & r e s e t A c t i v e 2 +

r e s e t A c t i v e 3 = 0)) −>
(step1 ’= TransFaultProp) ;

// I f the system has not f a i l e d in the previous step and the r e p l i c a
has f a i l e d or i f there were two or more r e s e t s of othere

r e p l i c a s −> continue
[e v a l R e s e t F a u l t s] s tep1 = EvalRese tFaul t s & ! (s y s F a i l 1 | s y s F a i l 2 |

s y s F a i l 3) & (
(r e p l i c a F a i l e d 1 = 1 & r e s e t A c t i v e 1 = 0)
| (r e p l i c a F a i l e d 1 = 0 & r e s e t A c t i v e 1 = 0 & r e s e t A c t i v e 2 +

r e s e t A c t i v e 3 = 2)) −>
(step1 ’= TransFaultProp) ;

The step TransFaultProp (Listing A.30) models the propagation of the transient
faults effects to the next ECAC.

We assume that by voting the effects of transient faults not causing the reset of
a replica are fixed and all the replicas have the same operational state. Then, by
executing the next extended control application cycle the replica will yield a correct
output.

If due to transient faults actuation and consensus actuation values were wrong,
either the transient replica failure occurred or in the both of the steps VoteSenControl
and VoteActActuate all the TM replicas were lost and the steps were not activated. In
the earlier case, if the fault occurs after the last vote phase it might propagate to the
next ECAC. In the latter case, since both voting phases were not executed the replica
has a different operational state from the other replica.

This is models as follows. A replica that has these values wrong will with a
certain ratio transFailPro cause the transient fault effects to propagate to the next
ECAC.

LISTING A.30: Transient faults effects propagation to the next ECAC
// I f the r e p l i c a has not f a i l e d permanently and there was a

t r a n s i e n t f a u l t (mult ip le t r a n s i e n t f a u l t s a f f e c t i n g the TM
r ec e p t i o n in two vot ings) −> the e f f e c t s of t h i s f a u l t might
propagate to the next ECAC

[t ransFa i lureProp] step1 = TransFaultProp & r e p l i c a F a i l e d 1 = 0 &
actuationTempWrong1 = 1 & consActuationTempWrong1 = 1 −>

t r a n s F a i l P r o p R a t i o : (step1 ’= NetworkComponentFail)
+ 1 − t r a n s F a i l P r o p R a t i o : (step1 ’= NetworkComponentFail) &

(sensTempWrong1 ’ = 0) & (actuationTempWrong1 ’ = 0) & (
consActuationTempWrong1 ’ = 0) ;

// I f the r e p l i c a has f a i l e d permanently or there was a t r a n s i e n t
f a u l t

158 Appendix A. PRISM source code

[t ran sFa i lureProp] step1 = TransFaultProp & r e p l i c a F a i l e d 1 = 0 & (
actuationTempWrong1 = 0 | consActuationTempWrong1 = 0) −>

(step1 ’= NetworkComponentFail) & (sensTempWrong1 ’ = 0) & (
actuationTempWrong1 ’ = 0) & (consActuationTempWrong1 ’ = 0) ;

[t ran sFa i lureProp] step1 = TransFaultProp & r e p l i c a F a i l e d 1 = 1 −>
(step1 ’= NetworkComponentFail) ;

A.1.2 Switches module

This module will be instantiated only once and it represents the operational (non-
failed) switches. The variables presented in Table A.4 represent the local state of the
switches module. Note that there is only one variable and it represents the number
of operational (non-failed) switches.

TABLE A.5: Switches module local variables

Name Type Initial Value Description
switches 0..2 2 non-failed switches

This module is synchronized with node replica module instances and it executes
the following two steps: NetCompFail and EvalResetFaults. The commands of this
module belonging to these steps are executed simultaneously with the correspond-
ing node replica steps.

The first step NetCompFail (Listing A.31) models permanent failures of network
components in a ECAC. Particularly, in this switches module, any of the switches
may permanently fail with a probability pSwitchHyperCycle.

LISTING A.31: Network components failure step
// I f there are two switches −> any of them can f a i l , one switch

f a i l u r e may cause the system f a i l u r e with a switchFai lSysFai lCov
and the exchange of c o n t r o l messages among swithces may cause

the system f a i l u r e with a pAllCtrlMsgLost∗hypercycleDuration ∗
switchesSyncSysFailCov

[netCompFail] switches = 2 −>
2∗pSwitchHyperCycle∗(1−pSwitchHyperCycle) ∗ (1−

swi tchFai lSysFai lCov) : (switches ’ = 1)
+ 2∗pSwitchHyperCycle∗(1−pSwitchHyperCycle) ∗

swi tchFai lSysFai lCov : (switches ’ = 0)
+ pSwitchHyperCycle∗pSwitchHyperCycle : (switches ’ = 0)
+ (1−pSwitchHyperCycle) ∗(1−pSwitchHyperCycle) ∗

pAllCtrlMsgLost∗hypercycleDuration ∗
switchesSyncSysFailCov : (switches ’ = 0)

+ (1−pSwitchHyperCycle) ∗(1−pSwitchHyperCycle) ∗(1−
pAllCtrlMsgLost∗hypercycleDuration ∗
switchesSyncSysFailCov) : (switches ’ = 2) ;

// I f there i s one switch −> i t can f a i l
[netCompFail] switches = 1 −>

pSwitchHyperCycle : (switches ’ = 0)
+ 1−pSwitchHyperCycle : (switches ’ = 1) ;

// I f there are no switches −> contiune
[netCompFail] switches = 0 −>

true ;

A.1. Main model 159

The second step EvalResetFaults (Listing A.32) evaluates the failures that could
have happened during the reset of one replica and updates the corresponding lo-
cal variables related to the operational switches. Note that now the failure of two
switches is not evaluated, pSwitchReset ∗ pSwitchReset, since this evaluation was
already included by the auxiliary reset model.

LISTING A.32: Evaluate faults that could have happened during the
reset for network components and for reseting and non-reseting repli-

cas
// I f there are two switches and r e s e t occurred −> evaluate f a i l u r e

of the switches not leading to system f a i l u r e during the r e s e t
[e v a l R e s e t F a u l t s] switches = 2 & (r e s e t A c t i v e 1 = 1 | r e s e t A c t i v e 2 =

1 | r e s e t A c t i v e 3 = 1) −>
2∗pSwitchReset∗(1−pSwitchReset) : (switches ’ = 1)
+ pSwitchReset∗pSwitchReset : (switches ’ = 2)

//updated − already
included in the systemFai lure

+ (1−pSwitchReset) ∗(1−pSwitchReset) : (switches ’ = 2) ;
// I f not −> continue
[e v a l R e s e t F a u l t s] ! (switches = 2 & (r e s e t A c t i v e 1 = 1 | r e s e t A c t i v e 2

= 1 | r e s e t A c t i v e 3 = 1)) −>
true ;

A.1.3 Interlinks module

This module will be instantiated only once and it represents the operational (non-
failed) interlinks. The variables presented in Table A.6 represent the local state of the
interlinks module. There is only one variable and it represents the number of both
non-failed operational interlinks.

TABLE A.6: Interlinks module local variables

Name Type Initial Value Description
interlinks 0..1 1 non-failed interlinks

This module is synchronized with node replica module instances and it executes
the step NetCompFail. The commands of this module belonging to this step are exe-
cuted simultaneously with the corresponding node replica step.

The step NetCompFail (Listing A.34) models permanent failures of network com-
ponents in a ECAC. Particularly, in this interlinks module, both interlinks may per-
manently fail with a probability pInterlinkHyperCycle.

The synchronization with the other step, EvalResetFaults, is not necessary in the
case of this module since it was already evaluated by the auxiliary reset model.

LISTING A.33: Network components failure step
[netCompFail] i n t e r l i n k s = 1 −>

pInterl inkHyperCycle ∗pInterl inkHyperCycle : (i n t e r l i n k s ’ = 0)
+ 1−pInterl inkHyperCycle ∗pInterl inkHyperCycle : (i n t e r l i n k s

’ = 1) ;
[netCompFail] i n t e r l i n k s = 0 −>

true ;

160 Appendix A. PRISM source code

A.1.4 Evaluate system failure module

There is a single instance of this module. This module is used to evaluate the system
failure and to set its only variable sysFail to true in case it is detected (Table A.7).

TABLE A.7: Evaluate system failure module local variables

Name Type Initial Value Description
sysFail bool false system failure indication

This module is synchronized with node replica module instances and it executes
the step TransFaultProp. Particularly, this module assesses if more than a majority of
node replicas has permanently failed by evaluating the expression replicaFailed1 +
replicaFailed2+replicaFailed3 > 1. In case one of the previous evaluation steps de-
tected the system failure all the variables replicaFailed1, replicaFailed2 and replicaFailed3
will be 1. If the system failure is detected the variable sysFail will be set to true and
this variable is used by measuring reliability of the system by using the transient
probabilities calculation feature of prism describe in Section 9.3.

LISTING A.34: Network components failure step
[t ran sFa i lureProp] r e p l i c a F a i l e d 1 + r e p l i c a F a i l e d 2 + r e p l i c a F a i l e d 3 >1
−>

(s y s F a i l ’= t rue) ;
[t ran sFa i lureProp] r e p l i c a F a i l e d 1 + r e p l i c a F a i l e d 2 + r e p l i c a F a i l e d 3 <=1
−>

true ;

A.2 Auxiliary models

The auxiliary models are introduced in order to reduce the state space of the main
model. This is done by extracting a particular logic from the main model and then
executing these models separately. Then, the results obtained by these models are
used by the main model. The two auxiliary models are analyzed next.

A.2.1 Auxiliary VCR model

It is used for modeling the VCR details. Recall that the VCR includes multiple re-
transmissions of cc-vectors. First, cc-vectors are sent multiple times in the same EC.
Second, the complete EC round is repeated multiple times.

There are 8 sequential discrete time steps modeling the behaviour of a single EC
round listed in Table A.8.

TABLE A.8: VCR module sequential step constants

Name Type Value Description

A.2. Auxiliary models 161

TMProbCalculcation int 0 Determine the TM probabil-
ity to be used in the first win-
dow of the first EC of the
VCR (TMW) depending on
the surviving network com-
ponents

CCVector1ProblCalculation int 1 Determine the CC-vector 1
probability to be used in each
EC of the VCR depending on
the surviving network com-
ponents

CCVector2ProblCalculation int 2 Determine the CC-vector 2
probability to be used in each
EC of the VCR depending on
the surviving network com-
ponents

TMW int 3 Trigger Message Window
(TMW) step

TX int 4 Tranmission of cc-vector (TX)
step

RX1 int 5 Reception of cc-vector 1
(RX1) step

RX2 int 6 Reception of cc-vector 2
(RX2) step

EndVCR int 7 Determining the end of the
VCR step

The parameters listed in the Table A.9 are the case of reference constants for the
VCR model. Some of the parameters are the same as in the main model, thus the
values are also the same. The exception are the parameters switches, interlinks and
links1...links3 that are the input for this model. The combination of these parame-
ters represent all the possible network configurations.

TABLE A.9: VCR model parameters

Name Type Value Description
ecNumberVCR int 3 Number of elementary cycles

in the VCR (first attempt + re-
transmissions)

FSTM int 64 Frame size of the TM ex-
pressed in bytes

numTM int 4 Number of TMs sent in one
EC

162 Appendix A. PRISM source code

FSCCVect int 512 Frame size of the cc-vector
expressed in bytes, which
is includes the following:
sensing/actiation value
+ prev_err + integral +
set_point

numCCVect int 4 Number of cc-vectors sent in
one EC

BER double 1E-6 Bit-error ratio
switches int par the number of operating

switches
interlinks int par the number of operating

switches
links1 int par the number of operating links

of replica 1
links2 int par the number of operating links

of replica 2
links3 int par the number of operating links

of replica 3

The probabilities used by the VCR model are calculated as shown in Table A.10.
Note that the pTMLost2 is an impossible scenario in which there are 2 switches
that are not interconnected and thus it will never be used in the model. But, for
the sake of consistency we kept its definition. The logic for determining different
TM probabilities based on the surviving network configuration is the same as in the
main model, c.f. 9.2.

The network configurations for calculating the probabilities pCCV ectorLost1 ...
pCCV ectorLost4 are shown in Figure 9.3.

• pCCVectorLost1 is the probability of losing all the cc-vectors sent by the replica
Rtx to the replicaRrx when all the network components are operational. In this
case 4 copies of the cc-vector are received by the receiving replica Rrx as there
are 4 disjunct paths.

• pCCVectorLost2 is the probability of losing all the cc-vectors sent by the replica
Rtx to the replica Rrx when all the network components are operational but
one link of the receiving replica Rrx. In this case 2 copies of the cc-vector are
received by the receiving replica Rrx as there are 2 disjunct paths.

• pCCVectorLost3 is the probability of losing all the cc-vectors sent by the replica
Rtx to the replica Rrx when all the network components are operational but
one link of the transmitting replica Rtx. In this case 2 copies of the cc-vector
are received by the receiving replica Rrx as there are 2 disjunct paths.

• pCCVectorLost4 is the probability of losing all the cc-vectors sent by the replica
Rtx to the replica Rrx when there are one link of the transmitting replica Rtx
and one link of the receiving replica Rrx connected to the same operational
switch. In this case only 1 copy of the cc-vector is received by the receiving
replica Rrx as there is only one existing path.

A.2. Auxiliary models 163

TABLE A.10: VCR model probabilities calculation

Name Calculation Expression Description
pSingleTMLost 1 - pow(1-BER,FSTM *

8)
Probability of losing
one TM

pAllTMLost pow(pSingleTMLost,
numTM)

Probability of loosing
all the TM replicas sent
in a single TMW

pTMLost1 pAllTMLost * pAllTM-
Lost * pAllTMLost *
pAllTMLost

Probability of losing all
TMs: 2S 2L 1I (2 links, 2
TMs)

pTMLost2 1 Probability of losing all
TMs: 2S 2L 0I (2 links, 1
TM) - Impossible

pTMLost3 pAllTMLost * pAllTM-
Lost

Probability of losing all
TMs: 2S 1L 1I (1 link, 2
TMs)

pTMLost4 pAllTMLost Probability of losing all
TMs: other (1 link, 1
TM)

pSingleCCVectLost 1- pow(1-
BER,FSCCVect * 8)

Probability of losing
one cc-vector

pAllCCVectLost pow(pSingleCCVectLost,
numCCVect)

Probability of losing
all cc-vectors sent in
a singe EC (temporal
redundancy)

pCCVectorLost1 pAllCCVectLost *
pAllCCVectLost *
pAllCCVectLost *
pAllCCVectLost

Probability of losing all
cc-vectors: 2T 2S 1I 2R
(2 links, 2 cc-vectors)

pCCVectorLost2 pAllCCVectLost * pAll-
CCVectLost

Probability of losing all
cc-vectors: 1T 2S 1I 2R
(2 links, 1 cc-vectors)

pCCVectorLost3 pAllCCVectLost * pAll-
CCVectLost

Probability of losing all
cc-vectors: 2T 2S 1I 1R
(1 link, 2 cc-vectors)

pCCVectorLost4 pAllCCVectLost Probability of losing
all cc-vectors: other (1
link, 1 cc-vectors)

This model has only one module. This module represents a single replica and is
instantiated 3 times. The variables presented in Table A.11 represent the local state
of the node replica module of the VCR model.

TABLE A.11: Node replica module of the VCR model local variables

Name Type Initial
Value

Description

step1 0..7 0 sequential steps of the VCR

164 Appendix A. PRISM source code

tmRx1 0..1 0 TM received by the replica
ccVectTx1 0..1 0 cc-vector transmitted by the

replica
ccVectRx11 0..1 0 cc-vector 1 received by the

replica
ccVectRx21 0..1 0 cc-vector 2 received by the

replica
ecNum1 0..ecNumberVCR-1 0 the number of ECs in a VCR
tmProbability1 1..3 1 probability of losing all the

TMs
ccVectProb11 1..4 1 probability of losing all

the cc-vector received from
replica 1

ccVectProb21 1..4 1 probability of losing all
the cc-vector received from
replica 2

Again, the two additional replica modules are modeled by using the concept of
module renaming as depicted in Listing A.35.

LISTING A.35: Node replica module renaming of the VCR model
module NodeReplica2 = NodeReplica1 [
s tep1=step2 ,
tmProbabi l i ty1 = tmProbabi l i ty2 ,
ccVectProb11 = ccVectProb12 ,
ccVectProb21 = ccVectProb22 ,
tmRx1=tmRx2 ,
ccVectTx1=ccVectTx2 , ccVectTx2=ccVectTx1 ,
ccVectRx11=ccVectRx12 , ccVectRx21=ccVectRx22 ,
ecNum1=ecNum2 ,
l i n k s 1 = l inks2 , l i n k s 2 = l i n k s 1
] endmodule

module NodeReplica3 = NodeReplica1 [
s tep1=step3 ,
tmProbabi l i ty1 = tmProbabi l i ty3 ,
ccVectProb11 = ccVectProb13 ,
ccVectProb21 = ccVectProb23 ,
tmRx1=tmRx3 ,
ccVectTx1=ccVectTx3 , ccVectTx2=ccVectTx1 , ccVectTx3=ccVectTx2 ,
ccVectRx11=ccVectRx13 , ccVectRx21=ccVectRx23 ,
ecNum1=ecNum3 ,
l i n k s 1 = l inks3 , l i n k s 2 = l inks1 , l i n k s 3 = l i n k s 2
] endmodule

The step TMProbCalculcation (Listing A.36) determines which of the precalcu-
lated TM probabilities pTMLost1...pTMLost4 will be used by the subsequent steps
depending on the surviving network components that are defined as an input to this
model.

LISTING A.36: Determining the probability of losing all TMs depend-
ing on network topologty failures

A.2. Auxiliary models 165

[tmProb] step1 = TMProbCalculcation & switches = 2 & l i n k s 1 = 2 &
i n t e r l i n k s = 1 −>

(tmProbabi l i ty1 ’ = 1) & (step1 ’= CCVector1ProblCalculat ion) ;
[tmProb] step1 = TMProbCalculcation & switches = 2 & l i n k s 1 = 1 &

i n t e r l i n k s = 1 −>
(tmProbabi l i ty1 ’ = 2) & (step1 ’= CCVector1ProblCalculat ion) ;

[tmProb] step1 = TMProbCalculcation & ! (switches = 2 & l i n k s 1 = 2 &
i n t e r l i n k s = 1) & ! (switches = 2 & l i n k s 1 = 1 & i n t e r l i n k s = 1)
−>

(tmProbabi l i ty1 ’ = 3) & (step1 ’= CCVector1ProblCalculat ion) ;

The step CCVector1ProblCalculation (Listing A.37) determines which of the precal-
culated CC-vector probabilities pCCV ectorLost1 ... pCCV ectorLost4 will be used
by the subsequent steps depending on the surviving network components. These
probabilities apply to the cc-vectors received from the first node replica, i.e. the first
of the remaining two instances of node replica modules.

LISTING A.37: Determining the probability of losing all CC-vector
sent from the 1st replica depending on network topologty failures

[ccVectProb] step1 = CCVector1ProblCalculat ion & l i n k s 2 = 2 &
switches = 2 & l i n k s 1 = 2 & i n t e r l i n k s = 1 −>

(ccVectProb11 ’ = 1) & (step1 ’= CCVector2ProblCalculat ion) ;
[ccVectProb] step1 = CCVector1ProblCalculat ion & l i n k s 2 = 1 &

switches = 2 & l i n k s 1 = 2 & i n t e r l i n k s = 1 −>
(ccVectProb11 ’ = 2) & (step1 ’= CCVector2ProblCalculat ion) ;

[ccVectProb] step1 = CCVector1ProblCalculat ion & l i n k s 2 = 2 &
switches = 2 & l i n k s 1 = 1 & i n t e r l i n k s = 1 −>

(ccVectProb11 ’ = 3) & (step1 ’= CCVector2ProblCalculat ion) ;
[ccVectProb] step1 = CCVector1ProblCalculat ion & ! (l i n k s 2 = 2 &

switches = 2 & l i n k s 1 = 2 & i n t e r l i n k s = 1) & ! (l i n k s 2 = 1 &
switches = 2 & l i n k s 1 = 2 & i n t e r l i n k s = 1) & ! (l i n k s 2 = 2 &
switches = 2 & l i n k s 1 = 1 & i n t e r l i n k s = 1) −>

(ccVectProb11 ’ = 4) & (step1 ’= CCVector2ProblCalculat ion) ;

The step CCVector2ProblCalculation (Listing A.38) determines which of the precal-
culated CC-vector probabilities pCCV ectorLost1 ... pCCV ectorLost4 will be used
by the subsequent steps depending on the surviving network components. These
probabilities apply to the cc-vectors received from the second node replica, i.e. the
second of the remaining two instances of node replica modules

LISTING A.38: Determining the probability of losing all CC-vector
sent from the 1st replica depending on network topologty failures

[ccVectProb] step1 = CCVector2ProblCalculat ion & l i n k s 3 = 2 &
switches = 2 & l i n k s 1 = 2 & i n t e r l i n k s = 1 −>

(ccVectProb21 ’ = 1) & (step1 ’=TMW) ;
[ccVectProb] step1 = CCVector2ProblCalculat ion & l i n k s 3 = 1 &

switches = 2 & l i n k s 1 = 2 & i n t e r l i n k s = 1 −>
(ccVectProb21 ’ = 2) & (step1 ’=TMW) ;

[ccVectProb] step1 = CCVector2ProblCalculat ion & l i n k s 3 = 2 &
switches = 2 & l i n k s 1 = 1 & i n t e r l i n k s = 1 −>

(ccVectProb21 ’ = 3) & (step1 ’=TMW) ;
[ccVectProb] step1 = CCVector2ProblCalculat ion & ! (l i n k s 3 = 2 &

switches = 2 & l i n k s 1 = 2 & i n t e r l i n k s = 1) & ! (l i n k s 3 = 1 &
switches = 2 & l i n k s 1 = 2 & i n t e r l i n k s = 1) & ! (l i n k s 3 = 2 &
switches = 2 & l i n k s 1 = 1 & i n t e r l i n k s = 1) −>

(ccVectProb21 ’ = 4) & (step1 ’=TMW) ;

166 Appendix A. PRISM source code

The step TMW (Listing A.39) models the loss of all the TM replica depending on
the predetermined network configuration stored in variable tmProbability1.

LISTING A.39: TMW step - reception of TM replicas
[tmw] step1 = TMW & tmProbabi l i ty1 = 1 −>

pTMLost1 : (tmRx1 ’ = 0) & (step1 ’=TX)
+ 1−pTMLost1 : (tmRx1 ’ = 1) & (step1 ’=TX) ;

[tmw] step1 = TMW & tmProbabi l i ty1 = 2 −>
pTMLost2 : (tmRx1 ’ = 0) & (step1 ’=TX)
+ 1−pTMLost2 : (tmRx1 ’ = 1) & (step1 ’=TX) ;

[tmw] step1 = TMW & tmProbabi l i ty1 = 3 & l i n k s 1 > 0 & switches > 0
−>

pTMLost3 : (tmRx1 ’ = 0) & (step1 ’=TX)
+ 1−pTMLost3 : (tmRx1 ’ = 1) & (step1 ’=TX) ;

// I f there are not l i n k s nor switches −> continue (TM w i l l not be
rece ived)

[tmw] step1 = TMW & (l i n k s 1 = 0 | switches = 0) −>
(step1 ’=TX) ;

The step TX (Listing A.40) models the transmission of the cc-vectors to the switch.
If the replica is connected with 2 links to 2 interconnected switches, links1 = 2&switches =
2, then 2 cc-vectors are transmitted and can be lost with probability pCCV ectorLost2.
If the replica is connected with one link to one switch, links1 >= 1&switches >=
1&!(links1 = 2&switches = 2), then a single cc-vector is transmitted and can be
lost with probability pCCV ectorLost4. Lastly, if the cc-vector has already been
transmitted(received by the switches) or if no TM has been received, ccV ectTx1 =
1‖tmRx1 = 0, the loss of cc-vector during the transmission does not need to be
modeled.

LISTING A.40: TX step - trnsmission of cc-vector to other replicas
// I f the cc−vector has not been transmi t ted (rece ived by the switch

) already and the TM has been rece ived −> send the cc−vector
s u c c e s s f u l l y or not

[tx] s tep1 = TX & ccVectTx1 = 0 & tmRx1 = 1 & l i n k s 1 = 2 & switches
= 2 −>

pCCVectorLost2 : (ccVectTx1 ’ = 0) & (step1 ’=RX1)
+ 1−pCCVectorLost2 : (ccVectTx1 ’ = 1) & (step1 ’=RX1) ;

[tx] s tep1 = TX & ccVectTx1 = 0 & tmRx1 = 1 & l i n k s 1 >= 1 &
switches >= 1 & ! (l i n k s 1 = 2 & switches = 2) −>

pCCVectorLost4 : (ccVectTx1 ’ = 0) & (step1 ’=RX1)
+ 1−pCCVectorLost4 : (ccVectTx1 ’ = 1) & (step1 ’=RX1) ;

// I f the cc−vector has already been transmi t ted (rece ived by the
switch) or i f the TM has not been rece ived −> continue (cc−
vector w i l l not be t ransmi t ted)

[tx] s tep1 = TX & (ccVectTx1 = 1 | tmRx1 = 0) −>
(step1 ’=RX1) ;

The steps RX1 and RX2 (Listing A.41) model the reception of the cc-vectors from
the other replicas. The first three commands model the loss of the cc-vector during
the reception depending on the predetermined network configuration ccV ectProb11.
The received cc-vector can be lost with a corresponding probability pCCV ectorLost1
... pCCV ectorLost4 If the cc-vector has not been transmitted, or it has been received
already, or the TM has not been received, then the loss of cc-vector during the recep-
tion does not need to be modeled.

LISTING A.41: RX step - reception of cc-vectors from other replicas

A.2. Auxiliary models 167

// I f the cc−vector 1 has been transmi t ted and has not been receved
already and the TM has been rece ived depedning on the

determined p r o b a b i l i t y (network component c o n f i r u r a t i o n) −>
r e c e i v e i t or not

[rx1] s tep1 = RX1 & ccVectTx2 = 1 & ccVectRx11 = 0 & tmRx1 = 1 &
ccVectProb11 = 1 −>

pCCVectorLost1 : (ccVectRx11 ’ = 0) & (step1 ’=RX2)
+ 1−pCCVectorLost1 : (ccVectRx11 ’ = 1) & (step1 ’=RX2) ;

[rx1] s tep1 = RX1 & ccVectTx2 = 1 & ccVectRx11 = 0 & tmRx1 = 1 & (
ccVectProb11 = 2 | ccVectProb11 = 3) −>

pCCVectorLost2 : (ccVectRx11 ’ = 0) & (step1 ’=RX2)
+ 1−pCCVectorLost2 : (ccVectRx11 ’ = 1) & (step1 ’=RX2) ;

[rx1] s tep1 = RX1 & ccVectTx2 = 1 & ccVectRx11 = 0 & tmRx1 = 1 &
ccVectProb11 = 4 −>

pCCVectorLost4 : (ccVectRx11 ’ = 0) & (step1 ’=RX2)
+ 1−pCCVectorLost4 : (ccVectRx11 ’ = 1) & (step1 ’=RX2) ;

// I f the cc−vector 1 has not been transmi t ted or has been receved
already or the TM has not been rece ived −> continue (no
r ec e p t i o n)

[rx1] s tep1 = RX1 & (ccVectTx2 = 0 | ccVectRx11 = 1 | tmRx1 = 0)
−>

(step1 ’=RX2) ;

// I f the cc−vector 2 has been transmi t ted and has not been receved
already and the TM has been rece ived depedning on the

determined p r o b a b i l i t y (network component c o n f i r u r a t i o n) −>
r e c e i v e i t or not

[rx2] s tep1 = RX2 & ccVectTx3 = 1 & ccVectRx21 = 0 & tmRx1 = 1 &
ccVectProb21 = 1 −>

pCCVectorLost1 : (ccVectRx21 ’ = 0) & (step1 ’=EndVCR)
+ 1−pCCVectorLost1 : (ccVectRx21 ’ = 1) & (step1 ’=EndVCR) ;

[rx2] s tep1 = RX2 & ccVectTx3 = 1 & ccVectRx21 = 0 & tmRx1 = 1 & (
ccVectProb21 = 2 | ccVectProb21 = 3) −>

pCCVectorLost2 : (ccVectRx21 ’ = 0) & (step1 ’=EndVCR)
+ 1−pCCVectorLost2 : (ccVectRx21 ’ = 1) & (step1 ’=EndVCR) ;

[rx2] s tep1 = RX2 & ccVectTx3 = 1 & ccVectRx21 = 0 & tmRx1 = 1 &
ccVectProb21 = 4 −>

pCCVectorLost4 : (ccVectRx21 ’ = 0) & (step1 ’=EndVCR)
+ 1−pCCVectorLost4 : (ccVectRx21 ’ = 1) & (step1 ’=EndVCR) ;

// I f the cc−vector 2 has not been transmi t ted or has been receved
already or the TM has not been rece ived −> continue (no
r ec e p t i o n)

[rx2] s tep1 = RX2 & (ccVectTx3 = 0 | ccVectRx21 = 1 | tmRx1 = 0) −>
(step1 ’=EndVCR) ;

The step EndVCR (Listing A.42) models the retransmission logic. Depending on
the parameter ecNum1 that counts the number of repeated ECs, the whole EC round
cycle is repeated or not.

LISTING A.42: VCR end step - determining the last EC of the VCR
// I f the end of the VCR has been reached −> end
[ecUpdate] s tep1 = EndVCR & ecNum1=ecNumberVCR−1 −>

true ;
// I f the end of the VCR has not been reached −> repeat the EC
[ecUpdate] s tep1 = EndVCR & ecNum1!=ecNumberVCR−1 −>

(ecNum1’=ecNum1 +1) & (step1 ’=TMW) ;

168 Appendix A. PRISM source code

A.2.2 The output of the auxiliary VCR model

The output of this model is defined by the properties from Listing A.43. We define
what is the probability that a cc-vector being received by a node replica is lost when
the VCR round ends. We do this for each cc-vector being received by each node
replica. The ending of the VCR is defined by the label vcrEnd. For evaluation VCR
ending it is sufficient to use the variables of only one node replica module instance
since all instances execute in a lock-step.

LISTING A.43: VCR property verification
l a b e l " vcrEnd " = step1 = EndVCR & ecNum1 = ecNumberVCR−1;

P=? [F " vcrEnd"&ccVectRx11=0]

P=? [F " vcrEnd"&ccVectRx21=0]

P=? [F " vcrEnd"&ccVectRx12=0]

P=? [F " vcrEnd"&ccVectRx22=0]

P=? [F " vcrEnd"&ccVectRx13=0]

P=? [F " vcrEnd"&ccVectRx23=0]

Using these properties we define a prism experiment for all the possible input
values of the network components. Remember that these values are defined by the
parameters switches, interlinks, links1, links2 and links3.

The result of the experiment is depicted in Figure A.2. We have removed all
the cases that lead to the system failure and also redundant cases, e.g. if there is
only one switch left, it does not matter if interlinks exist or not (we have kept one
case with interlinks set to 0). Since all the replicas are identical, the results of the
experiment are symmetric. Specifically, the columns ccV ectRx11 and ccV ectRx21
belonging to the cc-vectors received by the replica 1 are identical to the results of the
columns ccV ectRx12, ccV ectRx22 and columns ccV ectRx13, ccV ectRx23 belonging
to the replicas 2 and 3 respectively. This is a proof that the modeling is correct.

Therefore, it is enough that the results of one replica only are evaluated. So, the
results of interest are depicted in Figure A.3. Here we detect the specific network
configuration scenarios and the corresponding probabilities.

Scenario 1 - when there are no links that connect the replicas to the switches
links1 = 0 the probability of losing the cc-vectors will be 1.

Scenarios 2-4 - when there is only one switch it does not matter if there are 1 or 2
links, the probabilities are the same since there is only one path from the transmitting
to the receiving replica. This means that only one copy of the message is sent. The
only difference appears when there are no links in which case the probability or
losing all the cc-vectors is 1.

Scenarios 5-20 - evaluate all the combination of links when there are two inter-
connected switches.

Checking these scenarios and corresponding probabilities is another proof that
the modeling logic is correct since e.g. the probability of failing to receive cc-vectors
when there are less switch and link replicas is greater than the the probability of
failing to receive cc-vectors when there are more switch and link replicas.

From all of these values we have detected that there are only 4 different ones.
These will be used as an input to the main model and will be stored in the variables

A.2. Auxiliary models 169

FIGURE A.2: The output of the VCR experiment

170 Appendix A. PRISM source code

FIGURE A.3: The output of the VCR experiment for a single replica

A.2. Auxiliary models 171

pCCV ectRx1...4. These variables will then be used by the main model for a specific
network configuration whenever VCR round is modeled.

A.2.3 Auxiliary reset model

It is used for modeling the faults that happen during the rest of one replica. Particu-
larly, this model evaluates if the faults that occur during the reset of one replica will
provoke the system failure.

This model is quite similar to the main model considering it includes the same
three node replica modules. The switches and the interlinks modules are exactly the
same as in the main model and they model the permanent failure of the switches
and the interlinks respectively.

There are 4 sequential discrete time steps modeling the behaviour of a replica in
a hypercycle round. The steps are defined as prism constants and are listed in Table
A.12.

TABLE A.12: Reset module sequential step constants

Name Type Value Description
NetworkComponentFailure int 0 Permanent network toplol-

ogy component failure step :
switches, interlinks, links

LinkSwitchInter int 1 Determining if the switch
and link are interconnected
step

EvalSysFail int 2 Evaluate if the system failed
due to the previous network
component failures

FaultsOccurence int 3 Modeling the system failure
occurrence during the reset

The parameters listed in the Table A.13 are the case of reference constants for the
reset model. Some of the parameters are the same as in the main model, thus the val-
ues are also the same. The exception are the parameters init_switches, init_links2
and init_links3 that are the input for this model. The different combinations of these
parameters will represent all the relevant network configurations. Note that, like in
the main model, the last 4 values are the parameters pCCV ectRxi that are the output
of the auxiliary VCR model.

TABLE A.13: Reset model parameters

Name Type Value Description
init_links1 int 0 initial number of links for the

reseting replica
replicaID1 int 1 replica identifier - reseting

replica
replicaID2 int 2 replica identifier - non-

reseting replica

172 Appendix A. PRISM source code

replicaID3 int 3 replica identifier - non-
reseting replica

FSTM int 64 Frame size of the TM ex-
pressed in bytes

numTM int 4 Number of TMs sent in one
EC

FSCtrlMsg int 64 Frame size of the control mes-
sages exchanged among the
switches expressed in bytes

numCtrlMsg int 4 Number of control messages
exchanged among switches

BER double 1e-12 Bit-error rate
resetDuration double 10 Reset duration in seconds

hypercycleDuration double 0.02 ECAC duration in seconds
switchFailSysFailCov double 0.001 Coverage of tolerating a per-

manent failure of one switch
switchesSyncSysFailCov double 0.001 Coverage of tolerating a loss

of synchronization messages
between switches

init_switches int par intital number of switches
init_links2 int par intital number of links for the

non-reseting replica
init_links3 int par intital number of links for the

non-reseting replica
PRr double 1e-5 Permanent replica failure rate
PLr double 1e-7 Permanent link failure rate
TRr double 1e-4 Transient replica failure rate

PSWr double 1e-6 Permanent switch failure rate
TSWr double 1e-4 Transient switch failure rate

PIr double 1e-7 Permanent interlink failure
rate

PSr double 1e-5 Power supply failure rate
pCCVectRx1 double 8.9202

980775
29113
E-29

Probability that all the cc-
vectors from the sending
replica are lost in a VCR
when there is 1 switch and
any number of receiving
and transmitting links (1
useful), or 1 of each links and
2 switches

pCCVectRx2 double 2.2300
745204
80771
E-29

Probability that all the cc-
vectors from the sending
replica are lost in a VCR
when there are 2 switches,
2 receiving links and 1
transmitting link

A.2. Auxiliary models 173

pCCVectRx3 double 4.9732
323640
97859
E-58

Probability that all the cc-
vectors from the sending
replica are lost in a VCR
when there are 2 switches,
2 receiving links and 2
transmitting links

pCCVectRx4 double 1.9892
931234
958
E-57

Probability that all the cc-
vectors from the sending
replica are lost in a VCR
when there are 2 switches,
1 receiving links and 2
transmitting links

The probabilities used by the reset model are calculated as shown in Table A.14.
The same logic as in the previous two models was applied for the calculation of these
probabilities.

TABLE A.14: VCR model probabilities calculation

Name Calculation Expression Description
pSingleTMLost 1-pow(1-BER,FSTM * 8) Probability of losing one TM
pAllTMLost pow(pSingleTMLost,

numTM)
Probability of loosing all the
TM replicas sent in a single
TMW

pTMLost1 pAllTMLost * pAllTMLost *
pAllTMLost * pAllTMLost

Probability of losing all TMs:
2S 2L 1I (2 links, 2 TMs)

pTMLost2 1 Probability of losing all TMs:
2S 2L 0I (2 links, 1 TM) - Im-
possible

pTMLost3 pAllTMLost * pAllTMLost Probability of losing all TMs:
2S 1L 1I (1 link, 2 TMs)

pTMLost4 pAllTMLost Probability of losing all TMs:
other (1 link, 1 TM)

pSingleCtrlMsgLost 1-pow(1-BER,FSCtrlMsg * 8) Probability of losing one con-
trol message exchanged be-
tween switches

pAllCtrlMsgLost pow(pSingleCtrlMsgLost,
numCtrlMsg)

Probability of losing all the
control messages exchanged
between switches

pRepFailHyperCycle 1- pow(2.718281828459,
-hypercycleDuration *
(PRr+PSr) / 3600)

Probability of a replica per-
manently failing during a hy-
percycle

pSwitchHyperCycle 1- pow(2.718281828459,
-hypercycleDuration *
(2*(PSWr+PRr)+TSWr +
PSr) / 3600)

Probability of switch perma-
nently failing during a hyper-
cycle

pInterlinkHyperCycle 1- pow(2.718281828459, -
hypercycleDuration * PIr /
3600)

Probability of an interlink
permanently failing during a
hypercycle

174 Appendix A. PRISM source code

pFaultOccHyperCycle 1- pow(2.718281828459,
-hypercycleDuration *
(PRr+PSr+TRr)) / 3600

Probability that any fault
causing a system failure oc-
curs during a hypercycle

The replica module is the only one that differs from the main model. This module
represents a single replica and is instantiated 3 times. The variables presented in
Table A.15 represent the local state of the node replica module of the reset model.

TABLE A.15: Node replica module of the reset model local variables

Name Type Initial
Value

Description

step1 0..7 0 sequential steps of the
VCR

links1 0..2 init_links1 operating (non-failed)
links

oneSwitchOneLinkInterconnected1 bool false a flag indicating whether
a switch and a replica link
are interconnected when
there is one left of each

sysFail1 bool false a flag indicating the sys-
tem failure

Again, the two additional replica modules are modeled by using the concept of
module renaming as depicted in Listing A.44.

LISTING A.44: Node replica module renaming of the reset model
module NodeReplica2 = NodeReplica1 [
s tep1 = step2 ,
l i n k s 1 = l inks2 , l i n k s 2 = l inks1 ,
oneSwitchOneLinkInterconnected1 = oneSwitchOneLinkInterconnected2 ,
s y s F a i l 1 = s y s Fa i l 2 , s y s F a i l 2 = s y s F a i l 1 ,
i n i t _ l i n k s 1 = i n i t _ l i n k s 2 ,
r e p l i c a I D 1 = r e p l i c a I D 2
] endmodule

module NodeReplica3 = NodeReplica1 [
s tep1 = step3 ,
l i n k s 1 = l inks3 , l i n k s 2 = l inks1 , l i n k s 3 = l inks2 ,
oneSwitchOneLinkInterconnected1 = oneSwitchOneLinkInterconnected3 ,
s y s F a i l 1 = s y s Fa i l 3 , s y s F a i l 2 = s y s F a i l 1 , s y s F a i l 3 = s y s F a i l 2 ,
i n i t _ l i n k s 1 = i n i t _ l i n k s 3 ,
r e p l i c a I D 1 = r e p l i c a I D 3
] endmodule

The first step NetworkComponentFailure is depicted in Listing A.45 and models
the permanent failures of network components in a ECAC. Particularly, in this node
replica module, any of the replica’s links may permanently fail with a probability
pLinkFailHyperCycle. This logic is identical as in the node replica module of the
main model.

A.2. Auxiliary models 175

LISTING A.45: Network components failures
// I f there are two l i n k s and the r e p l i c a has not f a i l e d −> any of

the l i n k s can f a i l
[netCompFail] s tep1 = NetworkComponentFailure & l i n k s 1 = 2 −>

2∗pRepFailHyperCycle∗(1−pRepFailHyperCycle) : (l inks1 ’ = 1) &
(step1 ’= LinkSwitchInter)

+ pRepFailHyperCycle∗pRepFailHyperCycle : (l inks1 ’ = 0) & (
step1 ’= LinkSwitchInter)

+ (1−pRepFailHyperCycle) ∗(1−pRepFailHyperCycle) : (l inks1
’ = 2) & (step1 ’= LinkSwitchInter) ;

// I f there i s one l i n k and the r e p l i c a has not f a i l e d −> the l i n k
can f a i l

[netCompFail] s tep1 = NetworkComponentFailure & l i n k s 1 = 1 −>
pRepFailHyperCycle : (l inks1 ’ = 0) & (step1 ’= LinkSwitchInter)
+ 1−pRepFailHyperCycle : (l inks1 ’ = 1) & (step1 ’=

LinkSwitchInter) ;
// I f there no l i n k s or i f the r e p l i c a has f a i l e d −> continue
[netCompFail] s tep1 = NetworkComponentFailure & l i n k s 1 = 0 −>

(step1 ’= LinkSwitchInter) ;

The step LinkSwitchInter (Listing A.46) models a case when one switch and link
are left due to permanent failures of the former, switches = 1&links1 = 1. If this
is the first evaluation of this case, the variable oneSwitchOneLinkInterconnected1
is false (initial value). Then, the replica and the switch might be interconnected or
not with a 50% chance. If they are not, the replica is deemed as permanently faulty.
Again, the logic of this step is identical to the middle part of the step EvalNetComp-
SysFail of the node replica module of the main model.

LISTING A.46: Evaluation of replica and system permanent failures
depending on which components of network topology failed

// I f there i s one l i n k and one switch and i n i t i a l l y there were 2
l i n k s or 2 switches and they are not in terconnec ted −> they w i l l

be in terconnec ted or not
[l i n k S w i t c h I n t e r] s tep1 = LinkSwitchInter & switches = 1 & l i n k s 1 =

1 & (i n i t _ l i n k s 1 = 2 | i n i t _ s w i t c h e s = 2) &
oneSwitchOneLinkInterconnected1 = f a l s e −>

0 . 5 : (step1 ’= Eva lSysFa i l) & (
oneSwitchOneLinkInterconnected1 ’= true)

+ 0 . 5 : (step1 ’= Eva lSysFa i l) & (l inks1 ’ = 0) & (
oneSwitchOneLinkInterconnected1 ’= f a l s e) ;

// I f not −> continue
[l i n k S w i t c h I n t e r] s tep1 = LinkSwitchInter & ! (switches = 1 & l i n k s 1

= 1 & (i n i t _ l i n k s 1 = 2 | i n i t _ s w i t c h e s = 2) &
oneSwitchOneLinkInterconnected1 = f a l s e) −>

(step1 ’= Eva lSysFa i l) ;

The step EvalSysFail (Listing A.47) evaluates if the network topology failures will
lead to the system failure.

LISTING A.47: Evaluate if the system failed due to network topology
failures

//For r e s e t i n g r e p l i c a , i f there are no more non−r e s e t i n g r e p l i c a
l i n k s or switches or i f there are 2 disconnected switches −> the

system f a i l e d
[e v a l S y s F a i l] s tep1 = EvalSysFa i l & r e p l i c a I D 1 = 1 & (l i n k s 2 = 0 |

l i n k s 3 = 0 | switches = 0 | switches = 2 & i n t e r l i n k s = 0) −>
(step1 ’= FaultsOccurence) & (sy s F a i l 1 ’= t rue) ;

176 Appendix A. PRISM source code

//For r e s e t i n g r e p l i c a , i f the p r e d i c a t e above i s not f u l l f i l l e d −>
continue

[e v a l S y s F a i l] s tep1 = EvalSysFa i l & r e p l i c a I D 1 = 1 & ! (l i n k s 2 = 0 |
l i n k s 3 = 0 | switches = 0 | switches = 2 & i n t e r l i n k s = 0) −>

(step1 ’= FaultsOccurence) ;
//For non−r e s e t i n g r e p l i c a −> continue
[e v a l S y s F a i l] s tep1 = EvalSysFa i l & r e p l i c a I D 1 != 1 −>

(step1 ’= FaultsOccurence) ;

The step FaultsOccurence (Listing A.48) evaluates if the fault occurrence will lead
to the system failure. Depending on different network configurations a system might
fail if there is an error that leads to the system failure. If either a fault leading to the
system failure occurs and causes an error with probability pFaultOccHyperCycle,
or if all TMs are lost pTMLosi, or if all cc-vectors are lost pCCV ectRxi, the system
fails.

LISTING A.48: System failure due to fault occurence
//For non−r e s e t i n g r e p l i c a , i f any of the f a u l t s causing the system

f a i l u r e occurs −> the system f a i l e s
[faul tOccurence] phase1 = FaultsOccurence & r e p l i c a I D 1 != 1 &

switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 = 2 & l i n k s 3 = 2 −>
pFaultOccHyperCycle + 3∗pTMLost1 + 2∗pCCVectRx3 : (phase1 ’=

NetworkComponentFailure) & (s y sF a i l 1 ’= true)
+ 1 − pFaultOccHyperCycle − 3∗pTMLost1 − 2∗pCCVectRx3 : (

phase1 ’= NetworkComponentFailure) ;
[faul tOccurence] phase1 = FaultsOccurence & r e p l i c a I D 1 != 1 &

switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 = 2 & l i n k s 3 = 1 −>
pFaultOccHyperCycle + 3∗pTMLost1 + 2∗pCCVectRx2 : (phase1 ’=

NetworkComponentFailure) & (s y sF a i l 1 ’= true)
+ 1 − pFaultOccHyperCycle − 3∗pTMLost1 − 2∗pCCVectRx2 : (

phase1 ’= NetworkComponentFailure) ;
[faul tOccurence] phase1 = FaultsOccurence & r e p l i c a I D 1 != 1 &

switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 = 1 & l i n k s 3 = 2 −>
pFaultOccHyperCycle + 3∗pTMLost3 + 2∗pCCVectRx4 : (phase1

’= NetworkComponentFailure) & (s ys F a i l1 ’= t rue)
+ 1 − pFaultOccHyperCycle − 3∗pTMLost3 − 2∗pCCVectRx4 : (

phase1 ’= NetworkComponentFailure) ;
[faul tOccurence] phase1 = FaultsOccurence & r e p l i c a I D 1 != 1

& ! (switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 = 2 & l i n k s 3 =
2)

& ! (switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 = 2 & l i n k s 3 =
1)

& ! (switches = 2 & i n t e r l i n k s = 1 & l i n k s 1 = 1 & l i n k s 3 =
2) −>

pFaultOccHyperCycle + 3∗pTMLost4 + 2∗pCCVectRx1 : (phase1 ’=
NetworkComponentFailure) & (s y sF a i l 1 ’= true)

+ 1 − pFaultOccHyperCycle − 3∗pTMLost4 − 2∗pCCVectRx1 : (
phase1 ’= NetworkComponentFailure) ;

//For r e s e t i n g r e p l i c a −> continue
[faul tOccurence] phase1 = FaultsOccurence & r e p l i c a I D 1 = 1 −>

(phase1 ’= NetworkComponentFailure) ;

A.2.4 The output of the auxiliary reset model

The goal of the model is to obtain the probability that the system fails during the
reset of one replica. The system will fail if any of the variables sysFail1...sysFail3
is true.

A.2. Auxiliary models 177

FIGURE A.4: Reset model experiments

Next, we define the number of time units of the simulation. The time units are
calculated as displayed by Listing A.49.

LISTING A.49: The calculation of time units for the reset simulation
const i n t t imeSteps = f l o o r ((rese tDurat ion/hypercycleDuration) ∗4) ;

The reset duration resetDuration is divided by ECAC duration hypercycleDuration
to obtain the number of ECACs. Each ECAC in further divided into 4 sequential
steps, i.e. discrete time steps executed one after the other. Therefore, in order to
determine the number of time steps in the duration of the predefined reset duration
we multiply the number of ECACs with the number of steps in each ECAC.

The output of this model is defined by the property from Listing A.50. We define
what is the probability that the system fails during the reset that lasts timeSteps time
units.

LISTING A.50: Reset property verification
P=? [F<=timeSteps s y s F a i l 1 | s y s F a i l 2 | s y s F a i l 3]

Based upon this property we define an experiment with network configuration
values that do not lead to the system failure as seen by Figure A.4. The output of
this experiment are the 8 properties that are the input values for the main model
pResetSysFail1...pResetSysFail8.

179

Bibliography

Ahamad, Mustaque et al. (1987). “Fault Tolerant Computing in Object Based Dis-
tributed Operating Systems.” In: Proceedings-Symposium on Reliability in Distributed
Software and Database Systems. IEEE.

AL Hopkins, Jr, T Basil Smith III, and Jaynarayan H Lala (1978). “FTMP—A highly
reliable fault-tolerant multiprocess for aircraft”. In: Proceedings of the IEEE 66.10,
pp. 1221–1239.

Almeida, Luis, Paulo Pedreiras, and José Alberto G Fonseca (2002). “The FTT-CAN
protocol: Why and how”. In: IEEE transactions on industrial electronics 49.6, pp. 1189–
1201.

Alstrom, K and Jan Torin (2001). “Future architecture for flight control systems”. In:
Digital Avionics Systems, 2001. DASC. 20th Conference. Vol. 1. IEEE, 1B5–1.

Amir, Yair et al. (1993). “Fast message ordering and membership using a logical
token-passing ring”. In: Distributed Computing Systems, 1993., Proceedings the 13th
International Conference on. IEEE, pp. 551–560.

Arlat, Jean, Yves Crouzet, and J-C Laprie (1989). “Fault injection for dependabil-
ity validation of fault-tolerant computing systems”. In: Fault-Tolerant Comput-
ing, 1989. FTCS-19. Digest of Papers., Nineteenth International Symposium on. IEEE,
pp. 348–355.

Arnold, Thomas F (1973). “The concept of coverage and its effect on the reliability
model of a repairable system”. In: IEEE Transactions on Computers 100.3, pp. 251–
254.

Ashjaei, Mohammad, Moris Behnam, and Thomas Nolte (2016). “SEtSim: A modular
simulation tool for switched Ethernet networks”. In: Journal of Systems Architec-
ture 65, pp. 1–14.

Ashjaei, Mohammad et al. (2016). “Improved message forwarding for multi-hop
HaRTES real-time ethernet networks”. In: Journal of Signal Processing Systems 84.1,
pp. 47–67.

Avizienis, Algirdas (1985). “The N-version approach to fault-tolerant software”. In:
IEEE Transactions on software engineering 12, pp. 1491–1501.

— (1995). “Building dependable systems: how to keep up with complexity”. In:
Proc. IEEE, pp. 4–14.

Avizienis, Algirdas et al. (2004). “Basic concepts and taxonomy of dependable and
secure computing”. In: IEEE transactions on dependable and secure computing 1.1,
pp. 11–33.

Awtar, Shorya et al. (2002). “Mechatronic design of a ball-on-plate balancing sys-
tem”. In: Mechatronics 12.2, pp. 217–228.

Ballesteros, Alberto et al. (2013). “Towards preventing error propagation in a real-
time ethernet switch”. In: Emerging Technologies & Factory Automation (ETFA),
2013 IEEE 18th Conference on. IEEE.

Ballesteros, Alberto et al. (2016a). “First implementation and test of a node replica-
tion scheme on top of the flexible time-triggered replicated star for ethernet”. In:
Factory Communication Systems (WFCS), 2016 IEEE World Conference on. IEEE.

180 BIBLIOGRAPHY

Ballesteros, Alberto et al. (2016b). “First implementation and test of reintegration
mechanisms for node replicas in the FT4FTT Architecture”. In: Emerging Tech-
nologies and Factory Automation (ETFA), 2016 IEEE 21st International Conference on.
IEEE.

Barborak, Michael, Anton Dahbura, and Miroslaw Malek (1993). “The consensus
problem in fault-tolerant computing”. In: ACM Computing Surveys (CSur) 25.2,
pp. 171–220.

Barranco, Manuel, Julián Proenza, and Luís Almeida (2009). “Boosting the robust-
ness of controller area networks: CANcentrate and ReCANcentrate”. In: Com-
puter 42.5.

— (2011). “Quantitative comparison of the error-containment capabilities of a bus
and a star topology in CAN networks”. In: IEEE Transactions on Industrial Elec-
tronics 58.3, pp. 802–813.

Barranco, Manuel et al. (2006). “An active star topology for improving fault confine-
ment in CAN networks”. In: IEEE transactions on industrial informatics 2.2, pp. 78–
85.

Barret, PA et al. (1990). “The Delta-4 extra performance architecture (XPA)”. In: Fault-
Tolerant Computing, 1990. FTCS-20. Digest of Papers., 20th International Symposium.
IEEE, pp. 481–488.

Bartlett, Joel, Jim Gray, and Bob Horst (1987). “Fault tolerance in tandem computer
systems”. In: The Evolution of Fault-Tolerant Computing. Springer, pp. 55–76.

Bernstein, Philip A. (1988). “Sequoia: A fault-tolerant tightly coupled multiprocessor
for transaction processing”. In: Computer 21.2, pp. 37–45.

Birman, Kenneth P et al. (1985). “Implementing fault-tolerant distributed objects”.
In: IEEE Transactions on Software Engineering 6, pp. 502–508.

Blischke, Wallace R and DN Prabhakar Murthy (2011). Reliability: modeling, prediction,
and optimization. Vol. 767. John Wiley & Sons.

Borres, Mark S, Efren O Barabat, and Joy Panduyos (2013). “On Fractional Deriva-
tives and Application”. In: Recoletos Multidisciplinary Research Journal 1.2, pp. 1–
1.

Bouricius, WG, W Ct Carter, and PR Schneider (1969). “Reliability modeling tech-
niques for self-repairing computer systems”. In: Proceedings of the 1969 24th na-
tional conference. ACM, pp. 295–309.

Boyd, Mark A and Sonie Lau (1998). “An Introduction to Markov Modeling: Con-
cepts and Uses”. In:

Budhiraja, Navin et al. (1991). “Lower bounds for primary-backup implementations
of bofo services”. In: Proceedings of the 2nd Annual Workshop on Ultradependable
Multicomputers and Electronic Systems, pp. 81–86.

Calha, Mkio J and JA Fonseca (2002). “Adapting FTT-CAN for the joint dispatching
of tasks and messages”. In: Factory Communication Systems, 2002. 4th IEEE Inter-
national Workshop on. IEEE, pp. 117–124.

Chang, Jo-Mei and Nicholas F. Maxemchuk (1984). “Reliable broadcast protocols”.
In: ACM Transactions on Computer Systems (TOCS) 2.3, pp. 251–273.

Chen, L and A Avizienis (1977). “On the implementation of n-version programming
for software fault tolerance during program execution”. In: International Com-
puter Software and Applications Conference (COMPSAC).

Chérèque, Marc et al. (1992). “Active replication in Delta-4”. In: Fault-Tolerant Com-
puting, 1992. FTCS-22. Digest of Papers., Twenty-Second International Symposium on.
IEEE, pp. 28–37.

BIBLIOGRAPHY 181

Chtepen, M. et al. (2009). “Adaptive Task Checkpointing and Replication: Toward
Efficient Fault-Tolerant Grids”. In: IEEE Transactions on Parallel and Distributed
Systems 20.2, pp. 180–190. ISSN: 1045-9219. DOI: 10.1109/TPDS.2008.93.

Cooper, Eric C (1984). Circus: A replicated procedure call facility. Tech. rep. CALIFOR-
NIA UNIV BERKELEY DEPT OF ELECTRICAL ENGINEERING and COMPUTER
SCIENCES.

Cristian, Flavin (1991). “Understanding fault-tolerant distributed systems”. In: Com-
munications of the ACM 34.2, pp. 56–78.

Cristian, Flaviu et al. (1986). Atomic broadcast: From simple message diffusion to Byzan-
tine agreement. International Business Machines Incorporated, Thomas J. Watson
Research Center.

Defense, UDo (1995). “MIL-HDBK-217F reliability prediction of electronic equip-
ment”. In: Defense, US Department of 28.

Derasevic, Sinisa, Manuel Barranco, and Julián Proenza (2014). “Appropriate consis-
tent replicated voting for increased reliability in a node replication scheme over
FTT”. In: Emerging Technology and Factory Automation (ETFA), IEEE.

— (2015). “An OMNET++ model to asses node fault-tolerance mechanisms for FTT-
Ethernet DESs”. In: Emerging Technologies & Factory Automation (ETFA), 2015 IEEE
20th Conference on. IEEE.

— (2016). “Designing fault-diagnosis and reintegration to prevent node redundancy
attrition in highly reliable control systems based on FTT-Ethernet”. In: Factory
Communication Systems (WFCS), 2016 IEEE World Conference on. IEEE, pp. 1–4.

Derasevic, Sinisa, Julián Proenza, and Manuel Barranco (2014). “Using FTT-ethernet
for the coordinated dispatching of tasks and messages for node replication”. In:
Emerging Technology and Factory Automation (ETFA), 2014 IEEE. IEEE.

Derasevic, Sinisa, Julián Proenza, and David Gessner (2013). “Towards dynamic
fault tolerance on FTT-based distributed embedded systems”. In: Emerging Tech-
nologies & Factory Automation (ETFA), 2013 IEEE 18th Conference on. IEEE, pp. 1–
4.

Derasevic, Sinisa et al. (2015). “First experimental evaluation of the consistent repli-
cated voting in the hard real-time ethernet switching architecture”. In: Emerg-
ing Technologies & Factory Automation (ETFA), 2015 IEEE 20th Conference on. IEEE,
pp. 1–4.

Di Giandomenico, Felicita and Lorenzo Strigini (1990). “Adjudicators for diverse-
redundant components”. In: Reliable Distributed Systems, 1990. Proceedings., Ninth
Symposium on. IEEE, pp. 114–123.

Dodd, Paul E and Lloyd W Massengill (2003). “Basic mechanisms and modeling of
single-event upset in digital microelectronics”. In: IEEE Transactions on nuclear
Science 50.3, pp. 583–602.

Dolev, Danny and H. Raymond Strong (1983). “Authenticated algorithms for Byzan-
tine agreement”. In: SIAM Journal on Computing 12.4, pp. 656–666.

Dolev, Danny et al. (1986). “Reaching approximate agreement in the presence of
faults”. In: Journal of the ACM (JACM) 33.3, pp. 499–516.

Ductor, Sylvain, Zahia Guessoum, and Mikal Ziane (2011). “Adaptive replication
in fault-tolerant multi-agent systems”. In: Proceedings of the 2011 IEEE/WIC/ACM
International Conferences on Web Intelligence and Intelligent Agent Technology-Volume
02. IEEE Computer Society, pp. 304–307.

Ferreira, Joaquim et al. (2006). “Combining operational flexibility and dependability
in FTT-CAN”. In: IEEE Transactions on Industrial Informatics 2.2, pp. 95–102.

https://doi.org/10.1109/TPDS.2008.93

182 BIBLIOGRAPHY

Garibay-Martínez, Ricardo et al. (2016). “Improved Holistic Analysis for Fork–Join
Distributed Real-Time Tasks Supported by the FTT-SE Protocol”. In: IEEE Trans-
actions on Industrial Informatics 12.5, pp. 1865–1876.

Gessner, D., J. Proenza, and M. Barranco (2014a). “A proposal for managing the re-
dundancy provided by the flexible time-triggered replicated star for Ethernet”.
In: 2014 10th IEEE Workshop on Factory Communication Systems (WFCS 2014). DOI:
10.1109/WFCS.2014.6837600.

Gessner, David (2017). “Adding Fault Tolerance to a Flexible Real-Time Ethernet
Network for Embedded Systems”. PhD thesis. PhD Thesis from University of
Balearic Islands, Spain.

Gessner, David, Julian Proenza, and Manuel Barranco (2014b). “A proposal for mas-
ter replica control in the flexible time-triggered replicated star for Ethernet”. In:
Factory Communication Systems (WFCS), 2014 10th IEEE Workshop on. IEEE.

Gessner, David et al. (2013). “Towards a flexible time-triggered replicated star for
Ethernet”. In: Emerging Technologies & Factory Automation (ETFA), IEEE 18th Con-
ference.

Gunneflo, Ulf, Johan Karlsson, and Jan Torin (1989). “Evaluation of error detection
schemes using fault injection by heavy-ion radiation”. In: Fault-Tolerant Comput-
ing, 1989. FTCS-19. Digest of Papers., Nineteenth International Symposium on. IEEE,
pp. 340–347.

Kaashoek, M Frans and Andrew S Tanenbaum (1991). “Group communication in the
Amoeba distributed operating system”. In: Distributed Computing Systems, 1991.,
11th International Conference on. IEEE, pp. 222–230.

Kalbarczyk, Z.T. et al. (1999). “Chameleon: a software infrastructure for adaptive
fault tolerance”. In: IEEE Transactions on Parallel and Distributed Systems 10.6, pp. 560–
579. ISSN: 10459219. DOI: 10.1109/71.774907.

Keichafer, RM et al. (1988). “The MAFT architecture for distributed fault tolerance”.
In: Computers, IEEE Transactions on 37.4, pp. 398–404.

Knezic, Mladen, Alberto Ballesteros, and Julián Proenza (2014). “Towards extending
the OMNeT++ INET framework for simulating fault injection in Ethernet-based
Flexible Time-Triggered systems”. In: Emerging Technology and Factory Automation
(ETFA), 2014 IEEE. IEEE.

Koo, Richard and Sam Toueg (1987). “Checkpointing and rollback-recovery for dis-
tributed systems”. In: IEEE Transactions on software Engineering 1, pp. 23–31.

Kopetz, Hermann (2004). From a federated to an integrated architecture for dependable
embedded systems. Tech. rep. TECHNISCHE UNIV VIENNA (AUSTRIA).

Kopetz, Hermann and Gunter Grunsteidl (1993). “TTP-A time-triggered protocol for
fault-tolerant real-time systems”. In: Fault-Tolerant Computing, FTCS-23. Digest of
Papers., The Twenty-Third International Symposium on. IEEE, pp. 524–533.

Kopetz, Hermann et al. (1989). “Distributed fault-tolerant real-time systems: The
Mars approach”. In: IEEE Micro 9.1, pp. 25–40.

Kopetz, Hermann et al. (2005). “The time-triggered ethernet (TTE) design”. In: Object-
Oriented Real-Time Distributed Computing, ISORC. Eighth IEEE International Sym-
posium on. IEEE, pp. 22–33.

Kwiatkowska, M., G. Norman, and D. Parker (2011). “PRISM 4.0: Verification of
Probabilistic Real-time Systems”. In: Proc. 23rd International Conference on Com-
puter Aided Verification (CAV’11). Ed. by G. Gopalakrishnan and S. Qadeer. Vol. 6806.
LNCS. Springer, pp. 585–591.

Lala, Jaynarayan H and Linda S Alger (1988). “Hardware and software fault toler-
ance: A unified architectural approach”. In: Fault-Tolerant Computing, 1988. FTCS-
18, Digest of Papers., Eighteenth International Symposium on. IEEE, pp. 240–245.

https://doi.org/10.1109/WFCS.2014.6837600
https://doi.org/10.1109/71.774907

BIBLIOGRAPHY 183

Lamport, Leslie, Robert Shostak, and Marshall Pease (1982). “The Byzantine generals
problem”. In: ACM Transactions on Programming Languages and Systems (TOPLAS)
4.3, pp. 382–401.

Laprie, Jean-Claude (1992). “Dependability: Basic concepts and terminology”. In:
Dependability: Basic Concepts and Terminology. Springer, pp. 3–245.

Laranjeira, Luiz A, Miroslaw Malek, and Roy Jenevein (1991). “On tolerating faults
in naturally redundant algorithms”. In: Reliable Distributed Systems, 1991. Proceed-
ings., Tenth Symposium on. IEEE, pp. 118–127.

Levine, WS. The Control Handbook. 1996.
Makam, Srinivas V (1982). Design study of a fault-tolerant computer system to execute

N-version software.
Makowitz, Rainer and Christopher Temple (2006). “FlexRay - A communication net-

work for automotive control systems”. In: IEEE International Workshop on Factory
Communication Systems, pp. 207–212.

Marau, Ricardo Roberto Duarte (2009). “Real-time communications over switched
Ethernet supporting dynamic QoS management”. In:

Marzullo, Keith (1990). “Tolerating failures of continuous-valued sensors”. In: ACM
Transactions on Computer Systems (TOCS) 8.4, pp. 284–304.

Morris, Jennifer and Philip Koopman (2005). “Representing design tradeoffs in safety-
critical systems”. In: ACM SIGSOFT Software Engineering Notes. Vol. 30. 4. ACM,
pp. 1–5.

Osman, Khairuddin, Mohd Fuaad Rahmat, and Mohd Ashraf Ahmad (2009). “Mod-
elling and controller design for a cruise control system”. In: Signal Processing &
Its Applications, 2009. CSPA 2009. 5th International Colloquium on. IEEE, pp. 254–
258.

Pease, Marshall, Robert Shostak, and Leslie Lamport (1980). “Reaching agreement
in the presence of faults”. In: Journal of the ACM (JACM) 27.2, pp. 228–234.

Pedreiras, Paulo and Luis Almeida (2000). “Combining event-triggered and time-
triggered traffic in FTT-CAN: Analysis of the asynchronous messaging system”.
In: Factory Communication Systems, 2000. Proceedings. 2000 IEEE International Work-
shop on. IEEE, pp. 67–75.

— (2003). “The flexible time-triggered (FTT) paradigm: an approach to QoS man-
agement in distributed real-time systems”. In: Parallel and Distributed Processing
Symposium, 2003. Proceedings. International. IEEE, 9–pp.

Pedreiras, Paulo, Luis Almeida, and Paolo Gai (2002). “The FTT-Ethernet protocol:
Merging flexibility, timeliness and efficiency”. In: Proceedings of the 14th Euromicro
Conference on Real-Time Systems. IEEE Computer Society, p. 152.

Perry, Kenneth J and Sam Toueg (1986). “Distributed agreement in the presence of
processor and communication faults”. In: IEEE Transactions on Software Engineer-
ing 3, pp. 477–482.

Peti, Philipp et al. (2005). “A maintenance-oriented fault model for the DECOS inte-
grated diagnostic architecture”. In: Parallel and Distributed Processing Symposium,
Proceedings. 19th IEEE International. IEEE.

Poledna, Stefan (2007). Fault-tolerant real-time systems: The problem of replica determin-
ism. Vol. 345. Springer Science & Business Media.

Powell, David (1992). “Failure mode assumptions and assumption coverage.” In:
FTCS. Vol. 92, pp. 386–395.

— (2012). Delta-4: a generic architecture for dependable distributed computing. Vol. 1.
Springer Science & Business Media.

Powell, David, Marc Chérèque, and David Drackley (1991). “Fault-tolerance in Delta-
4”. In: ACM SIGOPS Operating Systems Review 25.2, pp. 122–125.

184 BIBLIOGRAPHY

Powell, David et al. (1999). “GUARDS: A generic upgradable architecture for real-
time dependable systems”. In: IEEE Transactions on Parallel and Distributed Sys-
tems 10.6, pp. 580–599.

Powell, David et al. (2001). A generic fault-tolerant architecture for real-time dependable
systems. Springer.

Proenza, Julián (2007). “RCMBnet: A distributed hardware and firmware support for
software fault tolerance”. PhD thesis. Ph. D. thesis, Department of Mathematics
and Informatics. Universitat de les Illes Balears (UIB).

Proenza, Julián et al. (2012). “The design of the CANbids architecture”. In: Emerg-
ing Technologies & Factory Automation (ETFA), 2012 IEEE 17th Conference on. IEEE,
pp. 1–8.

Rosset, Valério et al. (2012). “Modeling the reliability of a group membership pro-
tocol for dual-scheduled time division multiple access networks”. In: Computer
Standards & Interfaces 34.3, pp. 281–291.

Santos, Rui (2010). “Enhanced Ethernet switching technology for adaptive hard real-
time applications”. PhD thesis. PhD Thesis from University of Aveiro in Aveiro,
Portugal.

Schneider, Fred B (1990). “Implementing fault-tolerant services using the state ma-
chine approach: A tutorial”. In: ACM Computing Surveys (CSUR) 22.4, pp. 299–
319.

Shin, Kang G, Tein-Hsiang Lin, and Yann-Hang Lee (1987). “Optimal checkpointing
of real-time tasks”. In: IEEE Transactions on computers 100.11, pp. 1328–1341.

Silva, Valter et al. (2005). “Implementing a distributed sensing and actuation sys-
tem: The CAMBADA robots case study”. In: Emerging Technologies and Factory
Automation, 2005. ETFA 2005. 10th IEEE Conference on. Vol. 2. IEEE, 8–pp.

Souto, Pedro Ferreira do, Paulo Portugal, and Francisco Vasques (2016). “Reliability
Evaluation of Broadcast Protocols for FlexRay”. In: IEEE Transactions on Vehicular
Technology 65.2, pp. 525–541.

Stephens, Ransom (2004). “Analyzing jitter at high data rates”. In: IEEE Communica-
tions Magazine 42.2, S6–10.

Takano, Tadashi et al. (1996). “In-orbit experiment on the fault-tolerant space com-
puter aboard the satellite Hiten”. In: IEEE transactions on reliability 45.4, pp. 624–
631.

Taylor, D and G Wilson (1989). The Stratus system architecture.
Ternon, Cédric, Joël Goossens, and Jean-Michel Dricot (2016). “FTT-openFlow, on

the way towards real-time SDN”. In: ACM SIGBED Review 13.4, pp. 49–54.
Thomm, Isabella et al. (2011). “Automated application of fault tolerance mechanisms

in a component-based system”. In: Proceedings of the 9th International Workshop on
Java Technologies for Real-Time and Embedded Systems. ACM, pp. 87–95.

Varga, András (2001). “OMNET++ Discrete event simulation system”. In: Proc. of the
European Simulation Multiconference (ESM’2001).

Varga, Andras et al. (2007). INET framework. URL: https://inet.omnetpp.org/.
W. Craig, Carter (1982). “A time for reflection”. In: Proc. 12th IEEE Int. Symp. Fault-

Tolerant Computing. FTCS-12. Santa Monica, California, p. 41.
Wensley, J.H. et al. (1978). “SIFT: Design and analysis of a fault-tolerant computer for

aircraft control”. In: Proceedings of the IEEE 66.10, pp. 1240–1255. ISSN: 0018-9219.
DOI: 10.1109/PROC.1978.11114.

Wiesmann, Matthias et al. (2000). “Understanding replication in databases and dis-
tributed systems”. In: Distributed Computing Systems, 2000. Proceedings. 20th Inter-
national Conference on. IEEE, pp. 464–474.

https://inet.omnetpp.org/
https://doi.org/10.1109/PROC.1978.11114

BIBLIOGRAPHY 185

Wu, N Eva (2002). “Reliability analysis for AFTI-F16 SRFCS using ASSIST and SURE”.
In: American Control Conference, 2002. Proceedings of the 2002. Vol. 6. IEEE, pp. 4795–
4800.

187

Alphabetical Index

acknowledgement to cc-vector
reception, 44

active node replication, 37
active replication, 12
actuate (A) phase, 60
actuator, 57
adaptivity, 1
asynchronous traffic, 19
asynchronous widnow, 20
attributes of depenability, 7
availability, 7

backward error recovery, 11
Bit Error Ratio (BER), 88
bounded P operator in PRISM, 82

checkpointing, 31
combined fault classes, 7
Communication Error Counter (CEC),

52
component-based modeling, 63
compound modules OMNeT++, 63
consensus, 15
consistent voting, 53
control (C) phase, 59
control application phases, 57
controller, 57
coverage, 13
Cumulative Distribution Function

(CDF), 88
cumulative rewards in PRISM, 83

dependability, 7
dependability evaluation, 13
dependability tree, 7
Discrepancy Error Counter (DEC), 51
Discrete-Time Markov Chains

(DTMC), 81
duplication and comparison, 26

EC synchronization, 28
EC-schedule, 20
Elementary Cycle (EC), 19
elementary fault class, 7

error, 7
error compensation, 11
error detection, 11
error processing, 11
error reocevery, 11
evaluation steps, 85
event-triggered traffic, 19
Extended Control Application Phases

(ECAC), 57

failure, 7
failure mode, 7
failure rate, 88
failure semantics, 10
failure steps, 84
fault, 7
fault diagnosis, 11
fault forecasting, 11
fault injection, 13
fault model, 7
fault passivation, 11
fault prevention, 11
fault removal, 11
fault tolerance, 11
fault treatment, 11
Flexible Time-Triggered Replicated

Star (FTTRS), 21
formula, 131
forward error recovery, 11
Frame Check Sequence (FCS), 23
FTT communication paradigm, 19
FTT non-real-time packet, 21
FTT paradigm, 19
FTT real-time packet, 21
FTT request packet, 21
FTT-CAN protocol, 19
FTT-Ethernet protocol, 19
FTT-SE protocol, 19
FTTRS architecture, 25

global memory pool, 21

Hard Real-Time Etherner Switch
(HaRTES) protocol, 19

188 ALPHABETICAL INDEX

hardware in the loop, 76

imparements to dependability, 7
INET framework, 63
intelink, 25
isonhronous TM transmission, 28

lock-step replication, 12

Maximum Fault Assumptuion (MFA),
42

means for dependability, 10
Message Exchange of Actuation

Values (EAV) phase, 60
Message Exchange of Sensor Values

(ESV) phase, 57
Messages Status (MS) vector, 52
module renaming, 130

network-centric coordination of
system activities, 38

Node Requirments Data Base
(NRDB), 21

non-real-time traffic, 19

OMNeT++ framework, 63
operational flexibility, 1
output consolidation, 57

passive replication, 12
penalty count, 33
Port Guardian (PG), 27
PRISM command guard, 82
PRISM command synchronization, 82
PRISM command update, 82
PRISM commands, 82
PRISM model checker tool, 82
PRISM modules, 82
PRISM variables, 82
pro-active retranmsission of

messagess, 27
property specification language in

PRISM, 82
Proportional-Integral-Derivative

(PID) controller, 59

qualitative dependability evaluation,
13

quantitaive dependability evaluation,
13

reconfiguration, 11
recovery point, 48

redundancy attrition, 12
redundancy preservation, 118
regular P operator in PRISM, 82
regular steps, 84
reliability, 7
reliability prediction, 81
replica determinism, 14
replica non-determinism, 14
replica radiation, 25
replication techniques, 12
rewards in PRISM, 83

safety, 7
sampling period, 57
security, 7
semi-active replication, 12
sense (S) phase, 57
sensor, 57
simple modules OMNeT++, 63
Single Even Upset (SEU), 41
single point of failure, 23
synchronization steps, 85
synchronous traffic, 19
synchronous window, 20
system module OMNeT++, 63
System Requirements Data Base

(SRDB), 20

Tigger Message Window (TMW), 20
time domain correspondence in the

FTTRS, 28
Time-Division Multiple Access

TDMA, 81
time-triggred traffic, 19
TM resynchronization, 47
Transient Faults affecting the Nodes

manifesting as Permanent
ones (TFNP), 41

Transient Long Lasting Faults
affecting Links (TLLFL), 39

transient probabilities calculation, 83
Trigger Message (TM), 20
Trigger Message Sequence Number

(TMSN), 47

unreliability, 97

value domain correspondence in the
FTTRS, 28

Voting on Actuation values (VA)
phase, 60

ALPHABETICAL INDEX 189

Voting on Sensor values (VS) phase,
57

Voting Reintegration Point, 48
Voting Set-Up Algorithm (VSUA), 53

watchdog timer, 55

You Are Alive (YAA) watchdog timer,
55

 HistoryItem_V1
 TrimAndShift

 Range: all odd numbered pages
 Create a new document
 Trim: extend left edge by 28.35 points
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20171210192433
 1695.1181
 Blank
 1201.8898

 Tall
 1
 1
 No
 811
 505
 None
 Left
 0.0000
 0.0000

 Odd
 AllDoc

 CurrentAVDoc

 Bigger
 28.3465
 Left

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0f
 Quite Imposing Plus 3
 1

 217
 216
 109

 1

 HistoryItem_V1
 TrimAndShift

 Range: all odd numbered pages
 Create a new document
 Trim: cut right edge by 28.35 points
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20171210192433
 1695.1181
 Blank
 1201.8898

 Tall
 1
 1
 No
 811
 505
 None
 Left
 0.0000
 0.0000

 Odd
 AllDoc

 CurrentAVDoc

 Smaller
 28.3465
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0f
 Quite Imposing Plus 3
 1

 217
 216
 109

 1

 HistoryItem_V1
 TrimAndShift

 Range: all even numbered pages
 Create a new document
 Trim: extend right edge by 28.35 points
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20171210192433
 1695.1181
 Blank
 1201.8898

 Tall
 1
 1
 No
 811
 505
 None
 Left
 0.0000
 0.0000

 Even
 AllDoc

 CurrentAVDoc

 Bigger
 28.3465
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0f
 Quite Imposing Plus 3
 1

 217
 215
 108

 1

 HistoryItem_V1
 TrimAndShift

 Range: all even numbered pages
 Create a new document
 Trim: cut left edge by 28.35 points
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20171210192433
 1695.1181
 Blank
 1201.8898

 Tall
 1
 1
 No
 811
 505

 None
 Left
 0.0000
 0.0000

 Even
 AllDoc

 CurrentAVDoc

 Smaller
 28.3465
 Left

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0f
 Quite Imposing Plus 3
 1

 217
 215
 108

 1

 HistoryList_V1
 qi2base

