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Abstract—Distributed embedded systems (DESs) that perform
critical tasks in unpredictable environments must be reliable,
hard real-time, and adaptive. Since a DES comprises nodes that
rely on a network, the network must provide adequate support:
it must be reliable, convey messages on time, and meet new real-
time requirements as the nodes adapt. Ethernet is ill-suited for
such hard real-time adaptive systems, but it can be made suitable.
The Flexible Time-Triggered (FTT) paradigm already supports
hard real-time message exchanges and the necessary flexibility
to meet evolving hard real-time requirements, but its Ethernet
implementations had reliability limitations. To address these,
we designed FTTRS, a communication subsystem that tolerates
permanent and transient faults, even if they occur simultaneously,
while keeping the paradigm’s key features: support for both the
timely exchange of periodic and sporadic real-time messages, and
support for updating the real-time parameters of these messages
at runtime. In this paper we present FTTRS, the first Ethernet-
based communication subsystem specifically designed for highly
reliable hard real-time adaptive DESs.

Keywords—Ethernet, fault tolerance, hard real-time systems,
adaptive systems, distributed embedded systems, dependable systems

I. INTRODUCTION

DURING the 2011 nuclear disaster in Fukushima, mobile
rescue robots were deployed, but only after significant

delays. Valuable time was lost because the robots were not
sufficiently reliable and adaptive: their “hardware reliability,
communication systems, and basic sensors were considered
inadequate” and first had to be “retrofitted for the disaster
response missions” [1]. Had the robots been more reliable and
adaptive, they could have been deployed earlier.

Rescue robots are just one application where reliable, hard
real-time, and adaptive distributed embedded systems (DESs)
are advantageous. Others include self-driving cars, smart
cities, smart grids, and in general any application where a
computerized system needs to provide an uninterrupted service
while interacting with an unpredictable physical environment.

Regardless of the application, a DES has a set of computing
nodes that exchange messages through a network. Thus, for
a DES to be reliable, hard real-time, and adaptive, it needs
support from its network. The Flexible Time-Triggered (FTT)
paradigm [2] can provide the necessary support. It already
provided hard real-time communication with the necessary op-
erational flexibility, i.e., with the ability to change the real-time
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requirements and reconfigure the traffic without interrupting the
communication services, for adaptive applications. However, its
Ethernet implementations lacked the necessary reliability. The
Flexible Time-Triggered Replicated Star for Ethernet (FTTRS)
addresses this limitation by adding tolerance to both permanent
and transient faults, without sacrificing FTT’s support for hard
real-time communication and flexibility to meet evolving hard
real-time requirements.

In particular, FTTRS (S1) consistently transports real-time
messages, which may be sporadic or periodic, from a sender to
the appropriate receivers; (S2) doing so without violating any
deadlines; and (S3) while allowing the real-time parameters
of the messages to change at runtime. The composite of S1,
S2, and S3 is what we call an FTT service. Moreover, FTTRS
provides an FTT service in the presence of faults. For this,
it meets three requirements: (R1) the failure of a slave does
not disrupt the FTT service provided to other slaves; (R2) the
system is parameterizable to be able to tune it to tolerate
transient faults of arbitrary maximum duration; and (R3) it
provides an FTT service even if any arbitrary component suffers
a permanent fault.

This paper for the first time shows how the different FTTRS
mechanisms [3]–[5] are put together to fulfill requirements R1,
R2, and R3, and argues for the feasibility of FTTRS. Also,
it highlights that FTTRS adds some degree of dynamic fault
tolerance and that it preserves additional flexibility of FTT.

II. BASIC CONCEPTS AND TERMINOLOGY

A system is reliable if it has a high probability of providing a
continuous correct service. It is hard real-time if it has to meet
at least one hard deadline—a deadline that, if missed, may
lead to system failure. A failure is the transition of a system’s
service from correct to incorrect. The part of a system’s state
that may lead to a failure is an error. The cause of an error is
a fault. A fault model is a description of the types of faults we
assume to act upon the system. Permanent faults are those that
remain unless repaired; transient faults are those that disappear
on their own. Faults, errors, and failures are causally linked: a
fault causes an error, which, in turn, causes a failure [6].

Fault tolerance are means aimed at interrupting the causal
link such that, despite faults, the last event—the failure—does
not occur. It relies on redundancy. One type of redundancy
is hardware replication, where two or more systems, called
hardware replicas, are available for the same service. For this,
however, the replicas must be replica deterministic: they must
show correspondence in their outputs (e.g., transmit equivalent
messages) given that they started in the same initial state and
processed corresponding inputs within a given time interval.
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This requires replica determinism enforcement, i.e., mechanisms
that ensure replica determinism. Hardware replication, together
with the necessary replica determinism enforcement, is the only
way to overcome single points of failure—components whose
failure inevitably leads to a global system failure. In hardware
replication, replicas need not be equivalent. For instance, in
semi-active replication all replicas process the same inputs and
provide the same responses, but one of them, the leader, plays
a privileged role with respect to the others, the followers.

The failure semantics of a system are the ways in which it
can behave—or misbehave—after a failure and before failure
recovery, i.e., before correct service is restored. The hardest
failure semantics to deal with are byzantine failure semantics,
which include all possible misbehaviors, even such tricky ones
as two-faced behaviors and impersonations. More benign are
fail-silent failure semantics, where a system remains silent once
it fails. Since the difficulty of tolerating the failure of system
components depends on their failure semantics, fault-tolerant
systems often restrict failure semantics. Two ways of doing so
are guardians (components that limit the misbehaviors of other
components) and internal duplication with comparison.

III. RELATED WORK

Current Ethernet-based protocols lack one or more of the
following: reliable message delivery, support for hard real-
time communication, or the flexibility to meet evolving hard
real-time requirements.

For instance, the standard Ethernet protocol, and most
subsequent non-industrial ones based on it, only provide best-
effort delivery and cannot meet real-time requirements due to
their nondeterminism. This is particularly true for protocols
based on the original, now mostly obsolete, CSMA/CD random-
ized retransmission algorithm, whereas the modern full-duplex
switched Ethernet may delay messages unpredictably because
of queuing at switches and end nodes.

A class of switched Ethernet-based protocols add some reli-
ability by tolerating permanent faults—such as STP and RSTP
[7], TRILL [8], and SPB [7]—but they are still insufficient for
hard real-time applications. Not only do they retain the above-
mentioned nondeterminism, but they add new impediments:
they have significant failure recovery times (from 100’s of ms
up to minutes [9]) and do not prevent the loss of messages
during recovery. A network using such protocols can only
tolerate transient faults with an additional transport layer that
adds its own, typically unbounded, delays.

Another class of Ethernet-based protocols are suitable for
real-time applications and have some fault tolerance. Several
older ones are described in [10], namely NDDS, ORTE,
RETHER, RT-EP, the MARS bus, and EtheReal. Some of
the newer ones, like MRP [11], HSR [12] and PRP [12], can
even provide seamless fault tolerance, thus zero failure recovery
times. The Ethernet-based redundancy mechanisms use a ring
topology or two physically independent networks. For instance,
HSR [12] daisy chains nodes into a ring in which frames are
duplicated and then transmitted in opposite directions along the
ring; PRP [12] and AFDX [13] use two independent Ethernet
networks simultaneously; and TTEthernet [14] can provide up

to three independent communication channels. Moreover, the
recent TSN standards provide seamless redundancy through
multipathing [15]. When compared with the use of a ring
topology or independent networks, multipathing increases the
number of redundant paths that can be obtained (and thus the
number of faults that can be tolerated) with a given investment
in extra switches and cabling.

These particular protocols have overcome Ethernet’s non-
determinism in various ways. AFDX uses rate-constrained
transmission, i.e., a transmitting node has to wait a certain
amount of time, called the bandwidth allocation gap (BAG),
between successive transmissions through a given AFDX
virtual link. This constrains the rate with which messages
are transmitted and prevents excessive queuing in switches to
provide hard real-time guarantees. TTEthernet [14], in contrast,
overcomes Ethernet’s nondeterminism with time-triggered
messages that are transmitted according to a pre-calculated
cyclic executive schedule and special Ethernet switches that
prioritize these messages over other non-real-time critical ones.
Basically, TSN overcomes Ethernet’s nondeterminism in a
similar way as TTEthernet does [16]. Time-triggered hard real-
time traffic is achieved by configuring nodes and switches
according to a cyclic executive schedule. The schedule divides
the communication into cycles, which in turn are split into
different windows to isolate the time-triggered traffic from
the soft real-time asynchronous one. Each node transmits its
time-triggered traffic at the calculated instants of time; whereas
each switch uses a set of gates to enable/disable the forwarding
from its different queues, so as to shape the traffic according
to the schedule [16].

Nevertheless, all these protocols lack the necessary flexibility
regarding the real-time requirements to change in unforeseen
ways. AFDX provides seamless fault tolerance and meets hard
deadlines, but only when the real-time requirements remain
static because the calculated BAGs remain fixed at runtime.
Similarly, in TTEthernet the schedule for the time-triggered
messages cannot be changed later on without halting the
network.

In regard to TSN’s flexibility, the IEEE Std 802.1Qcc [17]
standard includes mechanisms to ask for changes in the real-
time requirements at runtime to reconfigure nodes and switches
according to a new cyclic executive schedule. However, it does
not explicitly provide any specific mechanism to actually re-
calculate the schedule, since this aspect is out of scope of
TSN. Some recent works aim at providing this re-scheduling
capability. For instance, [18] proposes a set of re-scheduling
algorithms for the fully centralized approach of Qcc. In this
approach the nodes ask a centralized agent for changes. In case
the agent can provide a new schedule, the agent reconfigures
the nodes and switches accordingly. As we will see later, this
approach resembles the one of FTT, whose centralized master
is in charge of re-scheduling and re-configuring the network at
runtime.

Nevertheless, TSN presents flexibility limitations when
compared with FTT. On the one hand note that TSN uses a
cyclic executive scheduler, whereas FTT can use any scheduling
policy. To calculate a cyclic executive schedule is known to be a
NP-complete problem [19], and normally requires a significant
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Figure 1: HaRTES versus FTTRS architecture.

amount of time. This directly reduces the flexibility of the
system to timely reconfigure and react to critical situations
when compared with FTT, in which it is even possible to
reconfigure the traffic in each communication cycle. Research
is currently being conducted to reduce the reschedule time in
TSN. But even the most recent results [18] show that this time
is considerably higher than the one needed to reschedule in
FTT [20]. Moreover, although the time to react to changes
could be reduced in TSN by switching among different pre-
calculated modes (pre-calculated schedules of specific sets of
messages), flexibility is still within the rigid margins of these
modes. On the other hand, it is also noteworthy that no one
of the flexibility mechanisms TSN provides is fault tolerant.
In particular, the centralized agent is not replicated and thus
constitutes a single point of failure. Moreover, TSN provides
no time redundancy, since it does not include any message
retransmission mechanism.

As to relevant research protocols from academia, we have
Atacama [21] and the Ethernet versions of FTT.

Atacama uses time division multiple access (TDMA) arbi-
tration with some flexibility to meet deadlines even when real-
time requirements change at runtime. It does so by supporting
dynamic switching between TDMA schedule alternatives [22].
However, if the real-time requirements change unpredictably,
the foreseen schedule alternatives may not be appropriate.
Moreover, it lacks the necessary fault tolerance.

As to the Ethernet versions of FTT, namely FTT-Ethernet
[23], FTT Switched Ethernet [24], and HaRTES [25], although
they can meet hard real-time requirements and have the
necessary flexibility, they cannot guarantee the delivery of
messages in the presence of faults.

Thus, neither of these Ethernet-based protocols, nor any
other we are aware of, can currently be used to fulfill the
requirements of Section Section I.

IV. THE FTT PARADIGM AND HARTES

FTT is a master to multi-slave approach: a master, by
means of a single message, called trigger message (TM), polls
multiple slave nodes at once. Each slave, in turn, responds
by transmitting the requested messages for which it is the
publisher (or producer, depending on the implementation of
FTT) and which are intended for other slaves, which are the
subscribers (or consumers). The polling by the TM occurs at
fixed time intervals that divide the communication time into
communication cycles called Elementary Cycles (ECs).

In each EC part of the bandwidth is allocated to periodic
real-time messages, called synchronous messages. The rest

Figure 2: FTT message in an Ethernet frame.

of the EC is allocated to the referred to as asynchronous
messages. These later ones include both real-time messages that
are sporadic (aperiodic real-time messages with a minimum
inter-arrival time); and non-real-time messages, which can be
either sporadic or purely aperiodic. Synchronous messages are
always polled by the TM, whereas asynchronous messages may
or may not, depending on the implementation. The support for
hard real-time communication comes from the master polling
the messages according to its internal scheduler. This scheduler
calculates the real-time schedule every communication cycle
(each EC) based on the contents of a System Requirements
Database (SRDB) that stores for all messages their real-time
parameters (such as deadlines, periods, minimum interarrival
times, etc.). The flexibility comes from the fact that nodes may
request changes to the SRDB. Changes are only accepted by the
master if the resulting set of all messages remains schedulable.
If that occurs, the slaves are notified, and these then update
their Node Requirements Databases (NRDBs), which are the
counterpart in each slave to the SRDB.

FTTRS builds on top of a switched-Ethernet FTT implemen-
tation called Hard Real-Time Ethernet Switching (HaRTES)
[25]. As shown on the left of Figure 1, HaRTES implements a
simplex (non-replicated) microsegmented star topology, with
the HaRTES switch (H in the figure) as a central element
that provides the most relevant functions of FTT. In particular,
the switch embeds the FTT master and thus not only forwards
messages, but also stores the SRDB, computes the EC schedules,
periodically broadcasts the TM, and accepts or rejects requests
from any slave si to update the SRDB. Links are full-duplex,
which enables simultaneous bidirectional communications in
each link. Thus, we treat each slave link as if it were comprised
of an uplink and a downlink, as shown in Figure 1. Moreover,
the HaRTES switch already restricts the failure semantics of
slaves to some extent. It does so by integrating validation
units that discard unscheduled synchronous messages and
asynchronous messages that violate their minimum interarrival
time. As it will be explained in Section Section V-C), FTTRS
extends the error-containment capabilities of these units in what
we call port guardians (labeled G in Figure 1).

We chose HaRTES as our starting point because of its higher
potential for high reliability. Not only because it additionally
includes the just-mentioned validation units, but also because,
contrary to FTT-Ethernet [23] and FTT Switched Ethernet [24],
HaRTES only has one single point of failure (the switch). FTT-
Ethernet and FTT-SE, by contrast, have two each: the master
node and the Ethernet bus or hub in case of FTT-Ethernet, and
the master node and Ethernet switch in case of FTT-SE.

HaRTES uses a regular Ethernet frame to convey each FTT
message, as it is shown in Figure 2.

In HaRTES, as in all versions of FTT, slaves send their



4

TMW TAT Sync. window Async. window Guard
time

Elementary Cycle

Figure 3: Elementary cycle as seen on the downlink of a slave.

synchronous messages initiated by the TM. Asynchronous
messages, in contrast, are sent by the slaves whenever they
become ready. Nevertheless, they do not interfere with the
broadcast of the TM and are not interleaved with synchronous
messages. This is so because the HaRTES switch shapes the
traffic and ensures that the traffic it forwards in each EC is
confined into windows. As shown in Figure 3, on the downlinks
there is one window for transmitting the TM (TMW); a turn-
around-time (TAT) that gives the slaves time to process the
TM; a synchronous window where the switch forwards the
synchronous messages polled by the TM; an asynchronous
window where the switch forwards asynchronous messages; and
a guard window that ensures that an asynchronous message does
not overrun into the next EC, which could delay the next EC’s
TM. HaRTES follows a publisher/subscriber communication
model and thus forwarding is not based on MAC addresses as
in standard Ethernet, but on who the subscribers of a particular
message are. The switch checks the FTT-related information in
the payload of each Ethernet frame to identify the FTT message,
and the SRDB in order to learn who are the subscribers of that
message.

V. DESIGN OF FTTRS
A. Fault Model

Following the taxonomy established by Avižienis et al. [6],
our fault model includes non-malicious operational hardware
faults, which may be internal or external, natural or human
made, deliberate or non-deliberate, due to accidents or incom-
petence, and permanent or transient. Physical deterioration and
interference are examples of these faults. The fault model
excludes development, software, and malicious faults. We
exclude for instance manufacturing defects, bugs, and intrusion
attempts. As to the rate with which faults occur, we do not make
any assumptions except that transient faults affecting links shall
be detectable by the Ethernet Frame Check Sequence (FCS)
shown in Figure 2 and, to properly parameterize FTTRS, have
a known maximum duration.

B. The Architecture of FTTRS
FTTRS eliminates the single point of failure that the switch

in HaRTES constitutes by using a duplicated architecture, as
shown on the right of Figure 1. Specifically, FTTRS has a
replicated star topology with two switches A and B in the center,
each of them embedding an FTT master, just like in HaRTES.
Although duplication increases the hardware realization costs
with respect to HaRTES, it is the minimum replication needed
to eliminate the single point of failure that the switch constitutes

in HaRTES. The FTTRS switches are also interconnected using
interlinks so that they can communicate with each other and
resolve any inconsistencies that might prevent them from being
replica deterministic, i.e., from providing a consistent FTT
service towards the slaves. Also, to prevent a network partition
in case of an interlink failure, the interlinks are replicated.
Finally, each slave si is connected to each switch by means
of a separate Ethernet link, each called a slave link and each
subdivided into an uplink and downlink.

C. Failure Semantics of FTTRS Components

To make it easier to meet the requirements (Section I),
FTTRS restricts the failure semantics of switches and slaves.
Each switch is made fail silent through internal duplication
with comparison. Although costly, for switches that need to be
custom-made anyway, this is an acceptable trade-off to make
the system fault tolerant. Moreover, internal duplication with
comparison is a well-established mechanism to restrict the
failure semantics of components.

The failure semantics of the slaves are mitigated by means of
fail-silent port guardians located at the switch-side of each slave
link (labeled G in Figure 1). These, through direct access to
the SRDB of the corresponding embedded master, and like the
original validation units in HaRTES, drop all incoming slave
messages that violate the real-time communication requirements.
Contrary to the HaRTES validation units, however, the FTTRS
port guardians also prevent impersonations and two-faced
behaviors. Impersonations are prevented because each slave has
a statically assigned source identifier that the slave includes in
each message it sends, as part of the FTT-related information
within the payload of the corresponding Ethernet frame (see
Figure 2). The port guardians simply drop any FTT message
that does not include the source identifier assigned to that port.
As to two-faced behaviors, Figure 4 illustrates how these could
in principle occur within a slave: a payload x originates from
a sensor or local computation; is stored in memory; and is
encapsulated in an FTT message m(x), which is again stored
in memory and then corrupted into m(x)′ in one of the disjoint
paths from the memory to the Ethernet controllers. Because
the corruption occurs before the Ethernet controllers compute
the Ethernet FCS, it is not detected. The solution is illustrated
in Figure 5: a CRC of the message m(x) is computed within a
slave before m(x) follows disjoint paths towards the Ethernet
controllers (note that this CRC is a new one, different to FCS
since it only considers the FTT-related information and not all
the bits of the Ethernet frame); the CRC, together with the
message, is handed over to the Ethernet controllers, which use
it as the payload for an Ethernet frame eth (see Figure 2); and
finally each guardian only allows the incoming frame to pass
if it has a CRC matching the encapsulated FTT message. Thus,
in case a slave sends a message m(x) to one switch and a
message m(x)′ to the other, only the correct message will be
accepted by the receiving switch (and forwarded to the other
switch via the interlinks), whereas the wrong message will be
dropped once the non-matching CRC is detected by the port
guardian. Thereby the two-faced behaviour is not perceived
by the rest of the nodes. Finally, the guardians also check the
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metadata of all incoming slave messages to verify that it is
consistent with what is specified in the SRDBs.

D. Fault-Tolerance Mechanisms
To meet the requirements (Section I), FTTRS employs

fault-tolerance mechanisms that exploit the restricted failure
semantics and the duplicated architecture.

1) R1—Preventing Faulty Slaves from Disrupting the FTT
Service: R1 is satisfied thanks to the port guardians. Specifically,
the port guardians mitigate the failure semantics of slaves to
ensure that these, upon failing, cannot disrupt the FTT service
provided by the switches to other non-faulty slaves. Specifically,
each guardian only lets FTT messages pass that are timely and
have correct metadata (e.g., a valid value for the FTT message
type and a correct source identifier). This ensures that a faulty
slave cannot improperly delay legitimate messages from other
slaves by sending more frames than it should or by sending

them to inappropriate destinations. Similarly, a faulty slave
cannot send so many frames to a switch that it overflows the
queues of the switch, which, if it were possible, might lead
the latter to lose legitimate frames. Moreover, given our fault
model, which excludes development and software faults, frames
sent by a faulty slave cannot crash a switch nor another slave
or otherwise cause the failure of a switch or slave.

2) R2—Tolerating Transient Faults: Transient faults may
occur in slaves, switches, or links. In slaves they must only
be prevented from interfering with the communication (R1),
but do not need to be tolerated by FTTRS since tolerating
them is out of the scope of a communication subsystem. In
any case, they can be tolerated at the application level through
node redundancy. As to transient faults in switches, they are
in practice non-existent since they are effectively converted
into permanent faults due to the switches being internally
duplicated and its decisions compared. FTTRS therefore only
has to deal with transient faults in links. These can only
manifest as message omissions due to the Ethernet FCS, the
port guardians, and the fail-silent switches. To tolerate these
omissions, each message has a parameter called redundancy
level, which specifies for a message how many copies of it the
corresponding transmitter should send in a given EC through
each link. Thus, a redundancy level of k = 3 for the TM means
that each switch broadcasts three TM replicas in each EC, one
after the other, through all slave links and interlinks attached
to that switch. Similarly, a redundancy level of k = 3 for a
message originating at a slave tells that slave to transmit three
replicas of the message within the same EC through each of
its two links. FTTRS thus adopts a proactive retransmission
approach where the number of retransmissions is specified by
a redundancy level. This ensures that it meets requirement
R2 even though the parameterization is not in terms of the
maximum duration of transient faults. Once it is decided which
is the maximum duration of transient faults that the system
has to be capable of tolerating and the maximum rate with
which frames can be transmitted, it can be calculated how
many consecutive frames may be corrupted at most and choose
a redundancy level higher than the calculated number. The
redundancy level for slave messages can be changed at runtime,
just like the real-time parameters, which adds some dynamic
fault tolerance.

The proactive retransmissions consume a significant amount
of bandwidth when compared to HaRTES. Nevertheless, retrans-
missions are unavoidable if we want to tolerate simultaneous
transient and permanent faults without incurring the cost of
higher levels of replication than duplication. Compared to
acknowledgment-based retransmissions, proactive retransmis-
sions have two key advantages. First, they enable simple fault
masking instead of more complex error detection and recovery.
Second, they reduce the worst-case latency to get a message to
its destination. After all, by proactively retransmitting we avoid
the time penalty of timeouts or acknowledgment messages that
are otherwise necessary. Thus, proactive retransmissions enable
the scheduling of more FTT messages per EC since the masters,
to avoid messages missing their deadline, must in any case
assume that the maximum (bounded) number of messages are
lost per EC when they compute EC schedules.
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Having met requirement R2 through proactive retransmis-
sions raised a new problem. In HaRTES, and all other versions
of FTT, slaves decide that a new EC begins as soon as they
receive a TM. If there is only one TM per EC, and it is broadcast
in parallel through all links, then all slaves receive the TM
at approximately the same time and achieve a precise EC
synchronization (assuming all links have the same propagation
delay and bit rate). But FTTRS transmits k TMs per elementary
cycle. Thus, to continue to provide a precise EC synchronization,
FTTRS revises how slaves decide when an EC starts. The
approach is to synchronize all slaves with the arrival of the last
TM in each EC. And to make this work even if a subset of TMs,
including the last one, is lost due to transient faults, the switches
broadcast the TMs in such a way that the arrival time of the
last TM can be predicted by a slave as long as it receives at
least one uncorrupted TM. Specifically, the switches broadcast
the TMs isochronously (with a fixed intertransmission time τ )
and in lockstep. Moreover, TMs have sequence numbers, which
are reset at the beginning of each EC. That way, as shown
in Figure 6, whenever a slave s1 receives through a downlink
dlA(s1) the ith TM out of k from a switch A in an EC at an
instant of time ti, it knows that the last TM should arrive at
time tk = ti + (k − i)τ . Another slave s2 will reach the same
conclusion whenever it receives at least one out of the k TMs.
Thus, upon the reception of the ith TM, a slave simply sets a
timer to expire after (k − i)τ units of time to know when it
should consider the turn-around time of the new EC to begin.

3) R3—Tolerating Permanent Faults: To meet R3, FTTRS
must tolerate a permanent fault in any one of its components,
no matter which one. Since slaves are not part of the commu-
nication subsystem, this means that FTTRS has to ensure that
it tolerates any permanent fault occurring in an interlink, slave
link, or switch. This it does because of several key features of
FTTRS. First, because of its architecture (Figure 1), FTTRS has
a path interconnecting any pair of slaves even if any one of the
components of the communication subsystem (switch, link, or
interlink) fails. Second, in FTTRS all available communication
paths are used all the time: each slave sends each message in
parallel to both switches by means of a separate slave link.

s1 s2

k k

s1 s2
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k

k s1 s2

k k
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k

Figure 7: Replica radiation due to 4 redundant paths

Moreover, switches exchange all messages they receive from
slaves through the redundant interlinks. In the absence of faults
this ensures that each slave receives multiple times the k replicas
of each message due to a phenomenon we call replica radiation.
More specifically, as depicted in Figure 7, FTTRS provides 4
parallel redundant paths between any pair of slaves, e.g., s1
and s2. Thus, since each one of the k replicas of a message
should traverse each one of these paths, s2 receives up to 4k
times the message sent by s1.

Note that we preferred not to include within the design of
FTTRS any specific mechanism for eliminating the redundant
copies of the same message that the slaves receive in the
absence of faults. Instead, we leave this mechanism to higher
layers, because they may want to know how many copies of
a message have been received, e.g. for detecting the need to
increase the redundancy level of a particular message. However,
this does not necessarily mean that the application itself has
to implement or to be aware of this mechanism. Actually, in
the final proof-of-concept prototype of FTTRS (see references
[26] and [27] in Section VI), we implemented this mechanism
in a layer between FTTRS and the application, thereby leaving
the application agnostic with respect to the redundant copies.
To better understand how said intermediate layer carries out
its function, first note that all the copies of every edition of
a given FTT message are identifiable by means of the same
univocal FTT message identifier. Second, no more than one
edition of a given FTT message can be scheduled per EC, and
all the edition copies are transmitted in the same EC (each
in a separated frame). Thus, it is relatively simple to detect
and eliminate redundant copies. Basically, when a slave of the
mentioned prototype receives a frame, the intermediate layer
inspects the FTT message identifier; if the slave has already
received a copy of that FTT message in the current EC, it
simply discards that frame.

The third feature of FTTRS that contributes to tolerate
any permanent fault occurring in an interlink, slave link,
or switch is that switches are fail silent and links have
inherently benign failure semantics—they can only lead to the
omission of messages. None of these faults can prevent slaves
from exchanging messages through remaining non-faulty links.
Nevertheless, slaves simply being able to exchange messages is
not enough to tolerate a permanent fault. It is also necessary for
the switches to be replica deterministic to provide corresponding
outputs. Otherwise, a slave could receive contradicting services
through each of its links. For instance, a slave might receive
inconsistent EC schedules through its links, inconsistent timing
information (e.g., different EC durations), or one switch might
tell it to update the real-time requirements in one way, while
the other tells it to update the requirements in another.
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4) Enforcing the Necessary Replica Determinism: This
means ensuring that replicated components provide correspond-
ing outputs. For FTTRS switches this means that a) they must
forward frames in the same way; b) their port guardians, when
they monitor the same slave, must consistently reject or accept
frames from that slave; and c) their embedded masters must
be replica deterministic.

Since the switching circuitry and guardians are internally
deterministic (e.g., they do not use true random number
generators), the first two items can be ensured if the last one is.
This is so because for masters to be replica deterministic, they
must have the same SRDB contents and they must provide
consistent timing, i.e., agree in which window of which EC the
system currently finds itself. And the SRDBs and timing are
precisely what determine how frames are forwarded or rejected.
An FTTRS switch, just like a HaRTES one, forwards frames,
whether they carry synchronous or asynchronous messages, not
according to Ethernet MAC addresses, but according to the EC
window in which the system finds itself and according to the
SRDB, which specifies who the subscribers of a given message
are. Similarly, whether a port guardian rejects a frame or not
is also determined by the contents of the corresponding SRDB
and by when the frame arrives (in which window of which
EC).

To achieve the replica determinism of the embedded masters
we distinguish between the time and value domain.

In the time domain we ensure that the masters agree when
each EC starts and that they broadcast their TMs in lockstep.
For this we use a semi-active replication approach, where one
master is designated the leader and the other the follower. This
approach uses a two-phase mechanism [3]: at system startup
the masters execute an initialization phase based on a two-way
time transfer (similar to IEEE 1588) and from then onwards
the follower maintains its ECs synchronized with the leader by
means of a process we call periodic lockstep resynchronization.
In the periodic lockstep resynchronization, no switch ever
waits for the other. Instead, each starts broadcasting its trigger
messages for a given EC when its internal clock tells it that
a new EC has started. What does occur, however, is that
the follower does slight readjustments of its own clock if
it detects that its own transmissions are not sufficiently in
lockstep with the leader. These readjustments occur in each and
every EC and, thus, are always small. As a result, the lockstep
synchronization does not introduce significant delays beyond the
one required for transmitting k trigger messages isochronously.
The periodic lockstep resynchronization ensures a fault tolerant
synchronization because it is enough for the follower to receive
one out of the k TMs that the leader broadcasts per EC. Finally,
when one of the masters fails, the other continues unperturbed,
broadcasting its TMs according to its own clock and thus
continuing to provide the systemwide timing.

Note that due to the impossibility of perfect synchronization,
one switch may receive an asynchronous message in one EC,
while the other receives it in another. This is only a problem
for asynchronous messages that are update requests, which we
address below in the replica determinism enforcement in the
value domain. For other asynchronous messages, agreement on
which EC they belong to is not necessary to provide an FTT
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Figure 8: Still functioning FTTRS architecture after the loss
of several links.

service and meet our requirements.
As to the replica determinism in the value domain, it comes

down to ensuring three things: having the masters start out
with consistent SRDBs, ensuring that the masters are internally
deterministic by avoiding any non-deterministic logic, and
ensuring that masters apply the same SRDB updates at the
same time. The difficulty lies in the last. In most situations
the masters should receive the same requests. After all, a slave
transmits update requests multiple times in parallel through both
its links and the switches forward the update requests to each
other. The problem is that in the presence of faults, switches
may nevertheless receive different requests—especially if the
redundancy level used for the update requests is too low. Thus,
we introduced an additional fault-tolerant mechanism for the
embedded masters to agree on which update request to process
next in case they did not receive the same requests.

We will illustrate this mechanism using the degraded FTTRS
architecture of Figure 8, where several links have been lost
(depicted as gray dashed arrows marked with a cross), but all
slaves can still communicate. Specifically, Figure 9 shows a
timeline of how, for the degraded architecture, an inconsistency
among the masters is resolved (to keep the figure simple, it only
shows TMs and update request messages). As to the notation,
dlj(si) denotes the downlink from a switch j ∈ {A,B} to
a slave si and ulj(si) denotes the corresponding uplink in
the opposite direction. The full-duplex interlink is denoted by
ilAB for the direction from A to B, and ilBA for the reverse.
The mechanism relies on the TMs, whose redundancy level k,
contrary to the one for update requests and other messages, is
always assumed to be high enough to tolerate transient faults
of maximum duration. In Figure 9, k = 3 and thus there
are three TMs in the TMWs of each EC. The mechanism
relies on update requests from slaves being totally ordered,
meaning that for any two update requests that are not replicas
of each other we can always tell which comes before the
other in terms of a total order relation, i.e., a binary relation
that is antisymmetric, transitive, and total. The relation can be
implemented in different ways (one option is to order slaves
by their identifiers and additionally use sequence numbers
for update requests). Each master j ∈ {A,B} keeps a set
of pending update requests Qj , which is a set containing all
update requests it has received so far. In Figure 9, we assume
that at the beginning of EC i there are no pending requests and
thus initially QA = QB = {}. To keep the example simple,
we assume that all update requests have a redundancy level
of 1. Now, at time t0, slave s3 sends an update request with
ordinal number 4 (according to the total order) through ulB(s3),
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Figure 9: Example illustrating a consistent update of the system requirements across the whole system.

which due to a transient fault in ilBA only reaches B. Thus,
shortly after t0 we have QB = {4}, while QA remains empty
(we use the ordinal numbers to identify requests and thus
the number 4 in QB represents the request with that ordinal
number). Similarly, at time t1 slave s2 sends an update request
2 through ulB(s2), which also only reaches B; and at time
t2 slave s1 sends a request 3 through ulA(s1), which due to
a fault in ilAB only reaches A. Thus, at the beginning of EC
i+ 1, we have that QA = {3}, while QB = {4, 2}. To agree
on which update request to process next in a given EC, at
the start of that EC each master first selects the minimum
update request, according to the total order, among the ones
it has in its set. We call this minimum the local minimum.
Thus, at the start of EC i + 1, the local minimum of A is
min(QA) = min({3}) = 3 and the local minimum of B
is min(QB) = min({4, 2}) = 2. To not interfere with this
process, update requests arriving during a TMW, like the one
with ordinal number 1 at time t3, are only forwarded and
added to the pending requests after the TMW. In addition to
choosing the local minimum, each master piggybacks it on the
subsequent TMs it broadcasts. In Figure 9, this is shown on
the downlinks during the TMW of EC i+ 1. At the end of that
EC’s TMW, each master has the other’s local minimum, which
it then adds to its set of pending requests. Thus, shortly after
time t4, we have that QA = {3, 2} and QB = {4, 2, 3}. Now
each master selects a minimum again, but this time from its
just updated set of pending requests. Both masters will select
the same minimum because of the mathematical fact that for
two totally ordered sets of pending requests QA and QB we

have that min({min(QB)}∪QA)) = min({min(QA)}∪QB)).
We call this identically selected minimum the global minimum.
In Figure 9, both A and B select 2 as the global minimum,
remove it from their set of pending requests, and assign it to NA

and NB , which store for A and B, respectively, which update
request to subject to admission control next. Once the global
minimum is selected at the end of the synchronized TMW,
both masters subject it to admission control. Both masters then
conclude the admission control within the same EC because
they started it at the beginning of the same EC and because it
takes them approximately the same amount of time as they are
internally deterministic replicas of each other. In Figure 9, the
admission control is assumed to take less than one elementary
cycle and to be completed at around time t6. Edge cases where
the admission control concludes just at the end of an EC
can be avoided by forcing the admission control time to be
extended with sufficient idle time, e.g., the time of half an
EC. After completing the admission control, the masters, since
they are internally deterministic and started out with consistent
SRDBs, will reach the same conclusion on whether to accept
or reject it. Once completed, both masters will have either
accepted or rejected the request. In the figure, it is assumed to
be accepted and thus at t6 the request is eliminated from NA

and NB and added to UA and UB , which store for A and B,
respectively, the most recently accepted update request. Next,
since both masters have accepted the same update request,
they will also generate the same master command messages
to inform the slaves on the outcome of the admission control.
These master command messages are then piggybacked on
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TMs and broadcast by the two masters during the next EC.
Since the TMs are fault tolerant and broadcast in lockstep
by the masters, it is ensured that all non-faulty slaves receive
the same commands by the end of the TM window, which
enables a systemwide update of the real-time requirements at
the end of the corresponding EC. In Figure 9, the masters both
piggyback in the TMs of EC i+ 2 the command to update the
system requirements from Ω to Ω ∪ {2}, where Ω represents
the previous system requirements—which were assumed to be
consistent at the beginning of EC i and thus the SRDBs and
NRDBs all contained that value. Through this mechanism, not
only are the masters kept replica deterministic in the value
domain, but the whole system maintains consistent database
(SRDB and NRDB) contents. And since replica determinism
of the masters was the necessary prerequisite for tolerating the
permanent failure of either switch, requirement R3 is satisfied.

VI. FEASIBILITY OF FTTRS

To show that FTTRS is feasible, each of its mechanisms has
to be proven and it must be possible to put them together.

Making FTTRS switches fail silent relies on internally
duplicating them and comparing their results. This is a well-
known technique that others have already implemented for
various devices and architectures over the decades. In fact,
even for Ethernet switches the technique has already been
proposed [28].

Similarly, the feasibility of mitigating the failure semantics
of slaves by means of port guardians is already substantiated
by prior work. Indeed, HaRTES already mitigates the failure
semantics of slaves, although in the corresponding publication
the guardians were called validation units [25]. FTTRS just
extends the capabilities of these units.

As to the feasibility of the FTTRS architecture, we demon-
strated it through proof-of-concept prototypes [5]. The corre-
sponding experiments not only verified the correct implemen-
tation of the prototypes, but also further validated the capacity
of the replicated architecture to tolerate the failure of either
FTTRS switch and of slave links and interlinks.

Making message transmission more reliable through proac-
tive retransmissions is undoubtedly feasible. This is a technique
that has already been used by other protocols, e.g., TTP [29],
and we have implemented it ourselves for TMs [5].

The feasibility of the slave EC synchronization has been
demonstrated by two proof-of-concept prototypes, one involving
two slaves and a master within a virtualized switch, and one
involving two slaves and a master communicating through a
COTS switch [4]. The corresponding experiments showed that
the slaves, as desired, synchronized their ECs (although with
limited precision due to the nature of the proof-of-concept) and
they further validated the correctness of the EC synchronization.
Figure 10 shows a histogram of the measured absolute EC offset
among two slaves in the experiment using a COTS switch. The
mean measured EC offset among the two slaves was 0.69 µs,
with a standard deviation of 1.36 µs, among 225 000 samples
in which all possible TM loss combinations for a redundancy
level of k = 4 TMs were injected repeatedly (1000 times per
combination). The EC length was 1 ms, the TMs fit within

Figure 10: Results of the slave synchronization experiment.
The bin size of the histogram is 0.5 µs. The inset shows a
close-up of the right tail of the histogram.

Figure 11: Results of the master synchronization experiment.
The bin size of the histogram is 1 µs. The inset shows the
value for each sample.

frames of size 72 bytes, the TM intertransmission time τ was
1 µs, and the bit rate was 100 Mbps.

To demonstrate the feasibility of isochronous lockstep
transmission of TMs by masters, we implemented an additional
proof-of-concept prototype, involving two proof-of-concept
masters sending TMs to a monitoring station [3]. The measured
absolute offsets with which the TMs arrived at the monitoring
station verified that the prototype corresponded to the design
and also further validated the lockstep synchronization. The
results are shown in Figure 11.

The replica determinism of the FTTRS switches is also
feasible. Making FTTRS switches start out with consistent
SRDBs is just a matter of properly preconfiguring them.
Making them internally deterministic is also feasible: switches
do not require any nondeterministic program constructs, true
random number generators, or other components that exhibit
nondeterministic behavior. If they are implemented identically
in hardware, they would also have the same processing power
and could finish their calculations and decisions in the same
EC; that is, one switch would not take significantly longer than
the other for a computation. Since minimum update requests
are piggybacked onto TMs, ensuring that FTTRS switches can
reliably exchange them relies on the TMs being proactively
retransmitted, which we already pointed out to be feasible. It
is also feasible to have a total ordering of update requests. For
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instance, as suggested earlier, node identifiers and sequence
numbers can be used for this, which are both standard features
of many, if not most, protocols. Finally, having the FTTRS
switches share a common notion of time is also feasible: we
showed it ourselves in the aforementioned experiments related
to synchronizing two FTTRS masters. Thus, since all this can
be implemented in practice, the FTTRS switches can be replica
deterministic in an actual implementation. In particular, the
masters can be replica deterministic and keep their SRDBs
consistent, and consequently the internal switches and port
guardians can also be replica deterministic (as explained earlier,
internal switch and port guardian replica determinism is a
consequence of master replica determinism).

The system wide update of real-time requirements is also
feasible. First, it is feasible for the slaves and masters to start
out with consistent NRDBs and SRDBs. It is just a matter
of properly preconfiguring them. Second, as discussed above,
FTTRS switches can be made replica deterministic in practice.
Third, master command messages can be piggybacked onto the
fault-tolerant TMs as long as they fit within a maximum sized
Ethernet frame payload (1500 bytes) together with the other
information carried in TMs. And fourth, it is generally possible
to have slaves and masters with sufficient processing power to
complete relevant tasks within the necessary timeframe. This
is because the timeframe available is always determined by
the length of the ECs and this length is a parameter that can
be increased before deployment (assuming the application can
work with larger ECs).

The final proof-of-concept prototype put a control application
on top of FTTRS [26] and showed the feasibility of integrating
the different mechanisms of FTTRS. It also showed the
feasibility of integrating these mechanisms with a higher-
layer replicated control application, i.e., an application to
control an inverted pendulum in a redundant manner. A video
demonstrating the final prototype can be found online [27]. As
can be seen in the prototype, the injection of faults did not lead
to a loss of service to the control application—unless more
faults were injected than the system was designed to tolerate.
Although not shown in the video, we have also injected all
possible permanent faults that should be tolerated by the control
application and verified that they were indeed tolerated.

VII. APPLICABILITY OF FTTRS

As already said, the chosen mechanism for synchronizing
the switches does not introduce significant delays beyond
the one required for transmitting additional trigger message
replicas. Moreover, proactive retransmissions reduce the worst-
case latency to get a message to its destination when compared
to as-needed retransmissions. Nevertheless, it is clear that any
temporal replication of messages always consumes bandwidth
and therefore leads to a reduction in the network performance
for the exchange of data messages. This may reduce the
suitability of FTTRS for applications in which a very high
bandwidth is necessary, such as intense streaming of high
quality audio/video.

The impact of FTTRS on the available bandwidth can be
analysed on a EC by EC basis and it is twofold. First, there is

always a reduction caused by the proactive retransmission of
trigger messages. And second, it is also necessary to consider
the bandwidth reduction caused by proactively retransmitted
slave messages. Only the critical slave messages will be
retransmitted and the decision of which ones are critical is
application-dependant. In this discussion we are going to
assume the worst case in which all messages are critical.

Before continuing with the analysis it is important to clarify
the potential impact of the replica radiation phenomenon
described in Section V. As can be seen in Figure 7, for each
slave message 2k replicas are transmitted in each one of the
downlinks of any receiving slave. This level of redundancy is
not only unnecessary, since the value of k is chosen to provide
enough reliability in each link, but it is also undesirable due to
its impact on performance. Furthermore, this impact of replica
radiation on downlinks is easily avoidable by simply designing
the switches to only transmit on the downlinks k replicas of only
one of the replicas received for each slave message (actually it
has been already avoided in the implementation shown in the
video [27]). Therefore for the rest of this discussion we are
going to assume that downlinks only have to accommodate k
replicas of each slave message.

Based on all the assumptions indicated above and in the
absence of faults, the links that have to accommodate more
messages per EC are the interlinks, which convey the traffic
from one switch to the other. In them, first, the k replicas of the
TMs are transmitted, and second, all slave messages received
by one switch are transmitted to the other for fault tolerance,
what in the absence of faults accounts for all the slave messages
exchanged in the network. Note that the TMs are transmitted
between switches in both directions for implementing the replica
determinism enforcement illustrated in Figure 9, and in the
direction from the leader to the follower for the additional
purpose of allowing the synchronization between the switches.
Obviously if one slave has to receive all slave messages of the
EC, then its downlinks have to convey the same traffic as the
mentioned interlinks.

In each of these interlinks, which constitute the bottleneck
of the network, the TMW has a bigger size (when compared
to regular FTT) to accommodate the k TM retransmissions,
thus reducing the time available for the other windows by
k1 times the duration of the TM. Moreover each one of the
slave messages will use an additional interval of k1 times the
duration of said message. In any case, all these extra needs
will be known in advance by the scheduler, which will decide
if the messages are schedulable in each EC. Once the specific
application is known, it is important to keep in mind these
extra needs of critical traffic when considering the performance
of more bandwidth-demanding traffic.

Similar to FTT Ethernet, FTTRS is primarily intended to
support relatively small adaptive DESs that rely on a single
hop switch Ethernet network. The major advantage of FTTRS
with respect to FTT is that FTTRS provides high reliability
while being very flexible with respect to mixing control and
data traffics with different levels of criticality. There are many
examples of DESs that can benefit from FTTRS, such as
vision-based mobile robots, complex industrial machinery,
automobiles, forest vehicles, medium-large size UAVs, small
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airplanes, among others.
When the size of the considered DES increases, it will be

necessary to scale FTTRS as a multi-hop network. This will be
the case of DESs controlling large vehicles, e.g. commercial
planes, or IoT applications such as those in the context of smart
cities, smart grids, etc. Thus, it will be a matter of future work
to investigate how to scale FTTRS for those kinds of systems.
For this investigation a suitable starting point would be the
one recently done on extending FTT Ethernet to multi-hop
architectures [30].

VIII. CONCLUSION

FTTRS not only meets the requirements (Section I), but
surpasses them by means of introducing hardware redundancy
and proactive retransmissions, determined by a configurable
redundancy level. FTTRS, like all FTT versions, provides
flexibility for changing real-time requirements, and also for
other requirement changes, such as which nodes are publishers
or subscribers of particular messages. Moreover, FTTRS adds
some degree of dynamic fault tolerance, that is, one of its
fault-tolerance mechanisms is flexible itself. Specifically, the
redundancy level of both synchronous and asynchronous slave
messages is not only parameterizable at design time, but at
runtime, just like the real-time parameters of these messages.
Also, in many scenarios FTTRS can tolerate more faults than
required by R3, such as the permanent failure of multiple
components as long as there is still a path between any pair of
slaves and one interlink remains. FTTRS can tolerate a scenario
where each slave has lost a link and all but one interlink have
failed, as in Figure 8.
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REFERENCES

[1] K. Nagatani et al., “Emergency response to the nuclear
accident at the Fukushima Daiichi nuclear power plants
using mobile rescue robots”, Journal of Field Robotics,
vol. 30, no. 1, pp. 44–63, 2013.

[2] P. Pedreiras et al., “The flexible time-triggered (FTT)
paradigm: An approach to QoS management in dis-
tributed real-time systems”, in Proceedings of the Inter-
national Parallel and Distributed Processing Symposium,
IEEE Computer Society, 2001, p. 9.

[3] A. Ballesteros et al., “Achieving elementary cycle
synchronization between masters in the flexible time-
triggered replicated star for Ethernet”, in Proc. 19th
IEEE Int. Conf. Emerging Technologies Factory Automat.
(ETFA’14), IEEE, 2014.

[4] D. Gessner et al., “Towards an experimental assessment
of the slave elementary cycle synchronization in the
flexible time-triggered replicated star for Ethernet”, in
Proc. 19th IEEE Int. Conf. Emerging Technologies
Factory Automat. (ETFA’14), IEEE, 2014.

[5] D. Gessner et al., “Experimental evaluation of network
component crashes and trigger message omissions in the
flexible time-triggered replicated star for Ethernet”, in
Proc. 11th IEEE World Conf. Factory Commun. Syst.
(WFCS’15), IEEE, 2015.
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