
TECHNICAL REPORT

First Analysis of the AVB's Stream Reservation 
Protocol in the Context of TSN

D. Bujosa, D. Cavka, I. Álvarez and J. Proenza 

May/2019
A-02-2019



First Analysis of the AVB’s Stream Reservation Protocol in
the Context of TSN

Daniel Bujosa† Drago Čavka* Inés Álvarez† Julian Proenza†

†
Department of Mathematics and Informatics, University of the Balearic Islands, Spain

†{daniel.bujosa, ines.alvarez, julian.proenza}@uib.es
*
Faculty of Electrical Engineering, University of Banja Luka, Bosnia and Herzegovina

*drago.cavka@etf.unibl.org

ABSTRACT
The Audio Video Bridging (AVB) Task Group from the IEEE
proposed a series of standards to provide Ethernet with soft
real-time guarantees. Later on, the group was renamed
to Time-Sensitive Networking and its scope was broadened
to provide new services to more critical applications. The
Stream Reservation Protocol (SRP) stands out among the
projects developed by the groups, as it is key to bound the
transmission delay and to minimize frame loss due to lack
of resources. Nonetheless, SRP was originally designed for
audio/video applications and does not take into account
properties that are important for critical systems; such as
termination. In this work we study the termination of the
reservations using AVB’s SRP. We used Uppaal to model
the protocol and to verify the property. We see that SRP
does not provide termination, we discuss how the lack of
termination can impact critical applications and we propose
a series of solutions to provide termination using SRP.

1. INTRODUCTION
In 2005 the IEEE Audio Video Bridging Task Group

started working in a new set of projects to provide Ethernet
with soft real-time capabilities. The applications targeted by
the group were related to audio and video streaming. Never-
theless, the interest in the work of the group moved to other
application areas; such as automotive or automation. In 2012
the group was renamed and its scope broadened to address
the needs of these new applications, becoming the Time-
Sensitive Networking (TSN) Task Group [4]. The TSN Task
Group aims at providing Ethernet with hard and soft real-
time communications, flexibility of the tra�c requirements
and fault tolerance mechanisms for critical applications.

The number of projects carried out by the TSN Task Group
is rapidly growing. Among these projects we find the Stream
Reservation Protocol, which was originally standardized by
the AVB Task Group in [2] and later extended by the TSN
Task Group in [3]. Even though the revision of SRP included
two new architectures, it still supports the distributed one
proposed in AVB with no modifications.
SRP provides Ethernet with support for resource reser-

vation along the path that connects a transmitter to its
receivers. SRP is a key piece to support many of the projects
developed in the scope of TSN. This is so because resource
reservation prevents frame delays beyond predefined limits
and losses due to bu↵er overflow. Furthermore, SRP allows
to modify the tra�c requirements in run-time, providing a
certain degree of flexibility to the network.

Some of the applications targeted by the TSN Task Group
are critical, as mentioned. The mechanisms developed for
these applications must exhibit a series of properties to guar-
antee their correct operation. Moreover, these properties
must be met in all the levels of the architecture, including
the network. Nonetheless, the distributed version of SRP
was not designed considering these applications and, thus, it
was not designed to fulfill these properties.

In this work we study whether the distributed version
of SRP can be deployed in critical systems. To do so, we
model the protocol using the Uppaal model checker [5] to
check a series of properties that are typical in distributed sys-
tems for critical applications, e.g., termination. We studied
the termination of the reservation process; that is, we ana-
lyzed whether SRP guarantees that the reservation process
is completed within a finite amount of time, regardless of
the resources available in the network. We found that SRP
does not provide termination. Moreover, we identify specific
scenarios in which termination is not achieved, we discuss
the consequences derived from the absence of termination
and we provide a first overview of a series of mechanisms to
enforce this property using SRP.

2. RELATED WORK
Due to the great relevance of the work carried out by

the TSN Task Group, the community has carried out a
significant amount of work related to their study, application
and improvement, which has been surveyed in [6] and [8].
Many of these works are focused on the study of SRP’s
e�ciency, such as the work presented in [10]. Moreover, some
works present solutions to provide fault tolerance against
permanent faults using SRP [7].
As we mentioned, the TSN Task Group has ammended

the original SRP standard; in the IEEE Std 802.1Qcc [3].
This new standard describes two new architectures to carry
out the management of the network in general, and the
reservation of resources in particular. Specifically, these
architectures rely in the centralization of the reservations to
increase the e�ciency in terms of resources and time required
to perform the control of the network. In this same line, some
works have proposed the use of Software Defined Networking
techniques to manage the reservation of resources, such as
those presented in [9] and [11].

Nevertheless, to the best of the authors’ knowledge, there
are no works related to the study of the fulfillment, by the
distributed version of SRP, of properties that are fundamen-
tal for critical systems, such as termination or consistency.
It is important to note that the distributed architecture is in-



cluded and supported by the new SRP standard. In this work
we carry out a Uppaal model of the resource reservation
process using SRP, we study the termination of the reserva-
tions in di↵erent components and we propose mechanisms
to provide termination using SRP.

3. SRP OVERVIEW
As anticipated in Section 1, the Stream Reservation Proto-

col [2] helps providing real-time guarantees to Ethernet-based
communications; as it allows to ensure the availability of
resources during the communication. This allows to bound
the end-to-end delay of frames and to prevent packet losses.
Furthermore, SRP allows to modify the tra�c in run-time,
providing certain degree of flexibility to the network.

Currently, there are three di↵erent architectures proposed
in the SRP standard [3]. The first architecture was originally
proposed by AVB in [2], and consists in a distributed archi-
tecture, where resources are reserved in each network device
using local information. The other two architectures rely on
centralized components to manage the network. In this work
we focus on the distributed architecture. Further details
about the centralized architectures can be found in [3].

Either way, when using SRP the data communication is car-
ried out through logical communication paths called streams.
A stream is defined by a series of attributes, which represent
the resources needed to transmit a specific set of messages.
Moreover, SRP enforces a publisher-subscriber model, where
the publisher is called talker and the subscribers are called
listeners. In the distributed version of SRP, the talker is
responsible for reserving the resources for the communication,
i.e. the talker is responsible for creating the stream.
To create a stream the talker announces its intention to

communicate by transmitting a special message called talker

advertise (TA A message). The TA A message conveys infor-
mation to identify the stream and the resources it needs. This
message is processed by the bridges, which check whether
there are enough resources in each one of their forwarding
ports to create the stream. If there are enough resources in
one port, the bridge forwards a TA A message through said
port; otherwise, the bridge forwards a talker failed message
(TA F message) through the port. A TA F message conveys
the same information as the TA A message plus the reason
for the failure in the reservation. It is important to note that,
at this point, bridges register the talker’s request, but do not
carry out the reservation of resources.

When a listener receives a talker message, it processes the
message and decides whether it wants to bind to the stream.
If the listener does not want to bind, it does not perform
any further actions nor informs the talker about it. On the
other hand, if the listener receives a TA A and wants to
bind to the stream it checks whether it has enough resources
to do so. If the listener has enough resources, it transmits
a listener ready message (LA R message). Otherwise, the
listener forwards a listener asking failed message (LA AF
message). Finally, if a listener receives a TA F and wants to
bind to the stream, it will also forward an LA AF message.

Bridges unify the responses from the listeners to transmit
them towards the talker. To do so, bridges first process the
responses received through each port and then generate a
new response. When a bridge receives an LA R through a
port, it checks if the port has enough resources. If there are
resources, the LA R remains unaltered and the port locks the
resources; otherwise the LA R becomes an LA AF. On the

(a) Representation of the
reachability property.

(b) Representation of the
first safety property.

(c) Representation of the
second safety property.

(d) Representation of the
liveness property.

Figure 1: Properties that can be evaluated in Uppaal based
on a figure from [5]. Each figure shows the paths for which
the state formulae holds; whereas the filled states are the
ones where the state formulae is evaluated.

other hand, if a bridge receives an LA AF it does nothing.
Once the bridge has processed the responses, it must unify

them. If all ports have an LA R, the bridge forwards an
LA R; while if all ports have an LA AF, the bridge forwards
an LA AF. Finally, if the bridge has LA R in some ports and
LA AF in some other ports, it forwards a so called listener

ready failed message (LA RF message).
When the talker receives an LA R or an LA RF message,

it creates the stream and starts transmitting. Otherwise, if
the talker receives an LA AF, the stream is not created.

4. UPPAAL TOOL OVERVIEW
As we have already mentioned, we used the Uppaal model

checker to evaluate the termination of the reservations in SRP.
Uppaal is a tool to formally model real-time systems and to
validate and verify their properties [5]. In Uppaal a system
is modelled as a network of interconnected timed automatas

(finite-state machines extended with clocks that progress at
the same pace) and data types. Moreover, Uppaal provides
a formal query language that allows to define the system’s
properties that are to be verified. The model checker explores
all the possible execution paths of the model to check whether
the properties hold. Uppaal then informs the user about the
result and, if a property does not hold, it shows an execution
path in which the property is violated. We next describe the
modelling tool and the query language in more detail.

4.1 The modelling tool
As we mentioned, in Uppaal the system is modelled as

a network of automatas. Each automata is specified as a
template that can be extended with parameters to create
instances of the same automata; each one called automaton.
In turn, templates are constructed using locations, edges,
local variables and local clocks. On top of that, di↵erent



templates can share global variables and global clocks, and
can synchronize using channels. Specifically, there are two
types of channel, binary, which synchronizes one sender and
one receiver; and broadcast, which can synchronize a sender
with an arbitrary number of receivers.

Each automaton progresses through a set of locations. The
locations and variables of all automatas at a specific instant
define the state of the system. There are three di↵erent types
of location, normal, committed and urgent ; depending on the
residence time. Specifically, an automaton can indefinitely
remain in a normal location, unless the residence time is
upper bounded using a so called invariant. On the other
hand, an automaton immediately leaves a committed or
urgent location, i.e. the residence time is 0 and the time
does not elapse in that location. Committed locations do
not allow interleaving between di↵erent automatas; whereas
urgent locations do allow interleaving. On top of that, the
initial location represents the first location of the automaton.

As we said, the time an automaton remains in a normal
location can be bounded using an invariant. An invariant is
an expression that involves one or more clocks. Automatons
progress through their locations using edges. Edges can be
enabled or disabled using expressions called guards, which
are defined using variables and clocks. Moreover, edges also
allow to assign values to variables when they are taken.

4.2 The query language
Uppaal provides a query language to express the prop-

erties that have to be verified for the system. Specifically,
there are three di↵erent types of property, reachability, which
is expressed with E <>; safety, which is expressed with A []
or E []; and liveness, which is expressed with A <>. Figure 1
shows these properties, represented as a set of interconnected
states. The figure shows the paths that the model checker
follows, with bolder arrows, and the states that are evaluated,
the highlighted circles.
Reachability (E <>) allows to evaluate whether a certain

state in the model is eventually reached, e.g. the plane landed.
Safety properties allow to evaluate two di↵erent scenarios.
First, safety A [] evaluates whether a certain condition is
met in all the states, e.g. the temperature of the fuel is
always lower than a predefined threshold. Second, safety
E [] evaluates whether there is always at least a path where
the condition is always met, e.g. there is a path where the
plane is still flying. Finally, liveness A <> allows to evaluate
whether a state is always reached, independently of the path
that is taken, e.g. a message transmitted through the network
always reaches its destination.
Properties require what is called a state formulae to be

expressed. The state formulae is code that allows to state
conditions; e.g. i == 7 is true when variable i equals 7.
Therefore, the state formulae allows to evaluate di↵erent
properties in the model, such as i is always equal to 7, or it
exists one path where i equals 7.
In the next section we describe the SRP model and the

properties we evaluated, using the modelling tool and the
query language described.

5. THE SRP MODEL
As we have mentioned in Section 1, we want to study

whether SRP provides termination for the reservations. Thus,
we modeled the SRP reservation process using three di↵erent
templates. Each template models the relevant actions carried

Figure 2: Network topology used for the model. It consists
of one talker and three listeners. Each listener is attached to
a di↵erent bridge, which are connected in a line topology.

out by a talker, by a listener and by a bridge respectively.
The talker template is instantiated once while the listener
and bridge templates are instantiated three times. In this
way the model is composed of one talker, three bridges and
three listeners connected as shown in Figure 2.

Even though we could evaluate termination using a single
talker and a single listener, such a setup would not allow to
evaluate more complex scenarios, nor the complete behaviour
of the protocol; e.g. how bridges merge di↵erent responses
from the listeners. Thus, we decided to use three listeners.
Moreover, each listener is attached to a di↵erent bridge,
as it allows to study scenarios that are more pessimistic
than having all nodes attached to the same bridge. Finally,
we use a line topology as SRP relies on other protocols to
eliminate loops in the network, such as the Rapid Spanning
Tree Protocol [1], which establishes a logical line topology.

It is important to note that, as in any modelling process,
we had to abstract part of the behaviour of the protocol. In
this model we have abstracted the number of ports of the
devices. Specifically, all devices count with a single reception
port and a single transmission port. Nevertheless, each port
can handle the reception and transmission of attributes to
more than one device.

There are several reasons to abstract the number of ports
in the model. First, modelling the logic of the bridge is
not trivial and requires a significant amount of locations
and variables. This complexity increases with the number
of ports. Second, specifying a concrete number of ports
reduces the generality of the model and the cases that can
be explored. For instance, if we model bridges with two
ports the number of attached devices would be limited to
two. Finally, increasing the number of locations not only
increases the complexity of the model, but also the number
of states to be explored. This can lead to the explosion of the
state space and the exhaustion of computational resources.

Thus, we had to adapt the model to handle the transmis-
sion of di↵erent attributes to di↵erent devices using a single
port. Specifically, we included the possibility in reception to
choose the type of attribute. More precisely, when a listener
or bridge receives a TA A, it can modify it to a TA F, to
emulate that the port in the transmitter did not count with
enough resources. Nevertheless, if a device transmits a TA F
all other devices receive a TA F.

We also abstracted the transmission of data frames. Con-
cretely, the transmission of data frames is not modelled, as
that would require modelling the di↵erent tra�c shapers



Figure 3: Talker template using the Uppaal model checker.

proposed by the TSN Task Group. Instead, the transmission
of data is represented with a location in the talker.

We next describe the basic operation of the templates used
in the model.

5.1 Talker template
Figure 3 depicts the talker template. The operation of the

talker starts in the Initial location, which is committed
to prevent the model from being locked in the initial state
forever. Thus, the model starts with the transition from the
Initial location of the talker to the TA_declared location.
This edge starts the transmission of the talker attribute
message (TA message) with the channel TA_declare. After
that, the automata waits to receive the listener attribute
messages (LA messages) and calculates whether it can start
transmitting or not. If the result of the calculation is a ready
or a ready failed, the talker template reaches the location
Do_stream which represents the start of the transmission.
Otherwise, the talker waits to receive more listener attributes.

5.2 Listener template
Figure 4 depicts the listener template. The operation of

the listener starts in the Initial location, where it waits for
a TA message. As we described in Section 3, a listener may
be interested in the stream or not. If it is not interested, the
template moves to the Not_interested location and back to
the Initial location. Otherwise, it processes the attribute.
If the attribute is a TA F the template moves to the

TA_Failed_registered location. On the other hand, if the
attribute is a TA A, the template can transition to the
TA_Advertise_registered or to the TA_Failed_registered
locations. Note that as we mentioned, we use a single port
in the bridges and we emulate the transmission of di↵erent
attributes to di↵erent receivers on reception. Thus, if the
template moves to the TA_Failed_registered location, it
emulates the lack of resources in the forwarding port of
the bridge. Finally, if the listener has registered a TA F it
moves to the location Declare_LA_Asking_Failed. On the
other hand, if the listener has registered a TA A it moves to
Declare_LA_Ready if it has enough resources for the stream
and it moves to Declare_LA_Asking_Failed otherwise.
Thus, if the listener reaches the Declare_LA_Ready loca-

tion, it represents that it received a TA A and it wants to
bind. Otherwise, if it reaches the Declare_LA_Asking_Failed
location, it represents that the listener wants to bind, but the
bridge or the listener did not have enough resources. Finally,

Figure 4: Listener template using the Uppaal model checker.

the template transmits the proper LA message and moves
to the LA_declared location using the LA_declare channel.

5.3 Bridge template
Figure 5 depicts the bridge template. The operation of

the bridge starts in the Initial location, where it waits to
receive a TA or an LA message.
If it receives a TA message it takes the left edge. The

left edge registers the TA message, similarly to the listener.
Specifically, if the bridge receives a TA A, it can register a
TA A, emulating that the transmitter has enough resources;
or it can register a TA F, emulating that the transmitter
does not have resources. After that, the bridge forwards the
attribute and the automata returns to the Initial location.

On the other hand, if the bridge receives an LA message it
takes the right edge. The right edge registers the LA messages
and, according to the messages received and the resources of
the bridge, it transmits the adequate LA message.
Specifically, when the bridge receives an LA message it

registers the type of device which transmitted it in prev_type.
It stores a type_B if the message comes from a bridge and
a type_L if the message comes from the listener connected
to the bridge. Then, it stores the type of LA message in
LA_prev (a LA_R, a LA_RF or a LA_AF). After that, the bridge
reaches the Wait location. In this location the bridge can
receive more messages, restarting the loop by moving to the
LA_registered location, or it can pass to the transmission
phase, moving to the Calculate_LA location. In transmission,
the bridge sends an LA message according to the LA messages
received and the resources of the bridge; it moves to the
LA_declared location and back to the Initial location.

6. EVALUATION OF THE TERMINATION
As we anticipated in Section 1, the distributed version of

SRP was designed for audio/video applications and it was not
designed taking into account the critical applications targeted
by TSN. Critical applications have a series of requirements
and the mechanisms used to support them must exhibit a
series of properties, such as termination or consistency. In
this work we focused on the termination of the reservations.

As we explained in Section 3, when listeners receive a TA A
message announcing a new stream, they send a message
announcing their intention to bind to that stream. On the
contrary, listeners do not inform the bridges nor the talker
when they are not interested in the stream. We evaluate



Figure 5: Bridge template using the Uppaal model checker.

whether this behaviour causes scenarios where the reservation
process is not concluded.

6.1 Termination in the Talker
We used the Uppaal model to check whether SRP provides

termination to the talkers. To do so, we used the query shown
in Equation 1. This query evaluates whether the location
Talker.LA_registered is always reached; i.e. it evaluates
whether the talker always receives at least one response from
a listener. This query is not satisfied in the model. Therefore,
we can see that there are scenarios where the talker does
not receive any response and, thus, SRP does not guarantee
termination to the talker.

A <> Talker.LA registered (1)

Many critical applications require to know the result of
the reservations to make important decisions. Thus, the lack
of termination can cause a malfunction of those applications.
Not only it can block the decision process, but it can also
lead to incorrect decisions due to the lack of knowledge.
Moreover, delegating decisions related to the reservations to
the application can cause inconsistencies between the view
of the application and the state of the network.

A possible solution to this situation is to introduce timeouts
in the talker. If the talker does not receive any listener
attributes before the timeout expires, it should tear the
stream down. The value assigned to these timeouts should
be adjusted depending on the topology, to ensure that there is
enough time for the listeners to communicate their intention
to the talker. Concretely, the timeout must be adjusted to

provide enough time to the furthest node in the network to
announce its will to communicate.

This solution presents two main advantages. First, it solves
a global problem locally, as it relies solely on information
local to the talker. Second, this solution does not require
the modification of SRP, as it can simply use the services
already available in the protocol (announcing and deleting
a stream). As a counterpart, it is not a general solution, as
it depends on the network topology. Nevertheless, it would
be possible to calculate the worst case time for the network,
and use it for all reservations in a pessimistic approach.

6.2 Termination in Bridges
Similarly to the talker, a bridge that forwards a talker

advertise message waits a response from a listener indefinitely.
Also, bridges register talkers’ attributes in all their ports,
and they do so for all the talkers willing to transmit.

We used the queries shown in Equations 2 and 3 to evaluate
the termination in bridges. These queries mean that locations
Bridge3.Attribute_declared and Bridge3.LA_registered
are always reached, respectively. As explained in Section 5,
the first location is reached when the bridge receives and
transmits a TA A; while the second location is reached when-
ever the bridge receives an LA message. We see that the
first query is satisfied but the second one is not. Therefore,
we can see that there are scenarios where the bridge sends a
talker advertise and does not receive any response.

A <> Bridge3.Attribute declared (2)



A <> Bridge3.LA registered (3)

This situation causes an unnecessary use of memory in
bridges, as they store the information of streams that are
never established. This is specially problematic in bridges,
as the number of reservations they manage is considerably
larger than in talkers. Thus, this can prevent the creation of
new streams with listeners willing to bind.

It is important to note that this situation may not be solved
by the solution proposed for the talkers. Let us assume we
have the topology shown in Figure 2. Let us now assume
that listeners L1 and L2 want to bind to the stream, but not
listener L3. The talker would receive the will to bind from
L1 and L2, but bridge B3 would wait indefinitely.

A possible solution is to introduce timeouts in the bridges.
This mechanism would delete the stream registration in the
memory of the bridge when none of the listeners connected
to the bridge (directly or indirectly) want to bind to the
stream. The value assigned to the timeout should be high
enough to guarantee that all listeners can announce their will
to bind to the stream before the registration is torn down.
Furthermore, it should be high enough to guarantee that the
talker can tear the stream down if no listeners want to bind.
The main advantage of this solutions if that it is local to

each bridge. The counterpart is that it requires modifying
SRP, as currently bridges can not create or eliminate decla-
rations of streams. Moreover, the time a bridge must wait
depends on the topology, even though it can be bounded
using a worst case end-to-end delay calculation.

7. CONCLUSIONS
The AVB Task Group started a set of projects to provide

standard Ethernet with soft real-time capabilities. The in-
terest in the work of the group reached areas with tighter
constrains in terms of timing guarantees and fault-tolerance.
For this reason, the group was renamed to TSN and its scope
broadened to provide hard and soft real-time guarantees,
flexibility of the tra�c and fault tolerance mechanisms.

Among the projects carried out by the groups we find the
standardization of the Stream Reservation Protocol. SRP is
key to provide timing guarantees, as it supports the reserva-
tion of resources. SRP proposes three di↵erent architectures
to carry out the resource reservation. In this work we focused
on the distributed architecture of SRP proposed in AVB.

We have studied whether this architecture is adequate for
the critical applications targeted by TSN. Specifically, we
focus on the termination in the reservations. We modeled
the reservation process using the Uppaal model checker.
Specifically, we modeled the behaviour of the talker, the
listener and the bridge, each as a di↵erent template. We
used a model composed of a talker, three bridges and three
listeners to evaluate the termination of the reservations.

First, we evaluated whether SRP provides termination of
the reservations in the talkers. We concluded that SRP does
not provide termination. Specifically, if no listeners want
to bind to the stream, the talker waits indefinitely for a
reply, which can cause the malfunction of the application.
We proposed to use timers to tear down the stream when no
listeners want to bind. Second, we evaluated termination in
bridges. Similarly to what happens in talkers, bridges wait
to receive a reply from a listener indefinitely, which can have
an impact in the following reservations. Again, we propose

to use timers to tackle this issue and provide termination.

Acknowledgements
This work is supported in part by the Spanish Agencia Es-
tatal de Investigación (AEI) and in part by FEDER funding
through grant TEC2015-70313-R (AEI/FEDER, UE). Drago
Čavka was supported by a scholarship of the EUROWEB+
Project, which is funded by the Erasmus Mundus Action II
programme of the European Commission.

8. REFERENCES
[1] IEEE Standard for Local and Metropolitan Area

Networks: Media Access Control (MAC) Bridges. IEEE
Std 802.1D-2004 (Revision of IEEE Std 802.1D-1998),
pages 1–281, June 2004.

[2] IEEE Standard for Local and Metropolitan Area
Networks—Virtual Bridged Local Area Networks
Amendment 14: Stream Reservation Protocol (SRP).
IEEE Std 802.1Qat-2010 (Revision of IEEE Std

802.1Q-2005), Sept 2010.
[3] IEEE Standard for Local and Metropolitan Area

Networks–Bridges and Bridged Networks – Amendment
31: Stream Reservation Protocol (SRP) Enhancements
and Performance Improvements. IEEE Std

802.1Qcc-2018 (Amendment to IEEE Std 802.1Q-2018

as amended by IEEE Std 802.1Qcp-2018), pages 1–208,
Oct 2018.

[4] IEEE Audio and Video Bridging Task Group.
https://1.ieee802.org/tsn/, April 2019.

[5] G. Behrmann, A. David, and K. G. Larsen. A Tutorial

on Uppaal, pages 200–236. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2004.

[6] M. D. Johas Teener, A. N. Fredette, C. Boiger,
P. Klein, C. Gunther, D. Olsen, and K. Stanton.
Heterogeneous networks for audio and video: Using ieee
802.1 audio video bridging. Proceedings of the IEEE,
101(11):2339–2354, Nov 2013.

[7] O. Kleineberg, P. Fröhlich, and D. He↵ernan.
Fault-tolerant Ethernet networks with Audio and Video
Bridging. In ETFA2011, pages 1–8, Sept 2011.

[8] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang,
X. Shao, M. Reisslein, and H. ElBakoury. Ultra-Low
Latency (ULL) Networks: The IEEE TSN and IETF
DetNet Standards and Related 5G ULL Research.
IEEE Communications Surveys Tutorials, 21(1):88–145,
Firstquarter 2019.

[9] N. G. Nayak, F. Dürr, and K. Rothermel.
Software-defined environment for reconfigurable
manufacturing systems. In 2015 5th International

Conference on the Internet of Things (IOT), pages
122–129, Oct 2015.

[10] D. Park, J. Lee, C. Park, and S. Park. New automatic
de-registration method utilizing a timer in the
IEEE802.1 TSN. In 2016 First IEEE International

Conference on Computer Communication and the

Internet (ICCCI), pages 47–51, Oct 2016.
[11] D. Thiele and R. Ernst. Formal analysis based

evaluation of software defined networking for
time-sensitive Ethernet. In 2016 Design, Automation

Test in Europe Conference Exhibition (DATE), pages
31–36, March 2016.


