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SUMMARY

Nowadays the automation of a building is implemented in the form of a Distributed
Embedded System (DES), that is, as a set of nodes interconnected by means of a com-
munication network that cooperate to achieve some objective. In this context the
objective is to monitor and control the physical processes of the building. Moreover,
these processes typically have specific operational requirements like, for instance, real-
time requirements. That is why DESs are usually implemented as closed systems using
specialized technologies.

In recent years, the concept of Internet of Things (IoT) has grown in popularity.
Basically, it consists in creating a connection between a thing and the Internet, where
this thing can be any physical device susceptible of being monitored and/or controlled.
Obviously, there is a huge intersection among the concept of a DES and IoT. Actually, it
would be interesting to merge them in order to get the main advantages of each one.

In this project we will describe the development of a distributed embedded system
that executes various tasks demanding specific real-time communication requirements.
More specifically, the system will execute two tasks; a domotics task and a control task.
Also, the integration of an IoT platform into this system will be implemented in order
to create new possibilities and applications.

The Hard Real-Time Ethernet Switching HaRTES is used as the communication
network of the DES. This network makes it possible for the nodes of the DES to ex-
change real-time and non-real-time traffic. Additionally, Sentilo will be used as the IoT
platform. This solution makes it possible for applications to interact with the sensors
and actuators in an easy manner.

Finally, the creation of a user interface will be carried out to reflect the applications
that the IoT platform offers. It will provide the user a way to monitor and control the
system without having to be directly connected to it.

xiii
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1
INTRODUCTION

1.1 Background and Motivation

In the University of the Balearic Islands (Universitat de les Illes Balears (UIB)) there is
an on-going research project called Smart UIB ([2]) with the purpose of: studying and
developing new technologies to improve the operational efficiency of the UIB and its
environment, developing and testing smart technologies to later transfer to the society
and creating synergy points for the students and the researchers. One of its initiatives
is the rehabilitation and renovation of Ca Ses Llúcies, a building that will serve as an
example of a sustainable, smart and healthy space.

One of the projects that will take place in this building is the installation of a demon-
strator consisting of a distributed embedded system running various applications with
different real-time requirements. Some of these applications will automate certain
internal processes of the building, that is, they will obtain information from the building
itself or the environment and will compute a certain actuation that will modify the state
of the building.

Ethernet is a good candidate for implementing the communications of such a
system due to its maturity and huge bandwidth. Actually, Ethernet is nowadays being
considered as a good substitute for the field busses used in the industrial domain.
Its main downside in this domain is that it does not provide the required real-time
response. In this regard, Hart Real-Time Ethernet Switching (HaRTES) is an Ethernet-
based communication network that offers the main advantages of Ethernet, but also
ensures a real-time behaviour in the communications. Moreover, HaRTES supports, in
parallel, multiple communications, each one with different real-time requirements.

Consequently, the communication network used to interconnect the nodes of the
system will be HaRTES. By doing this, we can demonstrate that it is possible to integrate
the communications of various applications with different real-time requirements
within the same network.

Another project within the SmartUIB initiative that is already operating is the moni-
toring of different environmental values of the University. This project has been imple-
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1. INTRODUCTION

mented using an IoT platform called Sentilo, which makes it possible for applications
to interact with distributed sensors and actuators in an easy manner. Another example
of a Sentilo deployment can be found in Barcelona. Specifically, the Barcelona city
council uses this tool to monitor several aspects of the city, as a first step for converting
Barcelona into a smart city.

Extending the HaRTES system by means of Sentilo is an interesting approach for
several reasons. First, it makes it possible for entities outside the building to monitor its
state, as well as to actuate on it. Moreover, this can be done using well-known generic
Internet network protocols and technologies. Second, externalizing some decisions can
make the management of the building more flexible. This is because these decisions
can be taken considering, not only information coming from the building itself, but
from other sources related, or not, to the building. Finally, with Sentilo it is possible to
take decisions based on sensor readings from the past, and not only from the present
as happens with HaRTES.

1.2 Project Objectives

The objective of this final degree project is to construct a distributed embedded system
based on HaRTES implementing various tasks with different real-time requirements
and, then, integrate the sensors and actuators in a Sentilo platform in order to create
new applications that extend the capabilities of the system.

1.3 Tasks carried out

To make clear what was done and what was not done during this project, here we
indicate the tasks that were carried out:

1. Study how a Sentilo platform works and become familiar with such an IoT tech-
nology.

2. Create an instance of this platform on which the project will be developed, inte-
grating the corresponding sensors and actuators that the distributed system will
use.

3. Study how a HaRTES network works to be able to interconnect the applications
that are going to be implemented.

4. Implement the tasks:

a) A domotics task consisting of the control over a light switch.

b) A control task based on an inverted pendulum using a Hardware-in-the-
Loop (HIL) simulation.

5. Integrate the functionalities of the IoT platform into the real-time network.

6. Create a user interface to manage and control the system, taking advantage of
the functionalities provided by Sentilo.

2



1.4. Tasks not carried out

1.4 Tasks not carried out

Here we indicate the tasks that were not carried out during the project but were used in
its execution:

1. The implementation of the HaRTES network.

2. The simulation of the pendulum as well as the calculations of the control ([3]).

3. C libraries:

a) JSMN [4]: used to facilitate the management of the messages received form
Sentilo in terms of the format used.

b) libsentilo_mq: Library provided by the tutor of this project used to enable
communications between processes executed within the same operating
system.

Other tools and technologies have been used and they are explained further on in
section 4.6.

3
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2
PREVIOUS WORK

In this chapter we describe the concepts and technologies that are the basis for the
system herein developed. We first describe FTT, the communication paradigm used by
HaRTES. Then we explain the particular characteristics of the HaRTES network. Finally
we describe in more detail the Sentilo platorm.

2.1 Flexible Time-Triggered (FTT) basics

FTT is a communication paradigm proposed at the university of Aveiro in Portugal that
makes it possible for DES to exchange real-time data. Additionally, it enables these
message exchanges to be flexible, in this case flexible meaning that the parameters of
the real-time messages (periods, dead-lines, etc.) can be changed at run-time if the
changes result in a schedulable message set.

The general FTT architecture applied to a DES is shown in figure 2.1. As observed,
several nodes are interconnected through a network, one of them being the master and
the rest being slaves. The master is responsible for controlling the communications
between the slaves, which is done by broadcasting a special message called Trigger
Message (TM). This message tells each slave when and what are allowed to transmit.

Figure 2.1: FTT’s architecture.

5



2. PREVIOUS WORK

2.1.1 Elementary Cycle (EC)

An Elementary Cycle (EC) is a slot of fixed duration responsible for structuring the
message and it is used by the master node to organize the communication. Each time
the TM is broadcast, it indicates the nodes that a new EC is starting, thus it synchronizes
them. The EC also ends when the next TM is transmitted. These cycles are numbered
incrementally as shown in figure 2.2, and are divided into two windows, the synchronous
and the asynchronous windows. In the first window, time-triggered traffic is transmitted
and in the second one, event-triggered traffic is transmitted. The TM contains the
scheduling that the EC has to follow, specifying the set of messages that the slaves must
transmit in the specified window.

Figure 2.2: EC structure (from [1]).

The communication pattern defined by FTT for each EC is shown in figure 2.3. The
first step begins with the master marking the opening of an EC by sending the TM
(a), which is received and decoded by the slaves. The second step is the exchange of
synchronous messages during the synchronous window according to the EC-schedule
contained in the TM (b). These messages contain the output data from the applications
executed inside the slaves. The third step is the exchange of asynchronous messages
during the asynchronous window between the master and the slaves without any type
of scheduling (c). The forth step finishes the pattern by adding spare time at the end
of each EC to prevent any transmissions from slaves being done before the current EC
ends.

Figure 2.3: FTT communication scheme (as it appears in [1]).

ECs can change their size in order to meet the requirements set by the system.
Depending on their size, the communication will have different characteristics. Mainly,
longer ECs enable more data to be carried, decreasing the amount of information
necessary to control the communication, that is, the overhead. The shorter the EC,

6



2.1. Flexible Time-Triggered (FTT) basics

the better the responsiveness of the communication subsystem, given that the time
between cycles is also reduced.

2.1.2 FTT Messages

In FTT messages can be classified in two main groups. Figure 2.4 shows the different
types of messages common to all version of FTT.

Figure 2.4: Types of messages in FTT (also from [1])

.

As depicted, the two main groups are the data messages and the FTT control mes-
sages. Data messages are used to exchange application data between slaves. On the
other hand, FTT control messages are used to manage the communications which
always involve the master, either as the receiving or transmitting node.

As mentioned before, depending on the temporal behaviour of the messages, they
are classified in synchronous or asynchronous. Synchronous messages become ready
for transmission periodically, where this period of time is defined by a value multiple of
the EC’s length. Asynchronous messages are transmitted irregularly.

Regarding the FTT control messages, we won’t go into much detail about them as
they are not of much importance for this project. Basically, the slave request messages
and the master command messages negotiate changes in the real-time parameters
between the master and the slaves. Finally, the plug-and-play messages are used when
a slave wants to join the FTT network at run-time.

2.1.3 FTT Streams

In FTT, the messages are contained in virtual communication channels so called
streams, which are managed by the master, but all the operations are triggered dis-
tributively be the slaves. Slave nodes that want to communicate with others will con-
nect to a stream as a publisher or a subscriber, depending if they want to transmit or
receive data. Only one node can be connected as a publisher, but various can be con-
nected as subscribers. This way, FTT can transmit data without having to worry about
point-to-point transmissions, that is, without having to know the destination of the
message. The same situation happens from the receiver’s point of view. Furthermore,

7



2. PREVIOUS WORK

the creation, modification or destruction of FTT streams, as well as the attachment and
unattachment of a node from a stream are also requested by slaves.

The following list explains the different attributes that streams have in order to suit
the type of communication between the nodes. These attributes are specified in an
application executed by a slave when creating a stream or having to operate with it:

1. type: the message type as synchronous or asynchronous.

2. period: the interval or time of the stream, that is, the number of ECs it takes
between transmissions.

3. size: specifies the size of the message.

4. offset: delay in ECs with reference to the activation time.

2.2 Hard Real-Time Ethernet Switching (HaRTES)

HaRTES is an implementation of the FTT communications paradigm. More specifically,
HaRTES is a switched-Ethernet communication network in which the switch itself is
used as the master node where the slaves are connected to transmit in star form. Since
all the communications pass through the switch, the master can manage them.

Figure 2.5: A switch in HaRTES.

These are the most important aspects of HaRTES:

1. Asynchronous traffic is sent automatically by slave nodes without having to pass
it through the master. The switch can save these messages into a memory slot
and send them later to the receiver, even if it doesn’t use FTT.

2. Non-authorized or failed transmissions can be easily handled by the switch be-
cause it can block one or more of its ports if a node is not behaving as expected.
For example, if a node fails, the switch can contain the information transmitted
by this node to protect the others from creating more unwanted behaviour.

8



2.3. Sentilo

3. There are no collisions in the communication process since every node has a
dedicated connection with the switch and they don’t need to share the medium.
The switch is in charge of organizing the communications with each node.

4. Integration of the traffic that doesn’t use FTT, without affecting real-time services.

2.3 Sentilo

As mentioned earlier, this project entails using an IoT platform to control and monitor
a system through the cloud. This is where Sentilo comes into play. We refer to the cloud
as an online internet service that provides data storage and a way to manage it. In this
case, Sentilo is going to be this cloud service, providing us a storage service for our
sensors and actuators and a way to manage these values for further processing.

More specifically, this platform will act as a union between an application and
the sensors and actuators of the system we want to monitor and/or automate. The
platform’s architecture is shown in figure 2.6. As observed, the architecture is divided in
three layers. The bottom layer corresponds to the physical devices such as sensors and
actuators that upload the information to the second layer. This second layer, placed
in the middle of the image, is where Sentilo is in charge of managing all the incoming
requests like publishing or retrieving data. Finally, the layer placed on top represents
the applications that use the data from the sensors/actuators stored in the middle layer.

Figure 2.6: Sentilo’s architecture

9



2. PREVIOUS WORK

From the user’s point of view, in order to create a virtual instance of a sensor in the
platform and enable the publication of its retrieved data, Sentilo uses different entities
to structure the internal architecture. These entities are components, providers and
sensors.

To enable the publication of sensor data, the first entity needed is the provider,
which is the entity that manages devices (sensors) and is in charge of sending the data.
Next, a component is a device that contains one or more sensors, such as a Raspberry
Pi. They are not required in order to publish or read data but they are used to group
together sensors that share a set of properties such as location, connectivity, power,
etc. Moreover, components enable the representation of the sensors in the built-in
map view provided in the platform. When you select a component, a pop-up window
is opened and displays the list of sensors related to it with the last activity for each
one of them. Finally, the sensors from Sentilo organise the different sensors that the
component contains.

2.3.1 The API

Sentilo provides the user with a Representational State Transfer (REST) Application
Programming Interface (API). An API is, in computing, a set of functions and procedures
allowing the creation of applications that access the features or data of an operating
system, application, or other service. REST is the technology used to implement this
API, which is the most commonly used nowadays for simple applications. Simply put,
the API will allow us to manage the data between our system and Sentilo. For more
information about the API check [5].

The basic services that this API offers are the following:

1. Data: allows the client to read, write or delete the observations of the registered
sensors.

a) Publish observations of a sensor.

b) Read observations from a sensor.

c) Delete observations from a sensor.

2. Order: allows the client to send or retrieve orders to sensor/actuators.

a) Publish orders.

b) Retrieve orders.

These are the very basics of the service that the API offers, and will be the only
commands used during the project. An example of another service it provides that
hasn’t been used is subscriptions. This allows the platform clients to subscribe to
system events like orders, data or alarms related to the sensors. To do so, it is necessary
to specify an endpoint to Sentilo’s platform, meaning that a server is needed. On this
occasion this wasn’t implemented, but it would be an interesting point to focus on for
future projects.

10



2.3. Sentilo

2.3.2 HTTP

To be able to use all the services explained previously, it is necessary to use Hypertext
Transfer Protocol (HTTP), a communication protocol massively used to transfer in-
formation through the World Wide Web. More specifically, we will make use of HTTP
requests, where an HTTP client sends an HTTP request to a server in the form of a
request message. A simple example of an HTTP request is the simple fact of writing the
Uniform Resource Locator (URL) of a page we want to access in the navigation bar of a
web browser. This request is processed by a web server which replies sending back the
content of the web page.

11
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3
DESIGN

This chapter contains a description of the design of the project. To have a better
understanding of the project we will make mention of the diagram shown in figure 3.1.

Figure 3.1: Diagram of the project design.

This diagram represents the structure of the system, indicating the way all the
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3. DESIGN

hardware and software is interconnected. The set of tasks executed in the system can
be divided into two different blocks, the domotics task and the control task. These
blocks are depicted in the figure using rectangles with non-continuous borders. Note
that we are talking about tasks and applications. To avoid any confusions, the criteria
that has been used in this document is so: tasks make reference to the overall logic
used to carry out the functionalities of the project, being the domotics task and the
control task; applications (or apps) refer to the software programs used in HaRTES to
implement the different processes needed to carry out the tasks.

Following on, the diagram represents the nodes that conform each task, which
are physical devices that together carry out a task. Other hardware parts are the plant
simulation, which is a node executing the simulation of the inverted pendulum needed
for the control task and the HaRTES switch. Also, the switch connected to the fourth
node N4 is a physical switch. The software parts depicted in the diagram are the HaRTES
apps executed in the nodes, the Sentilo platform and other processes (SG, 4.4) that will
be explained further on. Moreover, a user interface will be implemented to enable us a
way to control and monitor the system. This is a software application which is executed
in any node provided with internet connection without having to be directly connected
to the system.

Notice that the hardware parts of the system are depicted with blocks with con-
tinuous borders and, on the other hand, software components are indicated with
non-continuous borders.

One point to clarify is that the system consists of two different networks, the first
one being the HaRTES network and the other one being Wi-Fi. The first one is used
by the apps to communicate among them, providing a real-time communication and
all the properties that this protocol offers. The second network is mainly used for
instrumentation purposes. That is, it makes it possible for us to remotely connect to all
the nodes in order to monitor and control their operation during run-time so that we
can test the implementation in a comfortable way. Moreover, this Wi-Fi network is also
used to communicate the nodes with Sentilo and the nodes involved in the control task
with the simulated plan.

As observed in the diagram, all parts of the system are inter-connected with a spe-
cific type of communication. These different types of communication are colour-coded
to indicate which one is used in each node. Three different protocols have been used:
MQ, which stands for message queues, has been used to communicate processes within
the same device (or node); FTT, as explained in the previous section, is the protocol
used by the HaRTES network; finally, UDP is a standard communication protocol that
in this case was used to communicate the DES with the simulated plant. All three of
these communication protocols will be explained further on in the implementation
chapter (4).

The following sections explain in more detail the parts of the project. To begin
with, the HaRTES system will be explained with the corresponding tasks that were
implemented. Following on we will explain how the Sentilo platform was integrated.
Finally, we will give a brief introduction to the user interface.
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3.1 HaRTES

Based on the diagram of the design of the project (3.1), each node uses a program
called APP. These are the applications used in HaRTES and they are executed by a
node (a device). The switch, which also functions as the master node, manages the
communications between the nodes. These communications are represented with blue
lines in the diagram and correspond to the FTT protocol. In the following sections we
will explain the design of both tasks, the domotics and the control tasks.

3.1.1 Domotics task

Starting with the simplest task, its main goal is to simulate a button that controls a light
switch. We want to be able to control the light from both the physical and the virtual
switch. The physical switch will be an input of a General Purpose Input/Output (GPIO)
of a node and the virtual switch will be a virtual sensor from Sentilo’s platform. If the
system detects a change in the actual state from one of these two control points, the
light will have to change accordingly.

3.1.2 Control task

This task is more complex than the previous one. It consists in managing the control of
an inverted pendulum, which is a pendulum that has its center of mass above its pivot
point, referred to as the cart. It is unstable and without additional help will fall over. In
order to complete this control task we will implement three different stages; sampling,
control and actuation, each one of these stages being executed in different nodes, and
consequently, different HaRTES apps.

The importance of this task is to make a HIL simulation. This is a technique that
is used in the development and testing of complex real-time embedded systems. It
consists in connecting the system to be tested to a simulation of the real plant in a
way that it thinks that it is connected to the real plant. This way, all of the designing
process of the embedded system won’t affect the real plant and all of the testings can be
executed in unlimited types of scenarios. After the HIL simulation is complete and the
functioning of the system is verified, the system is ready to be applied to the real plant.

Figure 3.2: Hardware-in-the-Loop process.

15



3. DESIGN

In this case, the system under test is going to be the control of the inverted pendu-
lum, the objective of which is to ensure that it doesn’t fall to the sides after a force is
applied to it. HaRTES will provide the system with real-time operation to ensure that
the control process is executed in time, otherwise the pendulum would destabilize.

The simulation of the plant will be executed by another node running a graphical
program to enable a visual real-time simulation of the inverted pendulum with working
physics. This will be done with a program called Processing, as explained later in
section (4.6.5). As observed in the diagram in figure 3.1, this node is separated from the
HaRTES network. In fact, it belongs to the Wi-Fi network mentioned earlier, enabling
the connection with the control system.

The first step that the embedded system needs to perform is the sampling of the
variables of the simulated plant. This is done in the sampling stage, which obtains
the values from the device executing the inverted pendulum via the Wi-Fi network.
Once the sampling is done, the sampled values get passed to the control stage through
the HaRTES network where the control operation will be executed. The control values
calculated in the second stage are passed to the actuation stage, again via the HaRTES
network, and finally, passed again to the inverted pendulum through Wi-Fi. The FTT
communications, as explained in the HaRTES introduction, are managed by the master
node (or switch). In the implementation section (4) we will go more in depth on how
this system works.

3.2 Integration with Sentilo

The next step for this project is to enable a control through the cloud. We need to
provide the system with a way to communicate with Sentilo’s server to be able to upload
the current state values and to read any changes that the user wants to apply to the
system.

As mentioned before, we will make use of curl to perform HTTP operations between
our system and Sentilo’s server using a library. The library has been written based on
Sentilo’s API and it will enable us to do the basic operations. More details about this
library are explained in section 4.4.3.

Each node in our system that needs to have a connection with Sentilo will be
executing a program, separate from HaRTES, called Sentilo Gateway (SG), which will be
in charge of all the processes that imply Sentilo. This way, the main program (HaRTES)
will be less affected by the external processes needed to communicate with the cloud.
It is also an advantage when it comes to integration, meaning that if we want to scale
the system with different protocols or languages, the implementation of these will be
easier. In section 4.4 we explain how the SGs work.

The following are the parts of our system that will need an SG. In the case of the
domotics task, it will have one in the corresponding node and attached to one of the
HaRTES apps that are needed to implement this function. In the case of the control
task, there will be two; one in the sampling stage, used to upload data to Sentilo’s server,
and one on the control stage, used to download data from the server. The data that
will be uploaded to Sentilo will be the position of the cart that sustains the inverted
pendulum, meaning the horizontal axis. The data that will be downloaded into the
system will be the position that we want the cart to go to, that is, a set-point.
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3.2.1 Thingtia

To create an instance of this platform we have opted to use a cloud platform called
Thingtia. It is a ready to use server with a free plan, providing all the functions from
Sentilo with only a few limitations, but sufficient to carry out this project.

Thingtia enables the client to manage the sensors and actuators through their
website, where the creation and configuration can be done in a graphical and intuitive
way. It also offers a map and a graphical interface to view the latest data acquired from
the sensors, which will be useful for the first tests.

3.3 The User Interface

The final part of the project consists of implementing a way to be able to monitor and
control the system in a comfortable and intuitive way, enabling any type of user to
interact with the system without any previous knowledge of how it works. The goal of
the user interface is to provide information about the current state of both the domotics
and the control tasks and to be able to change some variables, more specifically the
position of the inverted pendulum and the switch of the button (on/off). To create this
user interface we have opted to use a program called Node-red, which will be explained
in a future section (4.6.6).
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IMPLEMENTATION

In this chapter we will go more in depth into how the project was completed, covering
all the aspects explained in the previous chapter 3. To have a better understanding of
how the project was implemented, this section is structured in a certain way; First, we
explain the hardware used for the nodes. Secondly, we explain the implementation of
both the domotics and the control tasks. Next, the carrying out of the SGs for each node
is described. After that, we explain the user interface and finally we describe the tools
and technologies used during the implementation of the project.

In order to implement the tasks in HaRTES we have used previous works that were
also implemented with this network as a base. Nevertheless, all the work was redone
given that the tasks where different, but it helped in order to understand the operation
of such a network.

Although it is explained further on, before entering into detail about the implemen-
tation of the project, bear in mind that the major part was written in C (4.6.1) and the
code that is referenced throughout the document has the syntax form of this language.
The tools that don’t use this language are Processing and Node-RED, which are also
explained in section 4.6.

4.1 Hardware

The main focus on the hardware setup are the nodes. Each node consists of a physical
device capable of executing the programs designed to carry out the project. Two types
of nodes have been used and are explained below.

4.1.1 Raspberry Pi

For all the nodes except for the switch we have used Raspberry Pis, which are single-
board computers, consisting of an ARM-based microprocessor, memory, GPIOs and
other features required of a functional computer. The model used is the Raspberry Pi
3B+ and the specifications are shown in table 4.1.
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Raspberry Pi 3B+
Architecture ARMv8-A (64/32-bit)

SoC (System-on-a-Chip) Broadcom BCM2837B0
FPU (Floating-Point Unit) VFPv4 + NEON

CPU 4× Cortex-A53 1.4 GHz
GPU Broadcom VideoCore IV @ 250 MHz

OpenGL ES 2.0, MPEG-2 and VC-1
Memory (SDRAM) 1 GB (shared with GPU)

USB 2.0 ports 4 (via on-board 5-port USB hub)
Video outputs HDMI, DSI

On-board storage MicroSDHC slot, USB Boot Mode
On-board network 10/100/1000 Mbit/s Ethernet

(real speed max 300 Mbit/s)
802.11b/g/n/ac dual band 2.4/5 GHz wireless

Bluetooth 4.2 LS BLE
Low-level peripherals 17 x GPIO’s

Power source 5 V via MicroUSB or GPIO header
Size 85.60 mm × 56.5 mm × 17 mm

(3.370 in × 2.224 in × 0.669 in)

Table 4.1: Specifications of the Raspberry Pi used.

As you can see in the specifications, each Raspberry Pi has an on-board network
Ethernet port that will enable us to communicate them with the switch. It also provides
a Wi-Fi connection needed to communicate with the simulated plant and to be able to
access Sentilo.

4.1.2 Mini-PC for the switch

For the switch we need a different piece of hardware, given that it needs to be able
to interconnect the rest of the nodes and that it may need more computing capacity
to manage all the communications. A Computer Mini-PC 10 Lan has been used from
Ibertronica [6], and the main specification that it offers for our project is that it has 10
network interfaces, enough to connect all the nodes needed for this project. The table
4.2 shows the specifications of this model.

4.2 Domotic Task

In this section we will explain the process that was followed to implement the task of
the button mentioned in section 3.1.1. As mentioned before, the objective is to control
a switch from either the local system or from Sentilo. Looking at the diagram of the
design (3.1) you can see that this task uses two nodes. The first one is attached to the
local switch and the second one has a light output, to show an example of where it
would connect to.

First of all, the first app located in the first node has to read the GPIO value of the
switch. In raspbian, which is the operating system that we used in the Raspberry Pis,
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Mini-pc Ibertronica
Model ORDMINI10LAN
CPU Intel Celeron J1900 SoC Quad-core 2.0GHz

2.42GHz Burst, 10W TDP, Bay Trail
RAM SODIMM DDR3 4GB Crucial

Storage SSD 120 Gb 2.5"
Network Interfaces 10x Intel 211-AT gigabit LAN

Back Panel 1x USB 3.0
3x USB 2.0
1x HDMI
1x VGA
2x RJ45

1x Serial Port (RS232/422/485)
Power Input 12V DC

Table 4.2: Specifications of the Mini-PC.

the control over the GPIOs can be made with file descriptors, which are indicators used
to access a file or other input/output resource. To initialize the GPIO we first need to
indicate its direction, meaning if it is an input or an output. In this case we indicate it
as an "in". Once that is done, we can proceed to read the value. In the following code
you can see how this initialization is done:

1 FILE * fd = fopen ( " / sys / c l a s s / gpio / export " , "w" ) ;
2 f p r i n t f ( fd , "%d" , gpio ) ;
3 f l o s e ( fd ) ;
4

5 s p r i n t f ( buf , "/ sys / c l a s s / gpio / gpio%d/ direction " , gpio ) ;
6 fd = fopen ( buf , "w" ) ;
7 f p r i n t f ( fd , " in " ) ;
8 f c l o s e ( fd ) ;

The reading of the value is done by a thread; this way it can continuously read in
parallel with the main program’s execution and, whenever the button is pressed, the
value of a local variable will change as well, so that the main program can access its
current state.

The connection of the button with the GPIO is done with a pull-down resistor
configuration. This is done because when the button isn’t pressed, we want to make
sure that the input value is a digital low, and this is done by enabling a direct connection
to ground when the button isn’t pressed (normally open switch). The following image
4.1 shows the schematic of a pull-down resistor configuration.

The next objective for this app is to send the value of the button to the second
app in the second node, where the output will be used to control a peripheral. This
is done through an FTT stream. The app first creates the stream and then it attaches
to it as a publisher. From this point on, the HaRTES program will wait until another
app is subscribed to the stream. If there is at least one subscriber, it will start sending
the content of the stream in each transmission cycle, depending on the period value
specified in the corresponding stream parameter.

The second app from the second node is in charge of receiving the value of the
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Figure 4.1: Schematic for the button connection with pull-down resistor.

button. We achieve this by attaching the app as a subscriber to the stream created by
the first app and continuously read the value sent in each cycle.

4.3 Control Task

This section gives an explanation of the process implemented to carry out the control
over an inverted pendulum as explained previously in section 3.1.2. First of all, we
are going to explain the way the simulated plant works and next we will explain each
HaRTES app that provide the control of the plant.

4.3.1 The Simulated Plant

As already stated, to carry out the simulation of the inverted pendulum we have used
Processing, which is explained in more detail in section 4.6.5. The program used for the
inverted pendulum has not been implemented in this project but has been obtained
from a github page ([3]). To clarify, all the physics and control of the pendulum have not
been part of this project. Our objective here is to extract the control of the pendulum
that is already implemented in this program and execute it in another system, which
we refer to as the control system.

Following on, we will explain how the program in Processing works, pointing out
each part and its functionality. To do so, we will use pseudo-code to have an overall
understanding without any previous knowledge of the programming language.

To have an understanding of how Processing works, it consists basically of two
functions that are executed in different ways.

1. setup(): allows initializations needed for the correct execution of the program, for
example, specifying the size of the display, initiating communications, etc. It is
executed only once at the very beginning of the program.

2. draw(): this is the main function of this program and where all the graphics are
drawn in the display. It is executed in a loop but it can also be controlled by
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events. It also contains functions that don’t imply any graphical modifications
but need to be continuously executed.

1 // Pseudo−code of the Inverted Pendulum executed with Processing //
2

3 * Functions and variables *
4

5 void setup ( ) {
6

7 −> I n i t i a l i z e UDP communications .
8 −> I n i t i a l i z e display .
9

10 }
11

12 void draw ( ) {
13

14 −> Manage mouse inputs used to apply a force to the pendulum .
15 −> Send s t a t e var iables through UDP to the control system .
16 −> Update the s t a t e of the Inverted Pendulum .
17 + Increment time variables .
18 + Set Accelerations .
19 −> Draw indicator of force applied to the system .
20 −> Redraw the pendulum depending on the updated s t a t e .
21

22 }
23

24 void keyPressed ( ) {
25

26 −> Read any keyboard input values that control the simulation .
27

28 }
29

30 void receive ( ) {
31

32 −> Receive and manage incoming UDP messages from the control system .
33

34 }

To be able to use UDP with Processing we need to install a library. To do so, using
the programs Integrated Development Environment (IDE), we can navigate to Sketch >
Import library > Add Library... and search for UDP. The first library that shows up is the
one used in this project. The image 4.2 shows the library used.

Figure 4.2: UDP library used in Processing.

As stated in the pseudo-code, each iteration of the draw function executes a function
where the variables of the current state of the pendulum are sent through UDP. More
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information on this communication protocol is found below in section 4.6.4. The rate
that this loop is executed at, which is the same rate that the UDP message is sent, is
periodic and dependent on the Frames Per Second (FPS) that Processing is able to
operate at. This is because the draw function draws a new frame in the display every
time the function is executed. Having said that, the control that we have over the FPSs
in Processing is not absolute, meaning that the maximum rate will be achieved with no
possibility to set a specific number for FPSs. This causes a problem in the simulation
of the inverted pendulum because in each iteration of the draw function the state
of the pendulum is updated with a time increment variable (dt). This time variable
provokes the changes on the physics of the pendulum, since time is a parameter needed
to simulate such process. Given that we cannot control the FPSs, to get a real-time
simulation it comes down to modifying the value of the time increment variable dt.

Below, figure 4.3 shows an example of what the display looks like once the program
is executed. The small vertical line indicates the set-point at which the pendulum has
to stabilize. Below that, there is a visual representation in red lines of the current force
that is applied to the cart in order to get to the set-point.

Figure 4.3: Display of the inverted pendulum simulation.

4.3.2 The Control System

In this section we will explain the process that was required to carry out the control of
the inverted pendulum. As already mentioned, the control of the inverted pendulum
was implemented in the code used for the simulation, and our goal is to separate it from
Processing and implement our own control on a distributed embedded system using
HaRTES. We will explain how each app works and how they communicate between
each other and with the simulated plant.

Sampling

The first stage consists of obtaining the variables from the inverted pendulum needed
to perform the control on it. To begin with, we need to have a connection between
this stage and the plant. Given that the connection between the plant and the control
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system is made through Wi-Fi, we use UDP (4.6.4) to transfer this data. The explanation
of UDP from the point of view of Processing has been explained in the previous section
(4.3.1). From this point of view, UDP is managed through a C library, given that the
HaRTES program is written in this language.

To iniciate the UDP communications in this stage, we use a function called init_server()
that was implemented in the HaRTES program prior to this project. It basically binds
the socket to the specified port passed through as a parameter. The socket is returned
by the function and it is then used for the function in charge of the reception. After this
initialization, a thread called sampling() is created which will execute the reception of
the UDP message. It basically uses a function from the library called recvfrom() and,
after receiving the message, it assigns the content of the message to the corresponding
variables. This is what the reception function looks like:

1 recvfrom ( sckt , ( char * ) buffer , MAXLINE,
2 MSG_WAITALL, ( s t r u c t sockaddr * ) &cliaddr ,
3 &len ) ;

As you can see, the socket is passed through as the first parameter. The second
parameter is a char pointer that points where the message is stored. Next, MAXLINE
defines the length in bytes of the buffer. The next parameter is a flag that specifies
the type of message reception. In this case, MSG_WAITALL specifies the function to
wait until all of the bytes are stored in the buffer defined by the length in the previous
parameter. The last two parameters are the variables where the address of the sender
and its length are stored.

One thing to point out is that each time the sampling stage is executed, the program
reads the last UDP message sent by the simulated plant, thus the transmission and the
reception are not synchronized. But this is not a problem because the plant is sending
information at a higher rate than the control is processing the receptions and only the
last message sent by Processing is received.

Once the reception of the message is carried out and the variables are correctly
assigned in this program, we need to pass the necessary parameters to the control stage.
To do so, an FTT stream (2.1.3) needs to be created and we need to indicate that this
app will be a publisher in this stream. This is done using these two functions:

1 APP_STREAM_create ( &app_stream1 ) ;
2 APP_STREAM_attach_pub ( &app_stream1 ) ;

The next step is to create the message that will be sent to the control stage and to
send it. To create the message we use a transmission buffer and we copy all the variables
into it, which are of type double. To send this message we use:

1 APP_STREAM_send( &app_stream1 , tx_buff , BLOCK ) ;

This function waits until the next transmitting cycle (specified by the BLOCK flag in
the parameters) and sends the message (tx_buff ) through the stream previously created
(app_stream1).
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Control

The control stage is responsible for calculating the force that the pendulum needs to
apply to its base so that it doesn’t fall to the sides. Apart from keeping the pendulum
stabilized, its goal is also to keep the cart on the horizontal set-point. Once the sampling
stage has published in the stream the new values needed for the calculations, this app
needs to read them, execute the calculations and finally, send the resulting force value
to the actuation stage.

The first step is to receive the values published by the previous stage. To do so, this
app needs to be subscribed to the stream that the sampling app created. In order to
achieve this, a similar function as the one to make an app a publisher is used. Once the
app has subscribed to the stream it can then use a receive function to read the message
sent through the stream. These are the two functions explained:

1 APP_STREAM_attach_sub ( &app_stream1 ) ;
2 APP_STREAM_recv( &app_stream1 , rx_buff , BLOCK ) ;

As you can see, the receiving function also uses a BLOCK flag, meaning that the
program will wait until the message is received before continuing with the execution of
the program. Note that using this blocking mechanism during the communications
with the apps facilitates the synchronization between them.

Once the values from the stream are read, the app proceeds to calculate the control
function. As already stated, the control that is being used in this app is taken from the
inverted pendulum simulation program stated earlier in 4.3.1. For more information
about the control function, there is a mathematical explanation for obtaining the
control function in the web page referenced ([3]). The control function breaks down to
this line of code:

1 // APPLY CONTROL
2 F = −theta *100 − omega*50 + v*10 + ( x−x_goal ) * 3 . 0 ;

As you can see, the function needs five variables that represent the state of the
inverted pendulum to be able to calculate the force needed:

1. theta: angle of the pendulum from the vertical.

2. omega: the pendulum’s angular velocity.

3. v: the cart’s velocity.

4. x: the cart’s position.

5. x_goal: the cart’s goal position, which is set with the set-point.

The next step for this app is to send the calculated force value through another FTT
stream to the next stage, which is the actuation stage. To do so, it uses the same process
as the first app to create a stream and to attach to it as a publisher. In this case, the
stream is called app_stream2.
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Actuation

This is the final stage needed to complete the control over the inverted pendulum. Its
task is to receive the force calculated in the previous stage and send it to the simulated
plant.

As explained before, to receive the values from a stream, the app needs to attach
itself to it by using the APP_STREAM_attach_sub() function provided by HaRTES. Once
this is done, this app needs to send the calculated force value to the plant.

UDP is also used in order to send this message, which is formatted with the JavaScript
Object Notation (JSON) format. This format will enable the simulated plant to easily
parse the information which is explained in section 4.6.7. The following code shows
how the message is constructed:

1 //MESSAGE SENT TO PROCESSING
2 s p r i n t f ( message , " { \ " F_control \":\"% f \" ,\" x_goal \":\"% f \ " } " , F_control , x_goal

) ;

4.4 Sentilo Gateway

As explained in section 3.2, in order to integrate Sentilo into the system, each node that
needs to communicate with the platform will make use of an SG, which is responsible
for integrating this communication into the platform. In this section we will explain
how each SG was implemented in the nodes. Looking back at figure 3.1, you can observe
the nodes that have an SG depending on their function.

To communicate the HaRTES apps with the SGs we used the message queue mech-
anism explained in section 4.6.2 for which a library was provided from the tutor of this
project to ease the process. These are the functions implemented in this library that we
will use:

1. int sentilo_mq_open (): creates a new message queue.

2. void sentilo_mq_close (): deletes a message queue.

3. void sentilo_mq_send_data(): sends a new message through a specific message
queue.

4. void sentilo_mq_recv_data(): receives the next message from a specific message
queue.

Whenever HaRTES apps or SGs have a need to communicate with one or another,
they will need to first open a new message queue if there isn’t one opened. Then,
depending if they have to send or receive, they will need to use the send function or the
receive function.

Each one of the SGs has a similar structure. The following pseudo-code shows a
general idea of how they are implemented:

1

2 −> I n i t i a l i z e message queue .
3 −> I n i t i a l i z e Senti lo .
4
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5 −> Wait for f i r s t message in the message queue .
6

7 while ( 1 ) {
8

9 i f the SG’ s objective i s to upload data {
10 −> Receive message from the app through message queue .
11 −> Send value to Senti lo .
12 }
13

14 i f the SG’ s objective i s to read data {
15 −> Read value from Senti lo .
16 −> Send value to the app through message queue .
17 }
18

19 }

As can be observed, in the beginning of the code we have initializations. Next, the
program waits for the first message received through the message queue. We do this to
ease the testing process because the SGs are executed before the apps. This way, the
program will not execute any operations until the system is running. Once the first
message in the queue is received, the program enters a loop where it continuously car-
ries out operations with Sentilo, sending or receiving information to the corresponding
HaRTES app.

Following on, we will explain the SGs used in each task.
1

4.4.1 SG for the Domotics Task

For this task, a single SG was implemented in the first node, the objective of which is
to both upload and download data from Sentilo. In the case of the control task, which
is explained in the following section (4.4.2), the upload and the download are done in
separate SGs.

On the one hand, whenever there is a change in the button state, the app needs to
send the new value through a message queue to the SG. On the other hand, when there
is a change in the virtual sensor from Sentilo, the SG needs to send the new value to the
app, again through a message queue. Note that, because of doing both operations in
the same SG, two message queues are needed. That is because the downloaded data
and the data to be uploaded can’t be sent in the same message queue, otherwise they
would get mixed.

Another thing to point out is that the reception of the message queues in both
the app and the SG are made using a thread. This is done because the reception of a
message from a message queue is blocking, meaning that when the receiving function
is executed, the program waits until data is received. If this reception function was
placed in the main loop of each program, the loop would be interrupted.

4.4.2 SG for the Control Task

For the control task, two SGs were implemented, one for the first node executing the
sampling app, and the other for the second node executing the control app.

1explicar como se han insertado los sensores en sentilo
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Sampling SG

The objective for the sampling SG is to upload the value of the actual position of the
cart. Once the HaRTES app has sent the value to the SG via the message queue, using
the functions provided from the library libsentilo, which are explained in section 4.4.3,
it needs to upload it to the platform. To do so, a PUT operation is executed with the
following libsentilo function:

1 senti lo_opt ( json_ptr , " data " , "put " , sensor , value_mq ) ;

The sensor parameter contains the sensor name corresponding to the carts position
and the value_mq parameter contains the value received from the message queue,
which is the one that we want to upload. In this case, the return message stored in
json_ptr is used as confirmation that the operation was executed correctly.

Control SG

The objective of the control SG is to receive any changes in the set-point of the cart
by performing a polling to the server. To do so, in the while(1) loop it executes a GET
operation as follows:

1 senti lo_opt ( json_ptr , " data " , " get " , sensor , NULL ) ;

In this case, the sensor parameter refers to the set-point (x_goal) and the value
received is stored in the json_ptr. Next, the returned string from Sentilo needs to be
parsed:

1 s e n t i l o _ j p a r s e ( json_ptr , " value " , return_str , NULL ) ;

The object from the JSON string that we are looking for is "value", and its contained
value will be stored in the return_str. If the value returned from Sentilo is different to the
last value obtained, the program will send this value to the control app from HaRTES
and will change its value.

4.4.3 The library, libsentilo

In order to carry out the integration of Sentilo into the system, a library programmed in
C was made to enable the interaction with the platform. In this project it was used in
the SGs, but its sufficiently generic so that it can be used to implement other parts of
the system or for future projects involving this platform.

This section explains the functions implemented in this library. It consists of three
main functions to provide us with the basic tools to manage data operations between
our system and Sentilo.

4.4.4 sentilo_init()

As the name of the function indicates, it is a function with the objective to configure
the initial state of the program enabling the correct execution of posterior uses of the
other functions available in the library. It reads configuration parameters necessary
to establish a connection with Sentilo’s server. As explained previously in the design
section (3.2.1), Thingtia is going to be used as a cloud server to create an instance of a
Sentilo platform. When creating this instance, some parameters are created in order
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to establish a connection with the cloud server. These configuration parameters are
saved in a configuration file named "conf " that is found in the same directory as the
library. The reason why these parameters are specified in a separate file is to provide a
way to easily configure the server’s parameters without having to edit and recompile
the library, simplifying the work for possible future uses.

Basically, this function reads the text file and saves the values of each parameter
in a variable. The main configuration parameter needed is the authentication token
used by the server to establish a secure connection when performing HTTP requests.
Another parameter is the name of the server’s user and the provider we want to use.
The provider needs to be created previously through Sentilo’s server and it is always
preceded by the user’s id. For example, if the user’s id is foo_bar and the provider’s
name is test, the way to reference this provider using this user’s account would be
"foo_bar@test". Finally, a parameter also needed is the URL of the server, which in this
case is http://api.thingtia.cloud/.

4.4.5 sentilo_opt()

This is the general function needed to perform HTTP (4.6.3) requests to the server. It
can perform data and order operations, and within these two types it can perform
either a GET or a PUT operation. It uses the following parameters:

1. char * json_ptr: a char pointer used to store the result of the operation. It needs
to have allocated memory prior to the execution of the function.

2. char opt[]: char array containing one of the two types of operations: data or order.

3. char request[]: char array containing one of the two types of requests: GET or
PUT.

4. char sensor[]: char array containing the name of the sensor.

5. char value []: char array containing the value that wants to be published to the
respective sensor. Only for PUT type requests.

To implement this function we first need to build the url depending on the type
of request that the parameters of the function indicate, which is made with simple
string concatenation. Once the URL is complete, we need to build up the headers for
the HTTP request. HTTP headers allow the client and the server to pass additional
information with the request or the response, and it’s what we will use to indicate the
authentication token to the server.

In order to append the HTTP headers to the URL we will make use of curl, an open
source tool to transfer data through URLs that is explained in more detail in section 4.6.8.
More specifically, we will use a library that implements curl called Libcurl ([7]. This
library uses a function in which you specify the type of operation you want to perform,
including the addition of custom headers. This function is called curl_easy_setopt()
and all the different operations are documented in the API ([7]). To specify the headers
we need to use CURLOPT_HEADER as a parameter and the next one will be a linked
list of strings containing the information of the header or headers. This linked list is
provided by the library as a struct type called curl_slist and a specific function is used
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to add headers into it called curl_slist_append(). Having said this, after appending the
authentication header to the linked list and specifying the type of request, we need to
execute the operation with the function curl_easy_perform().

If the operation specified in the parameters is of type order, another header needs to
be specified to indicate the HTTP request that a data field will be sent. We also need to
specify that this data message is using a json format. When performing this operation,
the first parameter for this function (char * json_ptr) contains the message that wants
to be sent as an order.

4.4.6 sentilo_jparse()

This function’s name stands for json parse. Parsing consists of analysing a string of
data, in this case a json string, with the objective of knowing the content referenced to
each object that the string contains. Given that the libary is written in C and that JSON
isn’t oriented to use in this language, we made use of a library called jsmn ([4]) to ease
the process. Basically, it offers predefined structs and variables to organize the data
contained in the JSON string.

The function is used with the following parameters:

1. char * json_ptr: a char pointer containing the string that wants to be parsed.

2. char search_str: a char containing the object that wants to be read.

3. char * return_str: a char pointer where the value of the object read is returned.

4. char * timestamp: a char pointer to store the timestamp read.

As you can see by the parameters given, the way this function has been implemented
has the following idea. A json string is passed through the first parameter and the second
parameter enables the user to specify from which object it should read the value. For
example, if an HTTP request returns a json string containing data from a sensor and we
wanted to parse its value, we would have to pass this string through the first parameter
and then, with the second parameter, specify "value" as the object that wants to be
read. This way, the function returns only the wanted information out of the json string.

4.5 The User Interface

Node-RED, a flow based programming tool explained in section 4.6.6, was used to
implement the user interface. Its objective, as explained in the design section 3.3, is to
provide the user with a way to monitor and control the system using the information
stored in Sentilo.

Node-RED enables the installation of new blocks that provide new functions. In
this case we have installed two additional plug-ins, one for Sentilo blocks and one for
dashboard blocks. Sentilo blocks are used to perform HTTP operations to the server
with ease, without having to manually set up the headers. Dashboard blocks permit the
implementation of the user interface, managing inputs and outputs. Figure 4.4 hows
how the final blocks are placed to achieve the desired results.
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Figure 4.4: Node-RED’s flow for the user interface.

4.6 Tools and Technologies

As previously mentioned, the majority of this project was written in C, the main reason
being because the HaRTES program is already written in C. To carry out the project,
Linux OS has been the main operating system used, as it’s versatile and straight forward
for these types of projects. The terminal simulator has been the main tool used for
compiling, testing and running all the programs and libraries written through the
making of the project. The following sections give a more in-depth description of the
tools and technologies used.

4.6.1 C programming language

To program the apps for the nodes used in HaRTES and for the SGs, we have used
the C programming language. This language is one of the most commonly used in
general programming and is useful for this project for various reasons. The first is that it
offers very good portability, meaning that a program can be run on different platforms
without having to modify any changes or configurations. Taking into account that we
are working with distributed embedded systems, this is helpful. Another important
reason is because it’s faster than the other typical programming languages, and, because
we are working with real-time systems, it’s an important point to consider.

To compile the programs, GNU Compiler Collection (GCC) has been used. It’s a
set of compilers for different languages, including one for C, and it’s the standard for
UNIX-like operating systems like Linux OS.
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4.6.2 Inter-Process Communication (IPC)

The use of a separate program in a node to integrate Sentilo into the system, that is
the SG, generates a need for a communication between the HaRTES app and the SG.
To do so, we will make use of Inter-Process Communication (IPC)s. IPCs are one of
the basic operating system mechanisms to allow the processes to manage shared data.
One of the methods that this mechanism offers and the one we are going to use is
message queuing. A message queue is a data stream similar to a socket, but which
usually preserves message boundaries and allows multiple processes to read and write
to the queue without being directly connected to each other.

An example of a system that could use a message queue would be in a web server.
If this web server is receiving a lot of requests, to manage all the traffic, these requests
could be stored in a message queue and multiple processes could repeatedly pick up
messages once each one has finished the last request. This way the server could manage
all the incoming traffic without collapsing.

The basic architecture of a message queue is simple. There are client applications
called producers that create messages and deliver them to the message queue. Other
applications, called consumers, connect to the queue and get the messages to be
processed. Messages placed onto the queue are stored until the consumer retrieves
them. The applications need to know which messages are addressed to them. To do so,
messages entering the queue use an id provided from the sending applications.

Figure 4.5: Architecture of message queues.

To make use of the message queue in our project, a library has been made to
facilitate the implementation of each SG. This library provides the basic functions to
send and receive messages from one process to another through the message queue.
These messages will contain the information needed to upload to Sentilo’s server, that
is the sensor’s id and the value that wants to be uploaded. The same happens when we
want to download the data from Sentilo to our system.
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4.6.3 HTTP

As explained in section 2.3.2, in order to enable a way to send data to Sentilo we use the
HTTP protocol. HTTP requests are used to perform operations between a client and a
server connected to the web.

In this project, the request will ask the Sentilo server to perform one of the oper-
ations that the API offers. After that, the platform will respond with an certain HTTP
response depending on the type of request that was sent. The general form of a re-
ply message in Sentilo consists of a code and a message. The code indicates if the
request was accepted or not and if there were any errors. The numbers in this code
give information about the type of error that has occurred, which are specified in the
documentation. Also, if the message wasn’t successful, the message field will contain
information related to the error. On the other hand, if the operation was successful, the
message will contain the data that was requested in the HTTP request.

4.6.4 UDP

As mentioned in the design section (3), the overall system uses two networks, the
HaRTES network and a Wi-Fi network. Wi-Fi is used to communicate the simulated
plant with the nodes, and to do so, UDP is used over it.

UDP is a protocol used in Internet Protocol (IP) networks and it’s one of the core
members of the Internet protocol suite situated in the transport layer. It consists of a
connection-less communication, meaning that each data unit is individually addressed
rather than prearranging a connection between the source and the destination. It
doesn’t provide much error detection mechanisms and thus there is no guarantee of de-
livery, ordering, or duplicate protection, but offers instead a direct and fast connection.

To establish a host-to-host connection, the applications need to bind a socket to
the endpoint of data transmission. Sockets are a combination of an IP address and a
port. A port is a software structure that is identified by the port number, which can vary
from 0 to 65535 (16 bit integer value), and they are used to identify a specific process or
a type of network service.

The fact that this protocol provides a fast connection is the main reason why it
was chosen to use in this project, given that the data must arrive in time to prevent
any delays in the control process of the pendulum. To be able to use this protocol
we used libraries in both the simulated plant and the control system. The way it was
implemented in each part will be explained in more detail below.

4.6.5 Processing

To simulate the plant we have used a program called Processing. Processing is an
open-source graphical application built for programming visual designs with an easy-
to-program language. It uses the Java language, with additional simplifications such as
additional classes and aliased mathematical functions and operations. As well as this,
it also has an IDE for simplifying the compilation and execution stage.

It also offers a built-in library installer which will be used to install the corresponding
library for the UDP communications to enable the connection with the control system.
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Figure 4.6: UDP’s type of connection.

4.6.6 Node-RED

Node-RED is a flow-based programming tool for wiring together hardware devices,
APIs and online services in certain ways. It works with nodes (also called blocks), and
each one has a well-defined purpose. It’s based in the run-time of Node.js, which is
based on JavaScript.

This tool has been used to create the user interface, providing a real-time visual
representation of the system’s state and a tool to modify parameters.

4.6.7 JSON

JSON is a lightweight data-interchange format oriented for JavaScript objects. It is
self-describing and easy to understand and it is language independent, that is, JSON
uses JavaScript syntax, but the JSON format is text only. Text can be read and used as a
data format by any programming language.

Here is an example of what a JSON string looks like:

1 {
2 " firstName " : "John" ,
3 "lastName" : "Smith" ,
4 " i s A l i v e " : true ,
5 "age" : 27 ,
6 " address " : {
7 " streetAddress " : "21 2nd S t r e e t " ,
8 " c i t y " : "New York" ,
9 " s t a t e " : "NY" ,

10 "postalCode " : "10021−3100"
11 } ,
12 "phoneNumbers" : [
13 {
14 " type " : "home" ,
15 "number" : "212 555−1234"
16 } ,
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17 {
18 " type " : " o f f i c e " ,
19 "number" : "646 555−4567"
20 } ,
21 {
22 " type " : "mobile" ,
23 "number" : "123 456−7890"
24 }
25 ] ,
26 " children " : [ ] ,
27 "spouse" : null
28 }

Given that in this project Java was used on two occasions (with Processing and
Node-RED), JSON has been used to ease the readings of data passed to these programs.
But the main reason why it has been used is because Sentilo’s HTTP responses also use
the JSON format.

The downside of using this format based in Java is that, while using the C program-
ming language, it’s become tedious to read data strings that use this format given that it
is oriented to Java objects. To ease this process, a library has been used called JSMN.

4.6.8 Curl

To be able to work with the HTTP protocol while programming in C, we will make use
of curl, an open source tool used to transfer data with URLs and supports, among other
protocols, HTTP. It can be used as a command line tool or as a library. In this case it
will be used as a library, considering that a program will be written to make this project.
The library that was chosen is libcurl [7], which is the most used in order to implement
curl with C.
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5
FUNCTIONAL VERIFICATION

In order to verify that the system works correctly we performed tests with the hardware
and software explained in this document. In this section the tests performed and the
problems encountered during the development of the project will be explained.

5.1 Testing

The system needs to be able to execute both applications at the same time, given that the
HaRTES system is developed with the intent of managing real-time communications in
an efficient manner. The way this test was executed is by using the terminal emulator in
Linux and executing in every node the corresponding programs required. The order in
which the programs are executed is important, considering that some processes need
information obtained by others in order to function properly. The important point to
follow when initiating each program is to execute the master app in the switch last, the
reason being all the programs wait until the program in the switch is executed. The user
interface has also been tested and in some ways it has eased the testing of the system
during the whole development process.

To execute the HaRTES apps in each node a connection to them is required, and in
this case we used Secure SHell (SSH) to remotely access them. With SSH we can control
each node through command lines, which is what we basically need to execute the
programs. The image below (5.1) shows an example of how a connection to a node and
the execution of a HaRTES app is carried out.

The way the apps are executed is by entering a command line specifying the app
identifier that wants to be executed and the node identifier using the arguments -a and
-n respectively. In image 5.1 you can see an example. In this case the app 1 is executed
in the node 1. The command line to execute the HaRTES master app in the switch is
similar but with different arguments. Here is an example of the command line needed
for the execution of the master program in the switch:
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Figure 5.1: Example of an execution of a HaRTES app.

1 src /apps/demo−simple / f t t −se . L26/ ftt_master_run . l inux −S − i enp18s0 − i enp17s0 −e
30

Argument -S indicates that the execution will be carried out with a standalone
master. The following argument -i indicates the network interface where the apps are
executed in incremental order. Finally, argument -e enables us to specify the time for
each EC in milliseconds.

On the other hand, it is also necessary to execute the simulation of the plant before
executing the master app. This is done with a Raspberry Pi that has an operating system
with graphical user interface (GUI). Connected to this node there is a monitor to be
able to see the display of the inverted pendulum. The execution of the simulation is
simply done by executing the code with Processing. A mouse will need to be connected
to this node to be able to apply external forces to the inverted pendulum by clicking
and dragging the pointer in the direction that we want to apply the force. This way, we
will be able to test that the control over the pendulum has been implemented correctly.

Once all the parts of the system are running, we can perform tests to verify that
every task works. Figure 5.2 and 5.3 show an example of what the terminals look like
once all the programs are executed and running in parallel.

To verify that the button task works, the physical button has been pressed and the
change has been observed in the user interface. Changes to the value occur accordingly
in the vast majority of cases. The reason why it can sometimes not detect the change is
due to a bad connection of the button with the GPIO. On the other hand, if we try to
change the button value from the user interface, which is equivalent to changing the
value in Sentilo, we can observe the change happening in the reception of the value
in the second node belonging to this task. That is, the node that will use the value of
the button to control a peripheral. We can also observe the change of the value within
the user interface, which is a direct representation of the value stored in the Sentilo
platform after a get operation is performed by Node-RED.

The verification of the pendulum task can also be tested in different ways. First, the
simulation of the pendulum can be tested without the control system by applying a force
on it. The result is that the pendulum falls to one side and continuously moves because

38



5.1. Testing

Figure 5.2: Example of the programs running in parallel in the terminal emulator (a).

Figure 5.3: Example of the programs running in parallel in the terminal emulator (b).

of the momentum. This is behaving correctly because the physics are implemented
in the simulation but the control over the pendulum is not. Also, the red horizontal
lines that represent the force applied to the cart don’t appear, because there is no value
received from the control system.

Next, the control system needs to be tested. Once all the parts of the system have
been executed properly and the control system is running, a force can be applied to the
pendulum the same way as before, but in this case the pendulum receives the control
actuation from the control system. The result is that the actuation is applied to the
cart so that the pendulum doesn’t fall and it slowly stabilizes to stay on the set-point.
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The SG from the sampling node will upload the value corresponding to the position
of the cart during this testing process and the result can be seen in the user interface.
Figure 5.4 shows the user interface representing the result of the system after applying
an external actuation to the pendulum with the mouse.

Figure 5.4: The user interface representing the results of an external actuation on the
pendulum.

As observed in the chart, there are two lines, one representing the set-point of the
cart and the other representing the position of the cart. After applying an external
actuation to the pendulum, the cart changes position to prevent the pendulum from
falling and then it slowly returns back to the position defined by the set-point.

Another test to be performed is to change the value of the set-point from the user
interface. As expected, the cart will slowly make its way to the set-point without desta-
bilising the inverted pendulum. Figure 5.5 shows the values of the position of the cart
when changing the set-point from ’0’ to ’1’.

Figure 5.5: The user interface representing the results after changing the set-point
value.

40



5.2. Problems encountered

5.2 Problems encountered

During the testing of the system, the major problem encountered was in the control task.
At first, the control over the pendulum failed after a period of time due to possible delays
in the communications, considering that the communication between the simulated
plant and the control system is made through Wi-Fi. To prevent this from happening
we changed the value of dt which, as explained in section 4.3.1, is responsible to set
the increments of time in each iteration. By lowering its value, the simulation has less
changes in a period of time, thus giving more time to the control system to send the
actuation value. A way to improve the performance in the system would be to change
the Wi-Fi network for an Ethernet network, which has higher transmission speed.
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6
CONCLUSIONS

In this document we have described the design and implementation of a DES for the
building Ca Ses Llúcies at the UIB. The objective is to demonstrate that is possible to
execute several distributed tasks with different real-time requirements in the same
network, as well as to monitor and control them through the Internet by means of an
IoT platform. Finally, with the possibilities that this control offers, a user interface has
been implemented in order to view the current state of the system and to perform
changes in it.

In order to accomplish this, we have used HaRTES, a communication network
based on Ethernet makes it possible for the nodes of a distributed embedded system to
exchange traffic with different real-time requirements. Moreover, HaRTES can integrate
traffic that is not FTT into the network, increasing its possibilities of use, for instance,
in domotics, or in even more strict environments, such as the control of an industrial
plant.

With reference to the IoT platform, we have used Sentilo a solution that is already
been used in Ca Ses Llúcies and, thus, it is convenient for a complete integration in
the building. Sentilo makes it possible for the applications to access to distributed
sensors and actuators in a homogeneous manner without regard to the communication
protocol or manufacturer.

The user interface developed in this project is an example of how an IoT platform
can be useful in projects involving domotics, industrial plants or other fields like smart
cities. The use of Node-RED as the programming tool to implement it also opens
a whole new span of possibilities, while making use of Internet data to make new
applications in a direct and intuitive way.

To sum up, this project has been a way to introduce someone with no experience
at all to the concept of IoT and to get direct experience with DES that need specific
communication requirements. Moreover, this has implied working with a multitude of
different tools and technologies in order to integrate these two levels of the architecture.

Personally, to implement this project was very interesting, given that this new era of
devices connected to the Internet is seemingly growing exponentially and is expected to
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be an important field in the future. Moreover, the amount of programming carried out
during this project has been a very good way to improve, as during the degree course,
we only cover the basics and don’t really go much in-depth. Also, to see how a relatively
complex system gets to work for the first time is very satisfying.
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7
FUTURE WORK

In this final chapter we will make mention of possible future works that could be carried
out to continue with this project in order to enhance it and provide more uses for it.

To begin with, prior to the implementation of this project, the UIB had carried out
an implementation of a Sentilo server. As explained in this document, to create an
instance of this platform we used a cloud server in order to carry out the project. Having
said this, it would be interesting to implement this project using the server available at
the University, given that it would offer more functionalities than the cloud server. One
functionality that could be interesting is the ability to store data beyond the time span
provided by the cloud server, in order to implement prediction algorithms.

As explained in the functional verification chapter 5, we used Wi-Fi to establish a
connection between the simulated plant and the control system. While Wi-Fi is enough
for a demonstrator, there are better solutions for implementing the communication
in a distributed embedded real-time system. Having said that, a way to enhance the
system would be to connect the simulated plant with a more suitable communication
technology like, for instance Ethernet. Furthermore, the communication among the
nodes and Sentilo also takes place through the Wi-Fi connection. Sending this traffic
through the HaRTES network as non-real-time traffic would make the system less
complex and easier to deploy.
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