
c©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

First exploration of the potential of diverse training
and voting for increasing the accuracy of CNNs

Julián Proenza, Yolanda González and Patricia Arguimbau
DMI - Universitat de les Illes Balears, Spain

{julian.proenza,yolanda.gonzalez,patricia.arguimbau}@uib.es

Abstract—Machine learning techniques are attracting a huge
amount of interest from both industry and academia. For
instance, Convolutional deep Neural Networks (CNNs) have
recently enjoyed a notable success in image understanding.
The automotive industry is already using image classifiers for
Advanced Driver-Assistance Systems and in the development of
the upcoming autonomous cars, which will have to guarantee
high levels of reliability. The certification of systems based on
machine learning is an open issue but it is clear that any
improvement in the performance of image classifiers is to be
welcomed. CNNs need to be trained to act as image classifiers.
This training leads to slightly different classification capacity
depending on some training parameters. In this paper we present
a first exploration on the use of schemes based on voting on the
results of several CNNs trained differently, as a means to increase
the final classification performance, and thus the reliability, of
this type of systems.

I. INTRODUCTION

Machine learning is attracting a huge amount of interest from
both industry and academia due to its high potential for solving
complex problems in a more effective way than conventional
methods based on task-specific algorithms. Convolutional deep
Neural Networks (CNNs) are computing systems that use the
machine learning principles and that have recently enjoyed a
notable success in image classification or semantic segmen-
tation, triggered by the significant improvement achieved in
2011 over the best performing classification methods described
in the literature of the time [1].

The recent advances in machine learning and artificial
intelligence (AI) in general have caught the attention of key
sectors such as the automotive industry. One example is the use
of image classifiers for Advanced Driver-Assistance Systems
(ADAS) [2]. These classifiers are to be used as well in the
unstoppable evolution towards level-5 fully autonomous cars,
whose critically will make mandatory the use of fault tolerance.

The current trend is to mix information obtained from a wide
variety of sensors (e.g. vision, radar, LIDAR, ultrasound) and it
is accepted that advanced sensor fusion is especially important
for robust performance in complex perception situations [3].
Moreover the natural redundancy of sensor information caused
by the continuous sensor sampling (e.g. video) is used for
boosting the efficacy. Nevertheless, the certification of the
correct behavior of AI-based systems in general is an open
issue that needs to be addressed by the critical-systems industry.
Therefore, and as a first step in this direction, it is also clear
that any kind of improvement in the performance of each sensor
and its corresponding recognition algorithms will be welcomed,

especially if the sensor is cost-effective such as is the case of
vision when compared with LIDAR.

CNNs need to be trained before using them. For classification
tasks and during the training phase the CNN receives a sequence
of images from a database and with each image a tag that
indicates the class the CNN should be able to identify in
the image. As a consequence the CNN adjusts some internal
coefficients, the so called weights. This training process leads to
slightly different results depending on the actual set of images
and their order in the sequence, among other hyperparameters of
the CNN architecture. For instance, the same CNN architecture,
once trained, could be able to classify a specific test image or
not depending on said factors.

Some classical fault tolerance techniques exploit design
diversity in order to tolerate design faults. In N-Version
Programming (NVP), diverse versions of the same program are
written by independent teams and then, in execution, segments
of each version that are intended to generate the same results
in the absence of faulty versions are executed and then a voting
takes place on the results obtained by each version. Assuming
design faults are independent and infrequent, NVPs voting is
capable of producing the right result for each segment even in
the presence of design faults in a minority of versions.

The slight diversity that is observed in different trainings of
the same CNN architecture could be seen as a kind of design
diversity and thus susceptible of being leveraged for improving
the final accuracy by completing N trainings and voting on their
results. The key requirement for this strategy to be effective is
that the majority of the trainings have to be able to correctly
classify the images that a minority is not able to classify. Only
under those circumstances voting would be more effective than
using a single training. In this paper we explore this possibility.
In this initial approach to this subject the authors have chosen
a 6 layer CNN trained over the MNIST dataset. This election
allows reducing training times and takes advantage of a simple
architecture and a well-known dataset.

II. DIVERSITY IN THE PERFORMANCE OF CNNS

When a CNN, with an adequate internal architecture, is to be
used as image classifier, a set of training images is input to the
CNN together with the tags that identify the classes to which
each of the images belong (e.g. what animal is shown in the
image). During the training, the CNN learns the key features
of each class of images by means of adjusting the weights.
Then, once the training is finished, the classification accuracy



of the CNN is tested by inputting a set of test images (not
used during the training) for each of which the CNN indicates
the class it belongs to.

The fact is that depending on the way this training takes
place, e.g. the specific set of images used for training or the
order in which these images are processed in the CNN, the
final capacity of the trained CNN for classifying the test images
can be different. To the authors best knowledge there is no
final research that has completely studied this phenomenon.
In any case we see this diversity in the results of the training
as a potential opportunity for using voting-based schemes for
obtaining a final redundant system that is able to perform better
than each one of the individual CNNs used to build it.

In this section we delve into the different sources of diversity
in the training of a well known CNN using a widely used
database of images. The CNN we have chosen is the one
provided by Google’s developers in their Tensorflow tutorials
webpage [4]. This CNN is rather simple, which means it has
a just 6 layers but still it is able to achieve a level of accuracy
in the classification of images that is widely accepted as state-
of-the-art nowadays.

On the other hand, the database we have used for training
and testing the performance of the CNN is MNIST [5], which
consists of 60000 training images and 10000 test images, each
of them of a handwritten number from 0 to 9. This means the
database provides 10 different classes that the CNN will have
to be able to identify. In order to favor the generality in the
classification capability of the CNN, the images correspond to
numbers which are written by different persons and the training
set is much larger than the test one. Note that the images of
this database do not correspond to the kind of images that
need to be processed in automotive applications, since we just
want to carry out a first general study and thus we have simply
chosen a widely known database.

The training of the CNN using MNIST consists of an iterative
optimization algorithm to find the parameters and weights that
minimize a loss function. In our case, the cross entropy loss
function is used to estimate how badly the CNN are classifying
the input images. In each iteration, as the entire dataset cannot
be passed to the CNN at once, a number of training images is
randomly selected to form a subset, called batch, with a fixed
cardinality that can be decided by the user for the whole training.
Each time, the loss function can be estimated comparing the
predictions of the CNN with the image tags and the weights
are adjusted to minimize the loss. The training phase can be
configured to take a fixed number of iterations or o stop when
the loss is zero or low enough.

Summarizing, in a first look at this working procedure we can
identify multiple sources of diversity in the final performance
of the trained CNN. Indeed, selecting a different subset of
images for training, or a different batch size, or a different
condition for stopping the training (either a previously fixed
number of iterations or loss equal to zero or to other low-
enough quantity) the CNN is likely to be able to identify some
test images differently. Additionally, even if the previous three
parameters are the same for two independent trainings, the

mere random choosing of the specific images that are part of
each batch will create diversity.

On the other hand, the architecture of the CNN is also
designed by the user. This means that by changing the
architecture we can also get different classification results,
but this source of diversity has not been further explored in
this paper.

In this rest of the paper, we are going to report on the
experiments we have carried out so far in order to see
whether these sources of diversity can be used to improve
the classification capabilities of CNNs by building redundant
systems.

III. VOTING ON DIVERSE REPLICAS OF A CNN

Classical fault-tolerant systems have used replication and
voting successfully in order to tolerate faults in a minority
of the replicas. The usual example of this approach is Triple-
Modular Redundancy (TMR) in which three replicas of the
same hardware generate their outputs in parallel and there is a
specific device called voter that is in charge of voting on the
results of each replica and decide the output of the resulting
system. The minimum number of versions for voting is 3,
but it is also possible to use any higher odd number, which
we will denote with N , leading to the so called N -Modular
Redundancy (NMR). Typically it is fair to expect an increase
of reliability when N is increased. When design faults are to
be tolerated, the replicas need to exhibit design diversity. This
is the approach used in NVP for tolerating software faults,
which are by definition design faults.

In the work presented in this paper we use NMR and NVP
as basic references. In both cases, the vote is a critical aspect
of the resulting system operation. In NVP different kinds of
voting algorithms are considered depending on the type of the
output data [6]. For instance when bit-by-bit identical values
are expected for the outputs of the versions, exact match is
used. In contrast, when small differences are acceptable (e.g.
for floating point numbers obtained from sensors’ readings),
numeric match is used, which consist on an average calculation
that rules out values that differ too much from the rest.

In the case of the CNN considered for this work, once it
is trained, its input is an image and its output is a list of the
probabilities with which the input image corresponds to each
of the 10 potential classes. Based on this type of output we
propose two different voting algorithms.

Let pi with i ∈ {0, . . . , 9} be the probability (calculated
by the CNN) that the input image corresponds to the class
of the number i. Considering the case in which there are 3
versions (same CNN architecture trained in three different
ways) of the CNN, let pij with j ∈ {A,B,C} be the value
of pi as calculated by the j version of the CNN, therefore
P j = {pij}9i=0 will denote the set of the probabilities of each
class calculated by the j version of the CNN .

Using Voting Algorithm 1 (VA1) each version j calculates its
own pmax

j = maxP j and it chooses the class corresponding
to that pmax

j as its output to the voter. Then the voter performs
a simple majority voting and only in case two versions propose



the same class the voter will be able to produce a, hopefully
correct, result. In contrast, using Voting Algorithm 2 (VA2) each
version j only calculates the set of values P j as output to the
voter. The voter then calculates a new set P ? = {piA + pi

B +
pi

C}9i=0 and then pmax
? = maxP ?. Then it chooses the class

corresponding to that pmax
? as final result. VA2 will potentially

outperform VA1 in scenarios in which for the same j there
are several pij with values close to the maximum one, but it
cannot be anticipated which VA will yield a better accuracy in
general, due to the wide variety of scenarios that are possible
when considering the potential values of all pij .

IV. DESCRIPTION OF THE CONDUCTED EXPERIMENTS

In the previous sections we have identified some parameters
that can cause different results in the performance of image
classifiers based on CNNs. First we discussed several sources
of diversity in the training process, which we will call training
parameters. These are the set of images actually used for
training, the size of the used batch, the training stopping
condition, the random selection of the specific images in each
batch, and finally the architecture of the CNN. Second we have
presented potential voting strategies, which are again likely
to produce diverse results. Indeed we introduced two voting
algorithms but it has to be noted that it is also possible to have
different results by choosing different numbers of versions. As
said above, the minimum number of versions for voting is
3, but it is also possible to use any higher odd number and
typically expect a better reliability as a result. We will call
structural parameters to the voting algorithm and the number
of versions.

We have carried out a series of experiments in which we
combine values of the training and structural parameters for
generating different system configurations and for each of them
diversity in the training process. More specifically, we have
used some of the parameters above to generate different system
configurations (i.e. the values of said parameters are the same
for all versions) and then for each one of these configurations
we have used other parameters for generating diversity in the
training of the different versions.

The parameters that we have varied for generating configu-
rations are those that it would have been unfair or unnatural
to set differently for each version. For instance, if a certain
value of the batch size used during the training is likely to
produce better classification results, it would be unnatural to
use a different value for some of the versions. Similarly, for
some parameters such as the voting algorithm or the number of
versions it simply makes no sense to consider different values
for different versions. In contrast, the parameters we have set
differently for different versions as a means to create some
natural diversity in them are the specific set of images used
for training and the actual order of the images in the batches.

In Table I we show the results of the experiments. Each
line corresponds to a configuration of the training parameters
and it is identified with a number. Looking at the columns
now, we have considered the values 3 and 5 for the number
of versions (N ) generated in each case. Each one of these

versions has been trained in some cases with all the 60000
images available in the database and in some other cases with a
subset of 60000 / N images. The specific images in each subset
have been chosen randomly to prevent intentionally biased
results. For each number of training images, two batch sizes
have been chosen (50 and 100 images per batch). Finally for
each one of the previous combinations, two training stopping
conditions have been used: loss equal to zero and loss < 10−6.
With each one of these 16 training configurations, each one
of the corresponding N versions has been trained 10 times,
since in each training the specific images in each batch per
iteration are chosen randomly and, thus, the learning result will
be slightly different. Then each one of the (10×N ) trained
versions has been evaluated using the 10000 test images and the
corresponding accuracy (ratio between the number of images
correctly classified and the 10000 images of the test) has been
calculated. The minimum, average and maximum values of
this accuracy considering the 10 different trainings for each
version and configuration are shown in the column called
Simplex Accuracy (we use the term simplex as a synonym of
non-redundant). Taking one of the 10 training of each version,
10 NMR configurations are built and for each one of them, both
the use of VA1 and VA2 have been considered. The columns
VA1 Accuracy and VA2 Accuracy show the minimum, average
and maximum accuracy obtained when voting (using VA1 or
VA2, respectively) on the values proposed by each one of the
N versions.

V. DISCUSSION OF THE RESULTS

In a first analysis of the results in Table I it is easy to notice
several general trends. Regarding the simplex (non-redundant)
CNNs, the accuracy is better for trainings that use all the
60000 training images of the database than for those that use a
subset of them. This is not surprising since the basic principle
of learning in CNNs is to accumulate as much and diverse
experience as possible and thus it is intuitive to see that training
with more images has to be better. This tendency is also clear
when considering the voting setups (columns VA1 Accuracy
and VA2 Accuracy). Concerning the size of the batch, there
are cases in which choosing 50 leads to slightly better results
but also cases in which the opposite occurs. For the stopping
condition, it seems the situation is more consistent and the zero
loss condition leads always to better results. This is coherent
with the fact that this condition forces the CNN to keep training
for a much larger number of iterations. For this reason, Table I
only shows the accuracy values for the zero loss condition in
the case of the voting configurations.

When comparing the accuracy of the simplex configuration
with those of the voting ones, again some general tendencies
appear. First, the average accuracy is always better for voting
configurations than for the simplex one. Additionally, this
average is again better when using VA2 than when using VA1,
which means that indeed VA2 is able to properly deal with
complex classification scenarios in which the different versions
propose similar probabilities for several classes.



TABLE I: Accuracy of simplex and redundant CNN systems for 16 training configurations

Simplex Accuracy VA1 Accuracy VA2 Accuracy

Conf. Number of
Versions

Training
Images

Batch
Size Loss Min Average Max Min Average Max Min Average Max

1 3 60000 50 0 0.9909 0.992633452 0.9939 0.9927 0.9934 0.994 0.9927 0.99358 0.9941
2 3 60000 50 < 10−6 0.987 0.990553459 0.9921
3 3 60000 100 0 0.9915 0.992286791 0.9936 0.9926 0.99299 0.9936 0.9926 0.9932 0.9939
4 3 60000 100 < 10−6 0.9905 0.99177679 0.993
5 3 20000 50 0 0.9847 0.987453467 0.9891 0.9884 0.98954 0.9902 0.9891 0.99005 0.991
6 3 20000 50 < 10−6 0.985 0.986953459 0.9885
7 3 20000 100 0 0.9844 0.987206803 0.9885 0.9888 0.98938 0.9898 0.9896 0.99009 0.9906
8 3 20000 100 < 10−6 0.985 0.986706787 0.9882
9 5 60000 50 0 0.9913 0.992438127 0.9938 0.9896 0.99357 0.9931 0.9932 0.99369 0.9943
10 5 60000 50 < 10−6 0.9852 0.99054413 0.9923
11 5 60000 100 0 0.9911 0.992240002 0.9936 0.9927 0.99316 0.9936 0.9928 0.99333 0.9936
12 5 60000 100 < 10−6 0.9901 0.991709995 0.9935
13 5 12000 50 0 0.9835 0.985193998 0.9871 0.9864 0.98728 0.9877 0.9872 0.9881 0.9886
14 5 12000 50 < 10−6 0.9816 0.984100004 0.9861
15 5 12000 100 0 0.9821 0.985220129 0.9868 0.9865 0.98763 0.9888 0.9875 0.98831 0.9892
16 5 12000 100 < 10−6 0.982 0.984350128 0.9864

Voting with 5 versions is also better than voting with 3.
This can be seen comparing configurations 1 and 3 with
configurations 9 and 11. However the tendency is not reflected
in the comparison between configurations 5 and 7 with
configurations 13 and 15. A reasonable explanation is that
in 13 and 15 much less images are used for training each
version. This makes us think that the higher the accuracy
achieved by each of the individual versions is, the higher the
improved accuracy of the voting configuration will be.

So far the observations are mostly positive and consistent
with what it happens in classical NMR configurations designed
to tolerate hardware faults. Unfortunately other aspects of the
table are not so encouraging. First the improvements achieved
are not huge. And second it is possible to see in Table I
that the maximum accuracy that is achievable by a simplex
configuration is in most of the cases higher than the minimum
it can be achieved with any voting configuration. This means
that there is no guarantee that voting is actually going to give
us a better performance than taking the best possible training
of a simplex version. A relevant aspect to add to this discussion
is that both the design of the optimal CNN architecture and
the tuning of its parameters to obtain optimal performance
results are still open issues in machine learning. Therefore the
common user, once the architecture is fixed, does not have
definitive tools for making sure she has obtained the best out
of the training. Thus the presented voting approaches could be
seen as a way to ensure that the performance of the resulting
system is going to be above the average that can be obtained
with a simplex version. Additionally using N versions we
can have tolerance to hardware faults in case each version is
executed in a different computer.

Even if these results are not conclusive in terms of show-
ing an overwhelming advantage of voting over the simplex
configuration, they allow reflecting on the need of training
optimizing methods. The next steps of this work should be
to assess the voting schemes with images that are likely to
produce higher accuracies (e.g. of traffic signals) and then see
the effects of combining voting on different versions with the

voting on results obtained in time (e.g. out of a video).

VI. CONCLUSIONS

There are still too many parameters in the training of CNNs
that are tuned using best-effort approaches. This does not seem
the most appropriate way for obtaining the kind of optimal
results that are expected when targeting critical applications. In
this context, the voting techniques presented in this paper offer
the possibility of achieving a better performance in average
without having to put an extra effort in understanding the
internals of the CNN. These techniques are compatible with
any improvement that simplex CNNs could experience in their
performance. This paper represents a first step towards a better
understanding of the potential of diverse training as a means
to improve the performance of CNNs.

ACKNOWLEDGEMENTS

This work is supported in part by the Spanish Agencia
Estatal de Investigación (AEI) and in part by FEDER funding
through grant TEC2015-70313-R (AEI/FEDER, UE).

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc.,
2012, pp. 1097–1105. [Online]. Available: http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf

[2] M. Teichmann, M. Weber, J. M. Zöllner, R. Cipolla, and R. Urtasun,
“Multinet: Real-time joint semantic reasoning for autonomous driving,”
CoRR, vol. abs/1612.07695, 2016.

[3] Á. González, M. Á. Garrido, D. F. Llorca, M. Gavilán, J. P. Fernández,
P. F. Alcantarilla, I. Parra, F. Herranz, L. M. Bergasa, M. Á. Sotelo et al.,
“Automatic traffic signs and panels inspection system using computer
vision,” IEEE Transactions on intelligent transportation systems, vol. 12,
no. 2, pp. 485–499, 2011.

[4] Tensorflow tutorials. [Online]. Available: https://www.tensorflow.org/
tutorials/layers

[5] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,”
AT&T Labs [Online]., vol. 2, 2010.

[6] S. V. Makam, “Design study of a fault-tolerant computer system to execute
N-Version Software,” Ph.D. dissertation, Computer Science Department.
University of California, Los Angeles (UCLA), December 1982.


