
c©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Simulation of the Proactive Transmission of
Replicated Frames Mechanism over TSN

Inés Álvarez∗, Drago Čavka†, Julián Proenza∗, Manuel Barranco∗
∗Departament de Matemàtiques i Informàtica, Universitat de les Illes Balears, Spain,

{ines.alvarez, julian.proenza, manuel.barranco}@uib.es
†Faculty of Electrical Engineering, University of Banja Luka, Bosnia and Herzegovina,

drago.cavka@etf.unibl.org

Abstract—The Time-Sensitive Networking (TSN) Task Group
(TG) is providing Ethernet with timing guarantees, reconfigu-
ration services and fault tolerance mechanisms. Some of TSN’s
targeted applications are real-time critical applications, which
must provide a correct service continuously. To support these
applications the TSN TG standardised a spatial redundancy
mechanism. Even though spatial redundancy can tolerate per-
manent and temporary faults, it is not cost-effective. Instead,
temporary faults can be tolerated using time redundancy. We pro-
posed the Proactive Transmission of Replicated Frames (PTRF)
mechanism to tolerate temporary faults in the links. In this work
we present a new PTRF approach, a PTRF simulation model and
a comparison of the approaches using exhaustive fault injection.

I. INTRODUCTION

The Time-Sensitive Networking (TSN) Task Group (TG)
is working to provide Ethernet with hard and soft real-
time guarantees, network configuration capabilities and fault
tolerance mechanisms. To do so the TSN TG proposed a
series of standards that operate at the layer 2 of the network
architecture, commonly referred to as TSN standards. Some of
TSN’s targeted applications interact with the environment in
which they operate and, thus, they must provide their services
in real time, i.e., they must produce their results within a
bounded time. Furthermore, some of these applications are
considered to be critical, as their failures can have catastrophic
consequences. Thus, these applications must provide a correct
service continuously, i.e., they must be highly reliable.

To increase reliability, the TSN TG standardised a spatial
redundancy mechanism [1] [2], which consists in transmitting
several copies of the same frame in parallel, each copy
through a different path. Spatial redundancy is suited to tolerate
permanent faults, but the need for additional hardware makes
it expensive and increases the size and energy consumption of
the system. Furthermore, when spatial redundancy is no longer
available due to permanent faults, it is no longer possible to
tolerate temporary faults. Thus, spatial redundancy is not the
best choice to tolerate temporary faults. Instead, temporary
faults can be tolerated using time redundancy, which is more
cost-effective than spatial redundancy.

Nevertheless, the TSN TG does not propose any time
redundancy mechanism in this level of the architecture designed
to tolerate temporary faults in the channel. This is particularly
important as temporary faults in the links are more likely to
happen than permanent ones. Thus, tolerating both permanent

and temporary faults in the channel using solely spatial
redundancy may lead to a significant increase in the hardware
of the system. In fact, the hardware increases with the number
of faults that must be tolerated simultaneously.

TSN networks are compatible with higher layer mechanisms
to tolerate temporary faults, such as those based on Automatic
Repeat Request (ARQ) techniques. ARQ-based solutions rely
on the transmission of acknowledgement (ACK) or negative
ACK (NACK) messages and timeouts to trigger the retransmis-
sion of frames when they are lost. ARQ-based solutions are non-
deterministic in terms of the bandwidth and the time required to
carry out the successful transmission of frames in the presence
of faults. Moreover, the jitter introduced by these solutions is
high, as the end-to-end delay when using retransmissions is
significantly higher than when retransmissions are not needed.
Thus, ARQ-based solutions are not the best choice for real-time
systems. Furthermore, ACKs and NACKs can also be affected
by temporary faults, introducing new and more complex fault
scenarios that need to be tolerated.

For these reasons, we propose to use proactive frame
replication to tolerate temporary faults in the links of TSN-
based networks. Specifically, we designed a mechanism to
transmit several copies of each frame through the same link
in a preventive manner. This way we aim at ensuring that at
least one copy reaches the destination even in the presence of
temporary faults. This technique is a better choice for real-time
systems as it is deterministic in the resource consumption, it
reduces jitter and in the worst-case scenario it requires less
time and bandwidth than solutions based on ARQ.

The mechanism we designed is called Proactive Transmission
of Replicated Frames (PTRF) and its main ideas were already
presented in [3]. Specifically, in said work we presented two
different design approaches of the PTRF mechanism. In this
work we present a new approach of the mechanism, which
is a first step towards dynamic fault tolerance. We also carry
out a simulation on top of OMNeT++ [4] in order to check
the feasibility and compare the three approaches. Specifically,
we compare the approaches in terms of the number of fault
scenarios they can tolerate using exhaustive fault injection.

II. RELATED WORK

The retransmission of frames is a common technique to
tolerate temporary faults in the links and, in particular, the



proactive frame replication technique is commonly used to
tolerate temporary faults in real-time systems. As has been
mentioned, this technique is suitable for real-time systems as
it is deterministic in the resource consumption and bounds the
jitter introduced by retransmissions. Examples of systems that
use this technique are the Time-Triggered Protocol [5] and the
Flexible Time-Triggered Replicated Star for Ethernet [6].

As we already said, the TSN TG proposes the use of
spatial redundancy to increase the reliability of Ethernet
networks. More precisely, the IEEE Std 802.1Qca amendment
for Path Control and Reservation [1] allows to create multiple
paths between end-stations willing to communicate; whereas
the IEEE Std 802.1CB standard for Frame Replication and
Elimination for Reliability [2] defines how to replicate streams
to transmit each replica through one of the paths created by
IEEE 802.1Qca, and how to eliminate surplus replicas upon
reception. In this way TSN can tolerate permanent faults in
the network in a seamless manner, i.e., without introducing
a failover time. The number of faults that can be tolerated
depends on the number of independent paths available.

To the best of the authors’ knowledge, the TSN TG has no
plans for the standardisation of the proactive retransmission
of frames in the layer 2 of the network architecture. Thus,
we proposed the PTRF mechanism to work over TSN-based
networks. We next describe said mechanism.

III. DESCRIPTION OF THE PTRF MECHANISM

As mentioned, the PTRF mechanism is designed to tolerate
temporary faults in the links. Thus, it must be used together
with TSN’s spatial redundancy if tolerating permanent faults
is also needed. PTRF consists in transmitting several copies of
each frame in a preventive manner to ensure that at least one
copy reaches the destination. Each one of the copies created
by the mechanism is called a replica. PTRF transmits all the
replicas of a frame through the same path.

More concretely, PTRF is designed to replicate time-
triggered (scheduled) frames, as these usually convey infor-
mation that is critical for the correct operation of the system.
Replicas are modified to carry special information which is
used by PTRF to detect and eliminate surplus replicas upon
reception. This way PTRF makes replication transparent for
the application.

It is important to note that this mechanism works under the
assumption that links exhibit omission failure semantics, i.e.,
we assume that a fault in the link causes the omission of a
frame or replica. This is a reasonable assumption as Ethernet
frames convey a CRC code used to detect errors in frames upon
reception. Erroneous frames are identified and then dropped
with a high probability, thereby manifesting as omissions.

We designed three different approaches of the PTRF mecha-
nism. The first two approaches were presented in [3], whereas
the third one is presented in this paper for the first time. These
approaches differ in the devices that carry out replication and
in the way replicas are handled. We next provide an overview
of the three approaches.

(a) PTRF OMNeT++ module
for transmission.

(b) PTRF OMNeT++ module
for reception.

Fig. 1: PTRF OMNeT++ modules.

• End-to-end estimation and replication of frames. In
this approach only end-stations replicate frames during
transmission and eliminate surplus replicas upon reception.
On the other hand, it uses COTS bridges that simply
forward all frames they receive. The number of replicas
k that end-stations must transmit is based on an end-to-
end worst-case estimation of loss probability. As we use
COTS bridges, if a frame is lost in a link that connects
two bridges, the second bridge will only forward k − 1
frames. We will refer to this approach as approach A.

• End-to-end estimation, link-based replication of frames.
In this approach both, end-stations and bridges, replicate
frames during transmission and eliminate surplus replicas
upon reception. The number of replicas k′ sent by all
devices is the same and is based on an end-to-end worst-
case estimation. In this case, if a frame is lost in the link
that connects two bridges, the second bridge will eliminate
all replicas, except for one, and will transmit k′ replicas
again. We will refer to this approach as approach B.

• Link-based estimation and replication of frames. In this
approach, again, end-stations and bridges replicate frames
during transmission and eliminate replicas upon reception.
Nonetheless, now the number of replicas transmitted by
any link m of any device can vary depending on the loss
probability of the forwarding link. Thus, each device may
transmit a different number of replicas k′′m through each
link. We will refer to this approach as approach C.

We next describe the modules we developed in OMNeT++
to implement the PTRF mechanism, which are the same for
the three approaches.

IV. SIMULATION MODEL

We developed a simulation model of the PTRF mechanism.
We used this model to check the feasibility of the PTRF
mechanism and to compare the three approaches in terms
of number of fault scenarios that they can tolerate. We



developed our model using OMNeT++ [4], a modular event-
based simulation framework to model distributed systems and
networks in C++. Furthermore, OMNeT++ counts with the
INET library [7], which provides models for a series of wired,
wireless and cellular network protocols, including Ethernet.

As a starting point, we had an already existing preliminary
TSN simulation model called TSimNet [8], developed in
the University of Siegen. TSimNet is built on top of INET
and provides a subset of the TSN services, namely stream
identification, per-stream filtering and policing and frame
replication and elimination for reliability (spatial redundancy).
Further details on these mechanisms can be found in [8]. Note
that in this work we did not use spatial redundancy, as we only
focus on our PTRF. A first approximation of the integration
of spatial and time redundancy is presented in [9] and further
work is left for the future.

Figure 1 shows the different PTRF modules. The left-hand
side of the figure shows the modules for transmission; whereas
the right-hand side shows the modules for reception and for
fault injection. We next describe the different modules, but
first we need to note that we modified the TSN frame provided
by TSimNet to convey PTRF information. This information is
used by receivers to identify and eliminate surplus replicas.

Figure 1a shows the modules for transmission. The ptrf-
StreamOutIdentifier module identifies scheduled frames to
replicate them; the ptrfFrameReplication module generates
the replicas; the ptrfFrameIdentifierGenerator module creates
a unique identifier for each set of replicas of the same frame to
differentiate them from replicas of other frames and, finally, the
ptrfFrameIdentifierEncode module encapsulates the information
in a PTRF message and sends it out.

Figure 1b shows the modules for the identification and
elimination of replicas and the module for fault injection.
Starting with PTRF, the ptrfFrameIdentifierDecode module
identifies replicas in order to further process them and the
ptrfForwardingAndCounter module decides whether the replica
must be forwarded or not, depending on whether it is the first
replica of a given frame to be received or not. Finally the
ptrfFaultInjector drops frames to emulate the behaviour of a
device that detects an erroneous frame using the frame’s CRC.
The ptrfFaultInjector of all receiving devices can cooperate in
order to generate any fault scenario.

V. FAULT SCENARIOS ANALYSES

In this work we evaluate how the different PTRF approaches
behave in front of temporary faults. Specifically, we study how
many fault scenarios each approach can tolerate before losing
information. We do it using the model, by means of exhaustive
fault injection, i.e., we inject all combinations of faults that
can affect the replicas of a frame and count which ones are
tolerated by each approach. To assess the correctness of the
results obtained using simulation, we did an analysis to count
the combinations of fault scenarios tolerated by each approach.

Note that, in order to tolerate a fault scenario at least
one replica must reach its destination. Thus, in the following
analyses we consider all the possible scenarios where at least

one replica reaches the destination. We next describe the
analysis done for each approach. For the sake of clarity, we
will start describing the simplest analysis, which corresponds
to approach B, as the other two analyses can be more easily
derived from this one.
• Approach B. In approach B, end-stations and bridges send

k′ replicas. That is, k′ replicas are transmitted through
each link as long as 1 replica reaches the bridge. Thus,
approach B can tolerate all fault scenarios where up to
k′ − 1 replicas are lost in each link. Equation 1 shows
the number of tolerated scenarios,k′−1∑

e′=0

(k′
e′

)l

(1)

where k′ is the number of replicas transmitted by all
components, e′ is the number of faults that happen in
each link and l denotes the number of links in the path.

• Approach C. In approach C, end-stations and bridges may
send a different number of replicas k′′m through each link.
Receiving 1 replica is enough for a bridge to generate
k′′m replicas again. Thus, approach C can tolerate all fault
scenarios where up to k′′m − 1 replicas are lost in each
link. Equation 2 shows the number of tolerated scenarios,

l∏
m=1

k′′m−1∑
e′′=0

(k′′m
e′′

)
(2)

where k′′m is the number of replicas transmitted through
link m, e′′ is the number of faults in said link and l is
the number of links in the path.

• Approach A. In approach A end-stations replicate frames
and bridges simply forward the frames they receive. Thus,
as bridges do not generate new replicas, approach A can
only tolerate fault scenarios where up to k−1 replicas are
lost in the whole path. The combinations of fault scenarios
in each link must account for the faults occurred in other
links. Equation 3 shows the number of tolerated scenarios,

k−1∑
e1=0

· · ·
(k−e1−···el−1)−1∑

el=0

(
l∏

m=1

(k −∑m−1
i=1 ei

em

))
(3)

where k is the number of replicas sent by the end-station,
em is the number of faults in link m and l is the number of
links. The term k−

∑m−1
i=1 ei limits the replicas transmitted

in the current link according to the faults occurred in all
previous links. Note that in the first link m is 1, so we
have that

∑m−1
i=1 ei =

∑0
i=1 ei = 0 faults.

VI. RESULTS

We used the model described in Section IV to check the
feasibility of the design of the approaches and to compare
their behaviour in front of faults. To do it, we used exhaustive
fault injection, i.e., we injected all possible combinations of
fault scenarios that can affect the replicas of a frame and we
checked which ones are tolerated by each approach. We also
used the analyses presented in the previous Section to validate



TABLE I: Network parameters and results in fault
injection experiments in a 7-hop network.

Approach Links Replicas Tolerated scenarios

A 7 3 169
B 7 3 823543
C 7 2,2,2,3,3,4,4 297675

the results obtained with the model. We used a 7-hop network,
as it is the maximum number of hops for which TSN ensures
timing guarantees [10], even if in practical implementations
the number of hops can be higher. Moreover, we used a line
topology as TSN relies in specific protocols to eliminate loops.

Table I shows the parameters we used to carry out the
simulations of the approaches and the results obtained. Re-
garding the number of replicas, we decided to use 3 replicas
for approaches A and B, as it is sufficiently high to show the
difference between the approaches, but it is still a realistic
number of replicas. On the other hand, we used a variable
number of replicas for approach C, which goes from 2 to
4. This is because approach C behaves as approach B when
using the same number of replicas for all links and we want
to highlight the differences among the approaches.

The results obtained show that the number of fault scenarios
tolerated by each approach during the simulations corresponds
to the number obtained using the analyses presented in the
previous Section. Thus, we can conclude that it is feasible to
build the approaches and that the design behaves as intended.
An implementation on a real prototype is currently being
developed to further study the approaches.

Regarding the number of scenarios, it is important to note
that the actual reliability that is obtained with an approach is
not directly proportional to the number of scenarios it tolerates.
This means that, even though tolerating a higher number of fault
scenarios in this case is likely to improve reliability, the actual
impact on the reliability also depends on the probability of
each scenario. Looking at the results we can see that approach
A can tolerate a significant lower number of scenarios than
approaches B and C, and we also see that reducing the number
of replicas in approach C also impacts the number of scenarios.
Nevertheless, the real impact on reliability requires a reliability
analysis, which is left for future work.

VII. CONCLUSIONS

The TSN TG is working to provide Ethernet with hard and
soft real-time guarantees, network configuration capabilities
and fault tolerance mechanisms. Specifically, the TSN TG
proposed two standards to support spatial redundancy to tolerate
faults in Ethernet networks. Nevertheless, even though spatial
redundancy is suited to tolerate permanent faults, it is not the
best choice for temporary faults, as it is expensive and implies
an increase in the size and energy consumption of the system.

Instead, temporary faults can be tolerated using time redun-
dancy. TSN standards can be used together with higher-layer
techniques, such as those based in ARQ. Nevertheless, these
solutions are not the best choice for real-time systems as they

rely on timeouts and special messages to trigger retransmis-
sions; which introduces a high jitter, reduced efficiency when
the maximum number of faults occur and new fault scenarios
that must be tolerated.

We proposed the PTRF mechanism to tolerate temporary
faults using proactive frame replication. PTRF consists in
transmitting several copies of each frame in a preventive manner
to ensure that at least one copy reaches the destination even in
the presence of temporary faults. We proposed three approaches
of this technique, of which the third one was presented in this
paper. We developed a simulation model and used it to inject all
combinations of fault scenarios to see which ones are tolerated
by each approach. Furthermore, we made a fault combination
analysis to validate the results obtained with the simulation.

The results obtained with the simulation and the analysis
were the same. This results allowed us to assess the feasibility
of the three approaches. We saw that approach A can tolerate
a lower number of fault scenarios than approaches B and C,
and that the reduction in the number of replicas significantly
impacts the number of tolerated scenarios. Quantifying the
impact that this has on the reliability is left as future work.

VIII. ACKNOWLEDGEMENTS

This work is supported in part by the Spanish Agencia
Estatal de Investigación (AEI) and in part by FEDER funding
through grant TEC2015-70313-R (AEI/FEDER, UE). Drago
Čavka were supported by a scholarship of the EUROWEB+
Project, which is funded by the Erasmus Mundus Action II
programme of the European Commission.

REFERENCES

[1] “IEEE Standard for Local and Metropolitan Area Networks– Bridges
and Bridged Networks - Amendment 24: Path Control and Reservation,”
IEEE Std 802.1Qca-2015 (Amendment to IEEE Std 802.1Q-2014 as
amended by IEEE Std 802.1Qcd-2015 and IEEE Std 802.1Q-2014/Cor
1-2015), pp. 1–120, March 2016.

[2] “IEEE Standard for Local and Metropolitan Area Networks–Frame
Replication and Elimination for Reliability,” IEEE Std 802.1CB-2017,
pp. 1–102, Oct 2017.

[3] I. Álvarez, J. Proenza, M. Barranco, and M. Knezic, “Towards a time
redundancy mechanism for critical frames in Time-Sensitive Networking,”
in Proceedings of the 22nd IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), Sept 2017, pp. 1–4.

[4] A. Varga, “The OMNeT++ Discrete Event Simulation System,” in
Proceedings of the European Simulation Multiconference (ESM), 2001.

[5] H. Kopetz and G. Grunsteidl, “TTP - A Protocol for Fault-Tolerant
Real-Time Systems,” Computer, vol. 27, no. 1, pp. 14–23, Jan 1994.

[6] D. Gessner, J. Proenza, M. Barranco, and A. Ballesteros, “A Fault-
Tolerant Ethernet for Hard Real-Time Adaptive Systems,” IEEE Trans-
actions on Industrial Informatics, vol. 15, no. 5, pp. 2980–2991, May
2019.

[7] “The INET Framework—An Open-Source OMNeT++ Model Suite
for Wired, Wireless and Mobile Networks.” [Online]. Available:
https://inet.omnetpp.org/

[8] P. Heise, F. Geyer, and R. Obermaisser, “TSimNet: An Industrial Time
Sensitive Networking Simulation Framework Based on OMNeT++,” in
2016 8th IFIP International Conference on New Technologies, Mobility
and Security (NTMS), Nov 2016, pp. 1–5.

[9] I. Álvarez, J. Proenza, and M. Barranco, “Mixing Time and Spatial
Redundancy Over Time Sensitive Networking,” in 2018 48th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works Workshops (DSN-W), June 2018, pp. 63–64.

[10] “IEEE Draft Standard for Local and Metropolitan Area Networks -
Timing and Synchronization for Time-Sensitive Applications,” IEEE
P802.1AS-Rev/D6.0 December 2017, Jan 2018.


