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Abstract

This paper focuses on the detection of Posidonia oceanica in underwater
images. The input image is split into a set of patches that are classified
as depicting Posidonia or not. Two different Neural Networks are proposed
to perform the classification. A region growing algorithm able to accurately
detect the contours of the Posidonia oceanica from the output of the classifier
is also described.

The experimental results, performed using images gathered in coastal
areas of Mallorca, show that our proposal surpasses previous studies based on
Machine Learning, being superior in some cases to Deep Learning methods.
The advantages in terms of computational requirements, which are crucial
in underwater robotics, are also highlighted.

Keywords: Posidonia oceanica, Underwater vision, Underwater robotics,
Neural Network

1. Introduction

The Posidonia oceanica (PO), a seagrass that is endemic to the Mediter-
ranean, protects the shoreline against erosion by forming large underwater
meadows where many organisms live. Being a plant, PO also absorbs carbon
thus increasing the water quality. As a matter of fact, PO is considered a
priority natural habitat by the European Commission’s directive 92/43/CEE.

Nowadays, PO monitoring is mainly performed by human divers, who
photograph the meadows and use markers to measure their extension [9].

Preprint submitted to Ecological Informatics August 1, 2019



These approaches are inaccurate and slow as well as limited in time by the
scuba air tanks. Some researchers proposed the use of multi-spectral satel-
lite imagery [6] or acoustic bathymetry [7] to map PO meadows but these
approaches tend to fail when it comes to distinguish PO from other plants
or algae. Even though the use of Autonomous Underwater Vehicles (AUV)
endowed with cameras [10] has proved to solve these problems, the literature
on automatic visual PO detection is scarce.

One of the first attempts [3] to automatically detect PO in underwater
images used Law’s filters to classify the image texture by means of Logistic
Model Trees (LMT). Other studies [2] trained a Support Vector Machine
(SVM) using the convolution of the image with a set of Gabor filters or a
Convolutional Neural Network (CNN) not relying on pre-defined filters [4].
The use of CNN evolved into a Deep Learning (DL) approach [5] able to
segment PO images with very high accuracy.

In spite of their high detection rates, these studies have some problems.
For example, approaches based on classical Machine Learning (ML) [3, 2]
rely on the extraction of a pre-defined set of image features prior to the
detection. This leads to an increase in processing time and reduces the
system flexibility. Approaches based on DL [5] do not require fixed feature
sets but have large training times and memory requirements, and relatively
high prediction times due the the size of the Neural Network (NN).

Overall, these studies have shown that the most distinctive features of
PO are texture, and to a lesser extent, colour. This suggests that PO can
be detected in small image patches as long as they contain enough texture.
By taking advantage of this, we can divide the input image in small patches,
analyze each of them separatedly and decide if they depict PO or not. That
is, our proposal is to turn a complex and time consuming image segmentation
into a set of simple and computationally cheap classifications. In order to
avoid the need for fixed feature extraction, our proposal is based on NN.
However, contrarily to DL, we propose two simple NN that lead to fast
detections. A region growing algorithm in charge of refining the patch-based
classification is also described.

2. Models

Our proposal to detect PO in underwater images is to decompose the
input image into small patches and decide if each of them depicts PO or not.
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Let us denote by PO the class of the patches depicting PO and nonPO the
class of the patches not depicting PO.

(a) (b)

Figure 1: Patch creation. (a) Using color images. (b) Using grayscale images.

The first step is, thus, to split the input image into a set of non overlapping
patches of S × S pixels each. This means that a patch will be an S × S × 3
matrix if the input image is RGB (Figure 1-a) or an S × S matrix in case of
grayscale input images (Figure 1-b). In both cases, all matrix values are in
the interval [0,1].

Each patch matrix constitutes a data sample to be used by our classi-
fication system. In this paper we propose two simple NN to perform the
classification. These two NN, called Model I and Model II, will be experi-
mentally assessed and are described next.

The Model I has two parts. The first, in charge of feature extraction, is
composed of two convolutional layers followed by a pooling layer. The first
convolutional layer performs 32 sets of 2×2 convolutions and uses ReLU as
activation function. The second convolutional layer performs 64 sets of 2×2
convolutions and also uses ReLU as activation function. Finally, the pooling
layer, which is in charge of reducing the dimensionality, is a MaxPooling with
a pool of size 2×2.

The second part performs the classification. To this end, the output of
the pooling layer is flattened and used to feed a dense layer with 128 units
with a ReLU activation function. This layer is followed by the output layer,
which has one node for each class (PO and nonPO) and uses SoftMax as
activation function. Figure 2 illustrates the whole NN.
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Figure 2: The Neural Network (Model I)

The Model II is, basically, the result of removing the convolutional part
from Model I. Thus, it has the simplest possible structure for a NN: one
input layer and one output layer without hidden layers. To make it even
more simple, the number of nodes in the input layer has been reduced to 64.
The remaining hyperparameters are the same used in the non convolutional
part of Model I. Also, given the simplicity of Model II, the patches have to
be flattened before entering the input layer. The goal of Model II is to test
if PO detection can be achieved from the patch itself without the need for
feature extraction.

In both models, a cross-entropy loss function and an Adam optimizer
are used to train the network. A 20% of the training data is used as the
validation set, which allows to fine-tune the number of epochs.

3. Pixel refinement

Since the described NN classifies each patch as PO or nonPO, the result of
processing a whole image can be seen as a low resolution segmentation. This
kind of segmentation can be sufficient for a wide range of applications such
as computing the PO coverage in medium to large environments or building
large scale mosaics depicting the presence of PO. However, if more resolution
is required, the following pixel refinement algorithm [2] can be used.

The input of this algorithm is the set L of labels, one per patch, provided
by the NN and the image I to which the labels belong. The output is a mask
M , which is an image of the same resolution that I whose pixels are white if
the corresponding pixel in I depicts PO or black otherwise.
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The algorithm first builds an initial guess ofM by setting to white or black
its pixels depending on the corresponding label in L being PO or nonPO.
Afterwards, the countours inM are iteratively shrunk or grown depending on
the corresponding color in I being closer to the average color of PO regions
or to the average color of non PO regions.

Figure 3: Example of pixel refinement. The contours of the mask have been enhanced to
ease visualization. Left column: patch-level classification. Right column: refined classifi-
cation.

Figure 3 shows some examples of the pixel refinement. A C++ imple-
mentation of this algorithm able to do the pixel refinement in video rate is
available at https://github.com/aburguera/POD_STANDALONE.

4. Experimental results

Our proposal has been tested with three different datasets gathered in
several coastal areas of Mallorca with an AUV endowed with bottom looking
cameras. Dataset A is composed of 159 images gathered in clear water with
healthy PO. Dataset B contains 171 images obtained in turbid water and
involving mostly dying and dead PO. In Dataset C there are 69 images
depicting a wide range of illumination conditions and PO states.

The ground truth was manually created for each image in the form of one
mask per image. Figure 4-b shows the manually created mask corresponding
to the image in Figure 4-a. Since the proposed NNs classify image patches,
the ground truth has to be adapted to assign a single label PO or nonPO
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(a) (b)

(c) (d)

Figure 4: Ground truth construction. (a) Data image. (b) Manually constructed mask.
(c) Majority ground truth overlaid to the mask. (d) Binary ground truth overlaid to the
mask. The discarded patches are shown in red.

to each patch. To this end, two different ground truths have been created.
First, the majority ground truth, illustrated in Figure 4-c, assigns a label to
a patch depending on the class of the majority of the pixels in the patch.
The second ground truth is called binary and assigns a label only if all the
pixels in the patch belong to the corresponding class. Otherwise, the patch
is discarded. Figure 4-d exemplifies this ground truth.

The parameters that will be experimentally tested are the following.
First, the image resolution (IR). Prior to training and testing, the input
image will be scaled to a different resolution. We scale the image width to
a specific value and compute the height that keeps the original aspect ratio.
The tested image widths are 160, 320 and 640 pixels. In all cases, the patch
size is chosen to produce 40 patches per row. The second parameter, CLR,
decides whether to use color information or not. If color is used, each patch
has R, G and B channels. If it is not used, the patch has a single channel.
The third parameter is the labelling type (LT), which is explained next.

Labelling type 1 means that the majority ground truth is used both to
train and to test the system. Labelling type 2 means that the binary ground
truth is used during training and testing. Accordingly, type 1 uses all the
patches whilst type 2 discards the patches whose pixels do not all belong to
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Figure 5: Evaluation of different parameters. (a) Label type (LT). (b) Use of color (CLR).
(c) Image resolution (IR). (d) Dataset (DS).

the same class. To provide a more practical application of the binary ground
truth, labelling type 3 is defined. In this case, training is performed using the
binary ground truth. However, to test the system all the patches are used
and validated by comparing the NN output to the majority ground truth.
Roughly speaking, types 1 and 3 are those that correspond to real usage of
the NN to detect PO whilst type 2 is provided for comparison purposes.

All the possible combinations of these parameters have been tested for
each dataset and model and evaluated in terms of mean and standard de-
viation of accuracy, precision, recall and fallout using a K-Fold (K = 5)
cross validation schema. The mean and the standard deviation of the train-
ing and the prediction times per image have also been measured. The
whole results, involving 108 parameter combinations, can be downloaded
at https://www.doi.org/10.13140/RG.2.2.30886.98888

Table 1 summarizes the results by showing the means for all possible
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combinations of parameters over all the datasets. As it can be observed,
both models exhibit very high accuracies, precisions and recalls and Model I
seems to provide slightly better results. Except for the time consumption, the
best results always appear when using labelling type 2. Since this labelling
discards some patches, it cannot be used to process full images. Thus, let us
focus in labelling types 1 and 3.

Figure 5-a shows the results for each model and labelling type LT. As it
can be observed, LT=3 leads to better precision and fallout than LT=1, to
almost the same accuracy and to worse recall. Since the standard deviation
of the recall is quite large, there is more uncertainty in this parameter and,
thus, the best overall LT is LT=3. That is, the best option is to train the
system only with patches that are only contain PO or do not contain PO at
all.

Let us now analyze the effects of the color using only LT=3. The results,
summarized in Figure 5-b, show that the use of color patches leads to better
results in accuracy, precision and recall that the use of grayscale patches.
Thus, the best option is to use color images.

As for the effects of the image resolution (IR), the results involving only
LT=3 and color images are summarized in Figure 5-c. In this case, Model
I accuracy, precision and fallout improve with the image resolution, whilst
Model II results are not conclusive. Since, up to this point, Model I leads to
better results, let us focus on Model I performance and select IR=640.

Now that we have chosen the best possible parameters, let us use these
parameters and disaggregate the results in the three datasets as shown in
Figure 5-d. As it can be observed, Datasets A and C lead to similar results,
but Dataset B leads to particularly bad performance in terms of precision
and recall. This is mainly due to the kind of PO displayed in this dataset. In
this case, images contain both living and dead PO, but in the ground truth
we only labelled as PO the living one. Since it is really difficult even for a
human to distinguish between both types, it is reasonable that both Model I
and Model II fail with this dataset. Nevertheless, the accuracy is still really
high with both models (86.2% and 86.5% respectively), so even with Dataset
B our proposal works reasonably well.

In [5] a deep learning approach to PO detection was presented, and the
results were compared to different algorithms based on classical machine
learning (ML-SVM), simple CNN and DL. One of the datasets used in that
paper is called the extra test set and is similar to our Dataset C. Accordingly,
let us focus on Dataset C so we can compare our results with those provided
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in the mentioned paper.
According to Table 2, which summarizes the results, Model I surpasses

Model II for all the quality measures. Nevertheless, it is remarkable that
Model II, which is a simple NN without convolutional layers, is able to surpass
the 90% in accuracy, precision and recall. It can also be observed that Model
I surpasses all the other tested approaches in accuracy, precision, recall and
fallout, except for VGG16-FCN8. This deep neural network is only surpassed
by ours in terms of recall. However, it is also remarkable for a simple CNN to
display results similar to those of a deep neural network specifically trained
for PO detection.

Let us now focus on the computational requirements. We have mea-
sured the time consumption of our Python implementation using Keras and
Tensorflow with an Intel Core i7 machine at 3.1GHz without GPU support.
Model I is able to classify PO at 1.5 FPS and Model II reaches the 3.6 FPS.
According to [5], the VGG16-FCN8 is able to process the images at 0.42 FPS
using a hardware similar to ours. Thus, both Model I and Model II surpass
the deep neural network in terms of computational speed.

There is another aspect to be taken into account: the memory usage.
Deep neural network usually require large amounts of memory to store all
the weight matrices resulting of the training. Whereas networks such as U-
Net, SegNet or VGG16-FCN8 use hundreds of MB, all the weight matrices
that define Model I fit in 1.6MB and Model II requires less than 1 MB. Even
though the storage may not be a problem when using a desktop computer,
it is when it comes to underwater vehicles with limited payload and power
supply.

Overall, our proposal does not reach the accuracies, precisions, fallouts
and recalls of properly trained deep neural network though it provides simi-
lar results. However, it clearly surpasses the deep learning approach when it
comes to training and prediction times as well as in memory requirements.
Thus, our proposal provides a fair trade-off between quality and computa-
tional cost. In particular, Model I reaches exceptionally good results at a
reasonable frame rate.

5. Conclusion

This paper focuses on the detection of PO in images gathered by an un-
derwater robot using a bottom looking camera. To achieve this goal, the
input image is divided into a set of patches that are classified as depicting
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PO or not depicting it. Two different NN have been proposed to perform
the classification: Model I, which is a CNN, and Model II which is a simpli-
fied version of Model I without the convolutional layers. A region growing
algorithm able to accurately detect the contours of PO from the output of
the NN is also discussed.

The experimental results performed using real data gathered by an AUV
in coastal areas of Mallorca populated with PO show that Model I and Model
II reach very high detection rates, surpassing previous studies based on clas-
sical ML and simple CNN. Moreover, our proposal provides results similar,
even superior in some cases, to DL methods and surpasses them in terms of
detection speed.

The two main conclusions are the following. First, simple NNs with some
pre-processing lead to results comparable to those of DL when it comes to
texture classification. Second, the success of Model II shows that a featureless
approach directly operating on the image pixels without any intermediate
convolutional layer may be sufficient for most applications.

Both the quality of the results and the reduced requirements in terms
of computational power or memory usage make our approach particularly
suitable to be used in an AUV, since these robots are usually limited in
terms of computational capabilities.
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METHOD ACCURACY PRECISION RECALL FALLOUT
ML-SVM [2] 89.1% 87.1% 94.9% 18.0%

CNN [4] 62.2% 81.0% 31.9% 7.5%
U-Net [8] 93.1% 93.9% 92.1% 6.0%
SegNet [1] 90.9% 90.4% 91.5% 9.7%

VGG16-FCN8 [5] 96.1% 97.2% 95.0% 2.8%
Model I 95.5% 95.8% 95.4% 4.6%
Model II 91.5% 90.8% 92.5% 10.8%

Table 2: Comparison with other existing approaches to detect PO. Results for the methods
other than Model I and Model II were obtained in [5].
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