
©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Exploring the use of Deep Reinforcement Learning
to allocate tasks in Critical Adaptive Distributed

Embedded Systems
Ramón Rotaeche, Alberto Ballesteros and Julián Proenza

DMI - Universitat Illes Balears, Palma, Spain
{ramon.rotaeche1, a.ballesteros, julian.proenza}@uib.es

Abstract—Critical Adaptive Distributed Embedded Systems
(CADES) must carry out a set of funcionalities while fulfill-
ing their associated real-time and dependability requirements.
Moreover, they must be able to reconfigure themselves in a
bounded time as the operational context changes. Finding a
proper configuration can be non-trivial and time-consuming.
Several studies have proposed Deep Reinforcement Learning
(DRL) approaches to solve combinatorial optimization problems.
In this paper, we explore the application of such approaches to
CADES by solving a simple tasks allocation problem using DRL
and comparing the results with three popular heuristics. The
results show that DRL beats two of them and gets very close
to the third, while requiring significantly less time to generate a
solution.

Index Terms—Adaptive Distributed Embedded Systems, Deep
Reinforcement Learning, Neural Combinatorial Optimization

I. INTRODUCTION

Distributed Embedded Systems (DES) are constituted by a
set of interconnected nodes executing tasks in order to achieve
some common goal. Critical Adaptive Distributed Embedded
Systems (CADES) are DES that must be reliable and hard
real-time, and that must automatically reconfigure themselves
to adequate its operation as the operational context changes.
The operational context encompasses both: (1) the operational
requirements, i.e. what the system must do (e.g. tasks that must
be executed, real-time guarantees); and (2) the operational
conditions, i.e. the environment and the system itself (which
can change due to faults). This means that, at each point in
time, CADES should be able to find, in a short and bounded
time, the system configuration that works best for the current
operational context.

The ongoing Dynamic Fault Tolerance for Flexible Time-
Triggered Ethernet (DFT4FTT) project [1], aims at providing
a complete infrastructure for building CADES. In DFT4FTT,
a privilege node called Node Manager (NM) is responsible
for continuously monitoring the operational context and, if a
change jeopardizes the correct operation of the system, search-
ing and applying a new configuration in a timely manner.

As part of the DFT4FTT project, we are analyzing the
potential of using DRL-based methods to find system con-
figurations. A key element of these configurations is the tasks
allocation, i.e. the distribution of tasks into the available nodes.
Finding a suitable tasks allocation can be time-consuming
and non-trivial, since it might be an NP-hard combinatorial

optimization problem. As discussed in section IV, several
studies propose DRL approaches to tackle these types of
problems. In this paper, we build on those studies to present a
solution that illustrates the potential of using such approaches
in CADES. We present a model capable of learning to allocate
a variable length list of tasks with variable cost. As discussed
later, some aspects of our problem formulation and approach
differ from previous studies, as well as specific considerations
to its application in CADES.

The term DRL refers to the set of Reinforcement Learning
(RL) techniques that make use of deep neural networks
(DNNs). Reinforcement Learning (RL) is the subfield of
machine learning that studies methods for a decision maker,
the agent, to learn, only by interacting with the environment
(everything outside the agent), what actions to take so as to
maximize a numerical signal, the reward [2].

The RL problem is formalized using a decision process
(Fig. 1), where at each time step t, the agent receives a
representation of the environment’s state St and on that basis
selects an action At. As a consequence of its action, the agent
receives the numerical reward Rt and the new state St+1.

Fig. 1. The agent–environment interaction in a RL decision process [2]

The mechanism that the agent uses to decide which action
to take is called policy. A policy is a mapping from states to
probabilities of selecting each possible action [2], which we
denote by π(A | S). In some RL approaches, the policy is
a parametrized policy, meaning that such mapping between
states and action probabilities is a parametrized function. The
objective is to learn the parameters (i.e. to learn the policy)
that yields the maximum reward. The parameters, which we
denote by θ, are modified based on the reward obtained in the
interactions with the environment, using techniques like the
policy gradient method, which we use in this paper.

One way to parametrize the policy that is followed by the
agent is with a DNN, since a DNN is effectively a function
characterized by its architecture and parameters θ, that takes



an input (in this case, the state) and produces an output (in
this case, the probability of taking each possible action).

When compared to solvers and heuristic based algorithms,
we consider that DRL has several advantages that make it a
worth-investigating option for CADES. Namely:

• DRL methods have proved to be near as good or even
better than many popular heuristics in solving different
combinatorial optimization tasks [3], [4].

• The same algorithm can be used to teach the agent to
maximize any reward function. In contrast, solvers and
heuristics used in combinatorial optimization are gener-
ally specific to the problem statement. This is specially
relevant when using high-dimensional states and/or com-
plex reward functions. In those cases, finding a heuristics
based solution might require significant ad-hoc work.

• Once a DNN is trained, the inference latency (i.e. the time
required for the DNN to generate a solution) is relatively
low, with the potential to be lower than many heuristics
that might require exploring the search space, sorting the
inputs, etc. This suggests that DRL agents might be a
suitable solution for CADES with real-time requirements.

• Recent developments in Tiny ML [5], [6] propose frame-
works to deploy complex DNN models on resource con-
strained processors such as microcontroller units (MCU),
with good results in terms of inference accuracy and
latency. This suggests that DRL agents might be a good
solution for resource hungry CADES.

As said earlier, in this paper we illustrate the potential of
using DRL approaches in CADES. We do so by presenting a
DRL-based solution for tasks allocation in section II, and com-
paring the results with heuristic-based solutions in section III.
Finally, in section IV, we discuss our approach’s background
and related studies.

II. PROBLEM FORMULATION AND APPROACH

In our tasks allocation problem, a state is a set of tasks,
each of them with a cost. The system has a set of nodes, each
of them with the same capacity C. A task’s cost represents
the node’s capacity required to run that task. The agent must
allocate tasks to nodes so that no node receives more tasks
than it can handle, while trying to minimize the total number
of active nodes (i.e. nodes that receive at least one task). A
specific mapping of tasks to nodes is therefore the action in
the RL framework.

We have chosen to minimize the number of active nodes in
this initial study because it results in us essentially trying to
solve a version of the well known bin-packing problem [7],
meaning that we can use several well studied algorithms to
compare with our results. In addition, minimizing the number
of active nodes could have useful applications, such as reduc-
ing the total energy consumption of the system or increasing
the likelihood that there will be enough free capacity in the
event of receiving a new task with a high cost.

A. Reward signal approach

We have selected the average node occupancy ratio (O) as
the reward to maximize. O, as its name suggests, is calculated
by averaging the node’s occupancy ratio (sum of allocated
tasks’ cost divided by node capacity) of all the active nodes.

Note that we could have chosen a more direct metric to
maximize, like the inverse of the number of active nodes.
However, our metric is more independent of the total number
of tasks in the set. This facilitates learning a policy that, once
it is trained, can be applied to sets of tasks of different sizes.

B. Input - output representations approach

The input (i.e. the state) to our parametrized policy is the set
of tasks that must be allocated. We represent it as a sequence
S of n tasks characterized by their cost ci, i ∈ [1, n].

The output (i.e. the action) of our parametrized policy is the
tasks allocation, which is represented with the allocation order
A. A is a sequence of n integers ai ∈ [1, n], i ∈ [1, n], where
ai represents the position of the task in the input sequence S
(Fig. 2). Tasks are allocated in the order given by A following
a Next-Fit (NF) rule: the first available node receives tasks
until task ai does not fit, at which point ai is allocated to the
next node, which keeps receiving tasks until the same happens,
and so on. Therefore, the allocation order sequence implicitly
dictates how tasks are grouped together.

Fig. 2. Input-output representation

Alternative representations for the output were considered,
such as a sequence containing the index of the node to where
each task is allocated. However, that leads to a large equiva-
lence class of solutions, and, as pointed by [3], restricting as
much as possible the equivalence class for the outputs leads
to better results. Moreover, the chosen representation together
with the NF rule ensure that all generated solutions comply
with the nodes maximum capacity constraint.

C. Policy parametrization approach

We use a pointer network [8] to parametrize our policy
π(A | S). A pointer network is a DNN architecture for solving
variable length sequence-to-sequence problems whose output
can be interpreted as a sequence ”pointing” at positions in
the input sequence. The allocation order A is generated by
sampling ai, at each decoding step i, from the probability
distribution of ai, whose discrete density function is the output
of the DNN (which has a softmax activation in the last layer).



Appropriate masking is applied before the softmax activation
to ensure that the same position cannot be ”pointed” twice.

The pointer-network encoder-decoder architecture means
that at each step i, ai is a function of the input sequence
S as well as of the previous outputs a1, ..., ai−1. If we define
p(π(ai) | a1, ..., ai−1, S) as the probability that was assigned
by π to the sampled value for ai, the probability of obtaining
an specific allocation order A given a state S can be calculated
using the chain rule:

p(π(A | S)) =
n∏
i=1

p(π(ai) | a1, ..., ai−1, S) (1)

Our exact DNN architecture follows that proposed by [3],
which includes slights modifications to the original pointer
network architecture.

For inference, the policy becomes a deterministic policy
π(S) by greedy selecting the ai with highest probability
(rather than sampling from the distribution as we do during
training).

D. Training approach

We use the so-called REINFORCE stochastic gradient as-
cent algorithm, based on the policy gradient theorem [2], to
converge towards a policy that yields the maximum reward.
The algorithm progressively updates the parameters θ of the
DNN on each training step t as:

θt+1 = θt + α ∗ (O(At, St)− b(St))∇θp(πt(At | St)) (2)

O(At, St) is the avg. occupancy ratio obtained at training
step t. The baseline b(St) is an approximation of the expected
reward for the state St using the policy π with the parameters
at step t. We model it using another DNN, typically known
as critic, which is also trained on each step t. The critic’s
architecture and the training algorithm is based on [3], where
more detail can be found. α is simply a scalar known as the
learning rate.

III. EXPERIMENTS

We have conducted experiments to evaluate how well the
policy learns to generate allocations with high O, as well as
some basic tests to evaluate the inference latency. For this
preliminary study, we have considered two different problem
conditions (Fig. 3).

Fig. 3. Problem conditions in our experiments. Tasks costs are sampled from
the uniform distribution over the interval [Min. task. cost, Max. task. cost]

For comparison purposes, we also evaluate the avg. occu-
pancy ratio obtained with three popular heuristics [7] used to
solve this combinatorial optimization problem.

• Next-Fi (NF): Tasks in the input set are considered in
an arbitrary order. The first node is “opened” and tasks
are sequentially allocated until a task does not fit. At that
point the node is ”closed” and the next node is “opened”.
A “closed” node does not receive any additional task
during the remaining of the allocation.

• First-Fit (FF): Tasks in the input set are considered in an
arbitrary order. As with NF, the first node is “opened”
and tasks are sequentially allocated until a task does not
fit. However, when a new node is ”opened” the previous
one is not “closed”. Nodes are kept “opened” unless they
are completely full. On each allocation step all “opened”
nodes are checked until one where the task fits is found.
If no node is found, then a new one is “opened”.

• First-Fit-Decreasing (FFD): Similar to the FF heuristic
but the input tasks are first sorted in non-increasing order
of their cost.

NF and FF do not require to process the full input set prior
to the start of the allocation, making them faster than the
FFD. NF is the fastest as it does not have to check all ”open”
nodes. NF was chosen in order to have a ”lower bound” for
the avg. occupancy ratio. As explained earlier, in our outputs
representation approach, tasks are allocated according to the
output A following a NF heuristic. Therefore, the NF avg.
occupancy ratio is what our policy would score if it does not
manage to learn at all.

Our DNN’s hidden dimension size (i.e. number of neurons
in the hidden layers) is 64. This is lower than typically used
sizes (e.g. 128), but in the spirit of developing something
that can easily be deployed into resource hungry CADES, we
wanted to test the performance of a lighter DNN.

For each of the experiments, we have trained 3 models
during 10,000 training steps (Fig. 4) and selected the model
with the best results. An initial learning rate of 0.001 was used
for both the agent and the critic network, with a 0.9 decay rate
every 1000 steps. The batch size was 128. On every training
step a new batch of 128 randomly sampled sets of tasks were
created.

Fig. 4. Problem 2: batch average occupancy ratio (%) after each training step

No hyper-parameter tuning was done, and no decoding
strategies other than greedy decoding were explored. Hyper-
parameter tuning and more sophisticated decoding strategies
(e.g. beam search or those proposed by [3]) could potentially
yield better results. Nevertheless, as shown in Fig. 5 our agent
generates allocations with a higher avg. occupancy ratio than



the NF (as expected) and the FF heuristics, and gets close to
the FFD performance.

Fig. 5. Avg. occupancy ratio (%) comparison between our trained DRL-agent
and the selected heuristics

The FFD heuristic requires a pre-sorting of the input tasks,
which impacts the time required to generate a solution. Given
an input set of tasks, we have compared the time it takes to
our agent and to the FFD algorithm to generate a solution.

We have implemented both the DNN inference (including
the final process of allocating tasks following a NF approach
based on the DNN output) and the FFD algorithm as Ten-
sorflow’s [9] functions in graph mode, and run them on a
laptop with an Intel(R) Core(TM) i7-7600U CPU, no GPU,
and 32GB of RAM. For the Problem 2 conditions, on average,
it takes 18 ms to generate a solution using our DNN-based
agent, while it takes 68 ms with the FFD algorithm. This does
not pretend to be a rigorous comparison of inference latency as
among other things, it depends on the implementation and the
hardware used. However, the results align with our hypothesis
that DRL has a better time-reward trade off than heuristic
based approaches. Specially in memory constrained environ-
ments where time-optimized implementations of sorting and
searching operations might not be feasible.

IV. RELATED WORK

In this paper, we have discussed a solution to a combina-
torial optimization problem using a DNN. The general term
for this is approach is neural combinatorial optimization. A
significant contribution to this area was made by [8], with
the introduction of the pointer network architecture mentioned
earlier. The authors proved that such architecture worked well
for several combinatorial optimization tasks in a supervised
ML setting (where examples of the optimal solutions were
needed for the network to be trained).

A framework to tackle combinatorial optimization problems
using DNNs and RL (eliminating the need for optimal solution
examples) was proposed by [3]. Our DNN architecture and
DRL approach is based on theirs. However, they use it to
solve other type of combinatorial optimization problems.

On the grounds of [3], several studies have tackled combi-
natorial optimization problems related with resource allocation
[4], [10], [11], [12]. Perhaps, the most related to the problem
solved in this paper are [12] and [4]. In [12], the authors aim
to allocate services to hosts in a way that minimizes power
consumption, resulting in a reward function similar but not
identical to ours. In addition, the DNN architecture used is
different, the problem constraints are different and so it is the
strategy to enforce such constraints. In [4] they solve a 3D

packing problem by minimizing the surface required to pack
a set of items. Their approach inspired our choice to represent
the actions space as the order in which tasks are allocated.

To the best of our knowledge, no prior studies have focused
on exploring the use of DRL to find system configurations for
CADES specifically, which implies taking into account aspects
such as the inference latency. In addition, none have used
a metric like the avg. occupancy ratio as the reward signal,
which has proved to yield good results.

V. CONCLUSIONS AND FURTHER WORK

With the tasks allocation example, we have illustrated
the potential of using DRL-based methods to find system
configurations in CADES.

We have shown that our DRL yields better results than
two popular fast heuristics. In addition, regarding the heuristic
that our agent does not beat, the latency comparison supports
our hypothesis that the agent’s inference latency might be
significantly lower than the heuristic’s latency (which requires
pre-sorting the inputs).

We are convinced that the full potential of DRL-based
configurations search can be realized in more complex prob-
lems, where the operational context includes a wider range of
variables (e.g. cost of reallocating a given task, task completion
time, variable node capacity) and the reward function takes
into account more complex dynamics. In those problems,
finding heuristics or search strategies that deliver good results
in a timely manner can be a really hard task, and that is where
a DRL-trained policy can make a big difference. It is our
intention to further explore this idea.

In addition to more complex operational contexts, it is our
intention to experiment with other reward functions that favour
fault-tolerant configurations, so as to analyze the potential of
using DRL agents as a fault tolerance mechanism.

REFERENCES

[1] A. Ballesteros, J. Proenza, M. Barranco, L. Almeida, and P. Palmer,
“First Description of a Self-Reconfigurable Infrastructure for Critical
Adaptive Embedded Systems,” Tech. Rep., 2019.

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2005, vol. 16, no. 1.

[3] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural
combinatorial optimization with reinforcement learning,” 5th Int. Conf.
on Learning Representations, ICLR 2017, 2019.

[4] H. Hu, X. Zhang, X. Yan, L. Wang, and Y. Xu, “Solving a new 3D bin
packing problem with deep reinforcement learning method,” 2017.

[5] J. Lin, W. M. Chen, Y. Lin, J. Cohn, C. Gan, and S. Han, “MCUNet:
Tiny Deep Learning on IoT Devices,” no. NeurIPS, 2020.

[6] R. David et al., “TensorFlow Lite Micro: Embedded Machine Learning
on TinyML Systems,” 2020.

[7] D. S. Johnson, “Near-Optimal Bin Packing Algorithms,” Thesis, 1973.
[8] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” Advances

in Neural Information Processing Systems, 2015.
[9] Google Research, “TensorFlow: Large-Scale Machine Learning on Het-

erogeneous Distributed Systems,” Network: Comp. in Neural Sys., 2015.
[10] S. Sheng, P. Chen, Z. Chen, L. Wu, and Y. Yao, “Deep reinforcement

learning-based task scheduling in iot edge computing,” Sensors, 2021.
[11] Z. Xu, Y. Wang, J. Tang, J. Wang, and M. C. Gursoy, “A deep

reinforcement learning based framework for power-efficient resource
allocation in cloud rans,” in IEEE Int. Conf. on Comms. (ICC), 2017.

[12] R. Solozabal, J. Ceberio, A. Sanchoyerto, L. Zabala, B. Blanco, and
F. Liberal, “Virtual Network Function Placement Optimization with
Deep Reinforcement Learning,” IEEE J-SAC, 2020.


