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Abstract—The constant evolution of the Industry 4.0 requires
industrial network communications to continuously improve to
meet the requirements of the existing industrial operations.
Cyber-physical systems enable new ways of production, value
creation and real-time optimization, providing means for the
customization and personalization of products. To make this
change possible, industrial network communications have to
provide deterministic real-time properties and the ability to adapt
to the constant changes in the requirements of the product line.

Time-Sensitive Networking (TSN) is a set of new IEEE
standards that aims to provide deterministic real-time commu-
nications over Ethernet. TSN also provides centralized online
configuration and control architectures which eases the deploy-
ment of large networks. Moreover, it enables the reconfiguration
of the network in order to adapt to changes in the production
chain and make a better use of the network’s resources.

In this project we implement a Centralized Network Controller
(CNC) as software in charge of the automatic configuration of
a set of TSN bridges that make use of TSN standards. We also
perform a verification process of the CNC using commercial TSN
bridges.

RESUMEN

La constante evolución de la Industria 4.0 requiere una
constante mejora de las redes de comunicación industrial
para cumplir los requisitos de las operaciones industriales
existentes. Los sistemas ciberfísicos hacen posible nuevas
formas de producción, creación de valor y optimización en
tiempo real, proporcionando medios para la personalización
de productos. Para que sea posible, las redes de comunicación
industrial deben proporcionar propiedades de respuesta deter-
minista y en tiempo real a la vez de poder adaptarse a los
cambios constantes de los requisitos de la línea de producción.

Time-Sensitive Networking (TSN) es un conjunto de nuevos
estándares del IEEE que buscan proporcionar determinismo
y propiedades de tiempo real en Ethernet. TSN también pro-
porciona nuevas arquitecturas para la configuración y control
de la red de manera centralizada, facilitando el despliegue de
nuevas redes de gran tamaño. Además, habilita medios para la
reconfiguración de la red para adaptarse a los cambios en la
línea de producción y así hacer un mejor uso de los recursos
de la red.

En este proyecto implementamos un Controlador Central-
izado de Red (CNC, del inglés Centralized Network Con-
troller) como software encargado de automatizar la configu-
ración de un conjunto de puentes de red (bridges en inglés) que
usan los estándares de TSN. Además realizamos la verificación
del CNC usando puentes de red comerciales.

Index Terms—Time-Sensitive Networking, Time-Aware
Shaper, Centralized Network Controller, Network Configuration,
Real-time

I. INTRODUCTION

The rise of novel applications such as the Industrial In-
ternet of Things (IIoT) [24], autonomous driving [22] or
the intelligent management of utilities [21] is leading to a
change in the infrastructures that have traditionally supported
industrial applications. Specifically, these applications keep the
common characteristics of industrial applications, such as the
interaction with the real world and the need for providing
a continuous correct service. On top of that, these novel
applications are required to function in environments that
dynamically change in an unpredictable manner, reconfiguring
the available resources to adapt to the new necessities. In the
case of distributed systems, one of the resources to reconfigure
is the communication network, and this is the main focus of
this project.

A. Background and motivation
Enhanced communications is one of the key factors in

the emerging industrial applications, such as Industry 4.0, in
order to achieve timely delivery and reliability in control data.
Ethernet has been widely used in the industry for many years,
but even though its speed has been improving over time, there
is another key factor to take into account: determinism. A
network is considered deterministic when it guarantees that
the transmission of data will finish in a previously specified
amount of time. Thus, it is an important aspect to consider
when working with critical and time-sensitive data. But bare
Ethernet lacks determinism as it is based on the best-effort
principle [23]. However, it is possible to enhance it and provide
means for determinism. This has been done in the past by some
Ethernet-based proprietary communication technologies [17].
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Time-Sensitive Networking (TSN) is a set of new stan-
dards that provides means to enable deterministic real-time
(RT) communications over Ethernet sitting on layer 2 of
the ISO/OSI Model, that is the Data Link layer [18]. TSN
also provides centralized online configuration and control
architectures which eases the process of configuring large
networks and enables the network to reconfigure in order to
adapt to changes in the environment.

TSN specifies several standards but we pay special attention
to the Time-aware Shaper (TAS) standardised in IEEE Std
802.1Qbv [13], which defines means to enforce a schedule
designed to separate the communication on the Ethernet
network into repeating cycles of fixed length, following the
concept of time-division multiple access (TDMA). In this way,
time-critical communication can be separated from non-critical
background traffic.

As mentioned, TSN also provides centralized online config-
uration and control. To do so it proposes a centralised archi-
tecture to configure all the aspects of the network, including
TAS [14]. This central configuration is done by what they
define as the Centralized Network Controller (CNC) which
can be seen in Figure 6. Unfortunately, TSN does not specify
the implementation of the CNC, thus there is a need to do so,
which is the main focus of this project.

B. Project objectives
In this subsection we explain the objectives of this project.

Throughout this document, all the objectives indicated in
this section will be covered. The goal of this project is to
implement a Centralized Network Control element (CNC) to
automatically configure the TAS of a set of TSN bridges. In
this project, this main goal is going to be divided into three
objectives:

1) The implementation must adhere to the specifications of
the P802.1Qcw. This standard defines the YANG data
model for the TAS, which allows to enforce RT for
scheduled traffic. Thus, the first objective of this project
is to implement a real prototype of the YANG model
that is currently proposed in the standard.

2) The implementation has to meet requirements concern-
ing the user’s point of view and the development point
of view. From the user’s point of view, as the goal is
to automatically configure the TAS of the bridges, it
is of utmost importance that this process requires the
least supervision possible. From the development point
of view, the implementation has to enable means of
integration with other possible applications, to ease the
process of possible functionality changes in the future
and other requirements that will be described throughout
the document.

3) The implementation and verification of the CNC in this
project has to be carried out using commercial TSN
bridges as a working environment. By doing this, the
CNC will be able to be deployed in a physical system.

C. Tasks of the project
To be able to achieve the previously mentioned objectives

the project has been divided into a series of tasks that have

been individually completed during its implementation. Here
we list the tasks in a chronological order:

• Getting familiar with the set of standards of TSN, pay-
ing special attention to the IEEE Std 802.1Qbv, which
describes the TAS.

• Understanding the current state of the art of the automatic
configuration of TSN bridges.

• Designing a configuration file for containing the config-
uration parameters necessary for the TAS configuration
of the bridges. After that, implementing an application
responsible for parsing the configuration file.

• Implementing an application that builds a data instance
with the previously parsed parameters that follows the
YANG data model specified by the P802.1Qcw.

• Creating an application that automatically connects to the
corresponding TSN bridges and applies the previously
generated configuration.

• Verifying the correctness in all of the steps that together
achieve the automatic configuration of the TASs.

II. PREVIOUS WORK

In this section we explain the key concepts required to
understand the work that we have carried out. First we talk
about TSN, its set of standards and which of them are more
directly related to this project. Then we mention some tools
that TSN makes use of in order to configure the bridges of
the TSN network. Finally we introduce the concept of Docker
[1].

A. Time-Sensitive Networking - TSN
TSN is a set of standards that are being developed by the

TSN task group of the IEEE 802.1 working group. The goal
of these standards is to define mechanisms to provide Ethernet
with RT guarantees, fault-tolerance and online management of
the network configuration. There are a number of standards
that can be combined to build a myriad of different TSN
networks. Below we explain the ones that we have taken into
consideration while developing this work.

In TSN the communication follows a publisher-subscriber
architecture, where the publisher is called a talker and the sub-
scribers are called listeners. On top of that, TSN organises the
communication using streams, as standardised in the IEEE Std
802.1Qat Stream Reservation Protocol (SRP) [12]. A stream
is a virtual communication channel that connects each talker
to all its intended listeners. Streams exhibit the characteristics
of the traffic that they convey, such as the period, the frame
size or the priority. The priority of the stream identifies the
type of traffic that it conveys, namely time-triggered traffic,
event-triggered traffic or best-effort traffic. The first two types
of traffic are considered sensitive traffic as the expectation is
to deliver the messages on time. Time-triggered traffic is one
which is initiated at predefined points in time. Event-triggered
traffic is initiated as a consequence of the occurrence of a
significant event. On the other hand, best-effort traffic is all
other kinds of traffic.

In order to provide timing guarantees to the different types
of traffic, TSN proposes the IEEE Std 802.1AS [15] which
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Figure 1. Division of communication time in cycles with a fix guard band.
From [13]

standardises global clock synchronisation. This is one of the
most important standards proposed in TSN as it is required to
properly execute many of the other standards proposed by the
working group.

Once the network is synchronized we can implement poli-
cies to provide the network with RT guarantees with the use
of a traffic shaper. Traffic shaping is a bandwidth management
method that delays the transmission of certain types of traffic
in order to ensure network performance for higher priority
traffic. Traffic shapers distribute packets evenly in time in order
to smooth out the traffic and avoid overwhelming the buffers
in subsequent bridges along the path.

TSN proposes two different traffic shapers that dictate the
transmission of RT traffic. On the one hand, TSN proposes the
IEEE Std 802.1Qbv Time-Aware Shaper (TAS) [13], which is
used to provide hard RT guarantees to time-triggered traffic.
On the other hand, TSN proposes the IEEE Std 802.1Qav
Credit Based Shaper [11], which provides soft RT guarantees
to event-triggered traffic.

Between these two shapers we bring focus to the TAS, as
the goal of this project is to automatically configure the TASs
within the bridges of a TSN network. In the next section we
explain the TAS in more detail.

B. TSN’s Time-Aware Shaper
The TAS is a mechanism added onto the Ethernet stack to

provide TSN networks with deterministic behaviour. TAS is
used to provide timing guarantees to the network of systems
that interact with the environment, e.g. an automotive safety
system. Let us explain how the TAS works.

In Figure 1 we see the structure of a TSN communication
time division that uses the TAS. The communication time is
repeated in so called cycles of fixed time lengths. Each cycle
is divided in two main slots, one for time-triggered traffic,
called the protected window, and another for event-triggered
traffic. Also, if there is enough time after transmitting the
event-triggered traffic, best-effort frames can be transmitted. In
the beginning of the communication cycle we see a fixed guard
band, a period of time in which no frames can be transmitted in
order to prevent them from interfering with the time-triggered
traffic.

In Figure 2 we see a diagram of the transmission gates
of the TAS. The frames assigned to a cycle are eventually
transmitted through a transmission gate (or gate for short).
The Qbv [13] amendment introduces this concept to enforce
the communication in cycles and windows. As you can see in
Figure 2 each transmission gate is associated with a queue,

Figure 2. Diagram of the transmission gates of the TAS. From [13]

Figure 3. Structure of a Gate Control List (GCL). From [13]

one for each traffic class. The state of the transmission
gate determines whether queued frames can be selected for
transmission or not. For a given queue, the transmission gate
can be in an open state or a closed state. If the gate is open,
queued frames are selected for transmission. On the other
side, if the gate is closed, queued frames are not selected for
transmission.

In order to define the states of each gate the TAS makes
use of the Gate Control List (GCL). A GCL is associated
with each port and contains an ordered list of gate operations.
Each gate operation changes the transmission gate state for
each one of the traffic class queues of the port. The GCL also
specifies the duration of each gate operation. In Figure 3 we
see the structure of a GCL, where each entry is composed by
the time interval Tn and the state of each gate: o for open and
C for closed. If several gates are open at the same instant of
time, the transmission selection algorithm selects which one
of them has a higher priority. Each entry of the GCL is read
until it reaches the last entry. At this point the GCL is repeated
from the beginning in a cyclic manner.
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Figure 4. Fully distributed configuration architecture. From [14].

Figure 5. Fully centralized network/distributed user configuration architecture.
From [14].

C. Configuration Architectures of a TSN Network
The SRP is an enhancement to Ethernet to provide end-

to-end management of resource reservations for data streams
requiring guaranteed Quality of Service (QoS) in Local Area
Networks (LANs). The IEEE Std 802.1Qcc [14] amendment
covers enhancements to the SRP. These enhancements include
the capability of creating more traffic classes, the main con-
tribution being the definition of the scheduled traffic class
which is time-triggered traffic with hard RT requirements. The
amendment also defines two new architectures to allow the
management of the network requirements in real-time. In the
following subsection we explain these new architectures.

1) Configuration Architectures: The SRP proposed in pre-
vious standards by IEEE uses a fully distributed approach
in order to perform the reservation of resources. The new
architectures proposed in TSN allow the management of the
network in a centralized manner to have a single vision of the
network configuration and the available resources, increasing
the efficiency of the configuration process. More specifically,
it defines two new architectures. Next we describe both the
legacy distributed architecture and the two new ones proposed
in TSN.

In Figure 4 we see the fully distributed model. As you can
see, the bridges are configured in a distributed manner and
the Talkers/Listeners exchange the configuration information
with the adjacent bridge which then forwards the configuration
messages to other bridges in the network.

In Figure 5 the centralized network/distributed user model
is depicted. With respect to the previous configuration, the
bridges share the traffic requirements of the Talkers/Listeners
with the CNC instead of propagating them through the adja-
cent bridges. The CNC has a complete view of the physical
topology of the network, which enables the CNC to centralize
complex computations.

Finally, in Figure 6 we show the fully centralized model.
In this case, there is again a CNC, which centralizes the final
transmission of the configuration information to the bridges, as
in the previous model. The difference is, the user configuration

Figure 6. Fully centralized configuration architecture. From [14].

is also centralized in the Centralized User Controller (CUC).
These three network models are possible in TSN. However,

since the fully distributed architecture was designed prior TAS,
this architecture does not support the configuration of TAS.
Thus, only the centralized network/distributed user model and
the fully centralized model enable the use of this traffic shaper.
For this reason, in this project we will only consider these last
mentioned models.

2) Elements of the centralized models:: An application can
request changes in the traffic which are then translated into
changes in the network configuration. This is enabled by
the User/Network Interface (UNI) which is responsible for
managing the exchange of configuration information between
the user side and the network side. The user side is represented
by the Talkers and Listeners, i.e. the end stations. The rest of
the network components, the bridges, represent the network
side. On the one hand, in the fully centralized configuration
architecture, the UNI is placed between the CUC and the CNC.
On the other hand, in the centralized network/distributed user
configuration architecture, the UNI is placed between then
end-devices (Talker/Listener) and the first bridge that they are
connected to.

The Centralized Network Configuration (CNC) is defined
in the Qcc [14] amendment as a centralized component that
configures network resources on behalf of TSN applications
(users).

Finally, the Centralized User Controller (CUC) is an ap-
plication that establishes a common ground between the CNC
and the end devices. It communicates with the CNC to request
the specific requirements that the end-points need to enable a
deterministic communication.

D. NETCONF and YANG

In order to be able to configure the TASs of the bridges
it is necessary to have a communication protocol to transfer
the configuration information. NETCONF is a protocol stan-
dardized by the IETF (Internet Engineering Task Force) and
it provides mechanisms to install, manipulate and delete the
configuration of network devices. It uses operations called Re-
mote Procedure Calls (RPCs) to execute certain configuration
procedures on the desired device such as, get/set configuration,
modify configuration, etc.



7

NETCONF follows a client-server architecture. In each of
the TSN bridges there is a NETCONF server that enables the
interaction with a client. The client can send commands in the
form of RPCs that allow the client to act on the configurations.
The client in this case is the CNC, which connects to the
NETCONF server of the corresponding bridge. The CNC can
send any NETCONF command, for instance a get-config RPC
(used to retrieve the current configuration from a specified
datastore), which is then processed by the NETCONF server.

All the RPCs are used with reference to a datastore. In
NETCONF, datastores are a conceptual place to store and
access information. A datastore might be implemented, for
example using files, a database, flash memory locations or
combinations. The objective of using datastores is to get a
device from its initial default state into a desired operational
state. NETCONF defines three datastores: running, startup
and candidate, but users can define any number of additional
datastores.

To prepare the configuration information to be sent via
NETCONF it is possible to use YANG, a data modeling
language. In comparison with other modeling languages such
as UML (Unified Modeling Language), YANG is specifically
targeted to the needs of configuration management. It provides
a human readable representation, hierarchical configuration
data models, reusable types and groupings (defined data struc-
tures that can be used in multiple YANG modules) and support
for the definition of RPC operations among other capabilities.

It is important to note two different concepts within YANG.
On the one hand, there is the YANG module, a file containing
the specifications of a data model. On the other hand, there
is the YANG instance (or instantiation), which contains the
values of a configuration following the corresponding YANG
module.

Another important aspect about YANG is that it is a data
modeling language that is protocol independent. That is, a
YANG data model or instance can be converted in any encod-
ing format (i.e. XML or JSON) that the network configuration
protocol supports.

Therefore, with the use of NETCONF and YANG we
are able to configure the bridges according to a previously
generated configuration in an automated manner. In Section
III we go more in depth on how NETCONF is used and how
the configuration is stored in a YANG data model.

E. Docker

In this project we use Docker [1] to implement our CNC.
Docker is a set of platform as a service products that use
operating system level virtualization to deliver software in
packages called containers. A container is a standard unit
of software that packages up code and all its dependencies
so the application runs quickly and reliably from one com-
puting environment to another. A Docker container image
is a lightweight, standalone executable package of software
that includes everything needed to run an application: code,
runtime, system tools, system libraries and settings.

Docker images are built using a so called Dockerfile, a file
containing a set of instructions used to build the image itself.

Figure 7. Diagram of the project’s implementation strategy.

Once the image is created, its execution results in a container
(an image at runtime).

During the development of this project we realized that
there were a significant amount of software dependencies
in order to make the CNC meet all its requirements. Thus,
Docker provides us high maintainability, as we can deploy
the container anywhere without installing the dependencies.
In Section IV we explain how the Docker image is built and
how the CNC is executed inside the container.

III. IMPLEMENTATION STRATEGY

In this section we describe the implementation strategy of
the project. To have a better understanding we will refer to
the diagram in Figure 7 in which the general implementation
strategy of the project is depicted.

Starting from a general perspective, the CNC implemented
in this project is executed in a PC. In this PC we have a Docker
container. Inside the Docker container runs the software pro-
gram that is in charge of the automatic configuration of the
bridges’ TAS. Note that TSN does not specify if the CNC is a
physical entity or software. In this project we implement the
CNC as software, thus from this moment on, when we talk
about the CNC we refer to the software that is implemented in
this project which is in charge of the automatic configuration
of the bridges’ TAS.

The CNC executes a series of processes: the parsing of the
configuration file; the generation of the YANG instances for
each specified bridge; and finally the transmission and deploy-
ment of the resulting YANG instances to the corresponding
TSN bridges.

As we can see in Figure III, the PC also contains a Shared
Volume. This is a directory inside the PC that can also be
accessed by the Docker container. In this directory we find
the configuration file which the user can modify directly from
the PC without having to access the Docker container. This
feature is explained in detail in Section IV-D.
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Figure 8. Example of the content of the configuration file using a JSON
format.

A. Configuration File

The goal of this project is to automatise the configuration of
the TAS of a series of bridges that together form part of a TSN
network. In order to configure each one of the bridges we use
a configuration file that contains all the necessary information
to configure TAS in each bridge.

Figure 8 shows an example of the content of a configuration
file. Specifically, the parameters that the configuration file must
contain are the values that form the GCL that, as explained in
Section II, contains the states of the gates of a port and the
duration of those states. The configuration file must contain the
GCL for each port of each bridge that form the TSN network.

We need to configure some other parameters in the config-
uration file on top of the ones previously described. To start
with, we need to have the IP address of each bridge to be
able to establish a connection with each one of them. With
respect to other implementations of automatic configurations
that are in the state of the art, we have implemented the CNC
so that it can establish a connection with the bridges in an
automatic way. In this way, our implementation helps us meet
our second objective: "From the user’s point of view, as the
goal is to automatically configure the TAS of the bridges, it
is of utmost importance that this process requires the least
supervision possible."

Other configuration parameters that are indicated in the
configuration file are the switch name and the port number.
On the one hand, the switch name is used to reference the
bridge that needs to be configured. On the other hand, the
port number is necessary for the bridge to know to which
port corresponds to each GCL. For instance, the bridges used
in this project use this nomenclature: PORT_X, where X is a
number between 0 and 3 that identifies one of the four TSN
ports of the bridge.

The configuration file follows a previously defined format.

For this, we decided to use JSON which stands for JavaScript
Object Notation and it is a standard text-based format for
representing structured data based on JavaScript object syntax.
Even though it closely resembles JavaScript object literal
syntax, it can be used independently from JavaScript. It is
commonly used for transmitting data in web applications but
it has been widely used in other applications [3].

The advantage of using this format is that it is highly
human-readable and easy to understand. Also, it is good
practice to operate with a commonly used format, especially
when dealing with distributed systems, in order to increase the
interoperability among systems. In this way, if we want to use
an application to automatically generate the configuration files
we only need to know the format of its output JSON file in
order to use it.

As we can see in Figure 7, the CNC starts by reading
the configuration file that is stored in the shared volume.
Then it parses the information and translates it into another
format, more specifically, it translates it into an XML file, the
reason being that the NETCONF servers in the bridges use
XML encoding to parse all the information received throuhg
the RPCs. The filename of this XML corresponds with the
switch name specified in the configuration file so that the
CNC knows which file to use in the following steps of the
automatic configuration. Additionally, the XML follows the
data model specified by the TAS YANG model following
our first objective: "The implementation must adhere to the
specifications of the P802.1Qcw. This standard defines the
YANG data model for the TAS, which allows to enforce RT
for scheduled traffic. Thus, the first objective of this project
is to implement a real prototype of the YANG model that is
currently proposed in the standard."

Later on we explain how the information from the config-
uration file is translated into an XML file.

B. The YANG Instance

As we have said in the previous subsection, the CNC
implemented in this project first reads the configuration file
and parses the configuration information from it to then
generate a YANG instance of the ports’ TAS.

The IEEE specifies the YANG scheduled traffic module as
part of the P802.1Qcw [7]. Bridges and end-systems that
support scheduled traffic use this model to understand the
configuration instances received from the CNC. Therefore,
when a TSN device that implements TAS needs to be config-
ured, a new YANG instance is created following the YANG
scheduled traffic module and then it is sent to the NETCONF
server of the corresponding device as an RPC. Then, the
NETCONF server validates the YANG instance following the
corresponding YANG module and, if it is correct, it applies
the configuration.

That being said, in this project we implement a CNC that
automatically generates YANG scheduled traffic instances that
are then sent to the corresponding NETCONF servers in the
bridges.

Later on in Section IV we explain in detail how the
configuration instance is generated.
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Figure 9. Picture of a SoC-e SMART MPSoC bridge. From [16]

C. NETCONF
As we have explained, the generated YANG instances

containing a new configuration need to be sent and applied
to the corresponding bridges. When the CNC completes the
generation of the YANG instances that contain the configura-
tions of the bridges, the CNC sends the YANG instances and
requests for the bridges to modify their configuration through
an RPC. To do so, it is necessary to use a copy-config RPC.
This RPC contains the YANG instance generated previously
as the data payload and it is sent to the NETCONF servers.
This is done for each bridge that needs to be modified in the
network.

In section IV we describe how the CNC is able to establish
a connection with the bridges and how the RPCs are sent.

IV. IMPLEMENTATION

In this chapter we explain in detail how the project was
completed. The implementation of the CNC itself is explained,
covering all the aspects that we introduced in Section III. Next
we explain the different software tools that we have used in
order to carry out the CNC.

A. Hardware
One of the objectives of this project is to integrate our

CNC with real commercial TSN bridges. The devices that
we have used are two SoC-e SMART MPSoC bridges [9],
which are bridges that support the main TSN standards. More
specifically, the following are the most important standards
implemented by the switches for this project:

1) IEEE Std 802.1AS for the for global clock synchroni-
sation.

2) IEEE Std 802.1Qav which defines the Credit Based
Shaper.

3) IEEE Std 802.1Qbv for the TAS that supports scheduled
traffic.

4) IEEE Std 802.1Qcc for network management, i.e. NET-
CONF for managing YANG data.

5) P802.1Qcw for the YANG Scheduled Traffic module
specification.

In Figure 9 we see a picture of the board. There are
four external TSN ports (from PORT-0 to PORT-3) and one
service port (PORT-Z). As the operating system, the bridges

Figure 10. Diagram of the MTSN Kit. From [16]

run an embedded Linux OS in which they run some default
applications. Looking at Figure 10 we can see a diagram of an
MTSN Kit. On the bottom the Programmable Logic section
is displayed and on top is the Processing System section.
As you can see, in the processing system section there are
three applications running, the most important one being the
NETCONF server which is responsible for managing all the
incoming RPCs from our CNC. Another application that is
executed in the processing system is the Web Manager, a
web based graphical interface used to configure the switch. In
fact, the TAS can be configured using this graphical interface,
which in this project is what we want to automate.

Apart from the bridges we also make use of a separate
machine to run the CNC implemented in this project. During
the implementation and verification phase we used a PC.
However, the CNC can run on any system capable of running
Docker and that has an Ethernet port to connect to the bridges.

B. The CNC

In this section we describe the implementation of the CNC
which is responsible for the automatic configuration of the
bridges’ TAS. As a reminder, TSN does not specify if the CNC
is a physical entity or software. In this case we implemented
it as software that can be executed on any device capable of
running Docker.

Before entering into detail about the implementation, bear
in mind that the CNC is written in C, although as explained
earlier, we also make use of JSON and XML encoding to
format some files.

The following sections explain each one of the processes
that the CNC carries out. Although they are explained sepa-
rately, the CNC executes all of them in series, meaning that
it forms part of a single executable.

1) Parsing of the Configuration File: As explained pre-
viously in Section III-A, the configuration file is formatted
using JSON, so the first step is to be able to read this type
of format and extract all the data from it. To this end, we
use a light-weight library written in C [20] that enables the
parsing of any JSON file making use of a few basic functions.
The parsing of the JSON file consists in reading each json
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node of the JSON file. A json node is a generic container of
elements inside a JSON stream. It can contain fundamental
types (integers, booleans, floating point numbers or strings)
and complex types (arrays and objects). Thus, the functions
from the JSON library provide us with a way to read the nodes
from the configuration file.

First we open the configuration file as a readable file with
the use of basic functions found in the standard input-output
C library stdio.h. Once the file is open we use the following
function provided by the JSON library:

1 j s o n * j s o n _ p a r s e ( c o n s t c h a r * ) ;

With this function all the json nodes of the json file are
stored in a variable of type json, which is then used to go
through all the values specified in the configuration file using
other functions from the library. Here are some examples of
functions that the library provides:

• json json_next(const json ): Points to the child node of
the one specified as a parameter.

• json json_item(const json , size_t): Locates a child node
by offset.

• double json_number(const json ): Returns the value of
the current node as a numeric value.

So, with the use of these functions we are able to temporar-
ily store the information inside the program to then make use
of it in the next step, which is the generation of the YANG
instance.

2) Generation of the YANG Instance: Once the parsing
of the configuration file is complete, the next step is to make
use of the acquired data to build the YANG instance. As
said previously, the YANG instance is formatted using XML
encoding and it follows the data model specified by the YANG
scheduled traffic module (P802.1Qcw).

As this data model is already specified, the structure of the
XML file is exactly the same each time a new configuration
is applied except for the values that have been specified in the
configuration file. This makes the procedure of printing the
XML file a straightforward process by utilizing once again
the functions from the standard input-output library from C
(stdio.h).

At the end of this process, the expected result is to have an
XML file generated for each one of the bridges that have to
be configured. All these files are stored in a separate folder
in the working directory of the CNC so the next process can
access the XML files. Moreover, this allows the user to access
these generated XML files for validation purposes and other
possible reasons.

3) Transmission of the RPCs: The next step that the CNC
has to perform is the transmission of the RPCs to the bridges.

As we have already explained, each bridge executes its
own Netconf server. These servers respond to any NETCONF
messages sent by the client, which in this case is the CNC.
In order to transmit the RPC messages, the CNC must first
establish a connection with the bridges’ servers. In addition,
since we want our CNC to configure the network in an
autonomous way, this connection has to be established without
user supervision.

The connection is established through Secure Shell (SSH)
[8], a cryptographic network protocol for operating network
services. The connections are managed automatically by the
CNC with libnetconf2 [4]. This library provides all the nec-
essary functions so as to achieve the SSH connections and
the transmission of the RPCs to the NETCONF servers in the
bridges.

As explained in the previous section, the YANG instances
previously generated are stored in a folder inside the working
directory of the CNC. To apply this configuration we need to
use an RPC which copies an entire configuration to the desired
datastore.

As we explain in Section II, NETCONF possesses three
default datastores, namely startup, candidate and running. In
this project we configure the NETCONF servers in the bridges
to only use the running datastore. Therefore, whenever the
CNC transmits a new configuration to a bridge, this new
configuration is directly applied to the running datastore.

The RPC that we have to use to apply a new configuration
to the datastore is the copy-config RPC. Using a function
provided by libnetconf2 we build the RPC by adding the
generated XML file to it and specifying the datastore in which
we want to apply the configuration. After that, we use a second
function also from libnetconf2 to send the RPC.

These functions explained above perform checks in order to
see if the RCPs were generated and sent correctly. Apart from
these checks, once to copy-config RPC has been successfully
applied, we also perform another RPC on the NETCONF
servers to acquire the current configuration using the get-
config RPC. The result of this RCP, as a response from the
NETCONF server, is another YANG instance containing the
information of the current configuration. In this way, we can
then check if the bridges have actually been updated with the
desired configuration.

After this process has been executed for each one of
the specified bridges in the configuration file, the automatic
configuration of the TAS in the bridges has finished.

C. CMake
In this project we also made use of CMake [19]. CMake is

an open-source set of tools designed to build, test and package
software. It is used to control the software compilation process
using simple platform and compiler independent configuration
files.

As mentioned previously in this document, to build the CNC
there are a number of software dependencies that need to
be installed. When it comes to compiling source code that
has third-party dependencies, the instructions to give to the
compiler can get very extensive and incomprehensible. Thus,
with the help of CMake we ease the compilation process of
the CNC and organize the project’s source code.

Any project based on CMake always contains the CMake-
Lists.txt file, which describes how the project is structured, the
list of source files to compile and what CMake should generate
out of it. Cmake reads the CMakeLists.txt file and produces
the desired output.

In our case we have one major dependency that needs to
be specified in the CMakeLists.txt file, that is Libnetconf2.
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Luckily, most of the complex open-source libraries provide a
file that instructs CMake where to find necessary files that
are installed in the host machine in order to be able to
compile the solution. By utilizing this file together with the
CMake function find_package(), we instruct CMake to
find the required packages installed on the system to be able
to build the CNC’s executable. This same procedure is used
with other dependencies like libssh [5] (used to establish an
SSH connection between two devices) and libyang [6] (used to
parse and validate YANG formatted files). Naturally, we also
need to specify our source code in order for it to be compiled.

Once the CMakeLists.txt file is ready, we can run it and
generate the compiler instructions for it to build the program
as specified in the instructions. Once the building process has
finished we end up with a binary file which corresponds to
the CNC.

D. Docker

In Section II-E we explained what Docker is and why we
use it in this project. In this section we explain how we created
the image that contains the CNC and all of its dependencies.
Further on we also explain how to make use of the Docker
image turning it into a container and how to interact with it
to execute the CNC.

Docker uses a file called Dockerfile to specify all the
instructions to build an image. It always begins with a FROM
instruction, which specifies the parent image form which we
are building. In this case, as our solution was built for a Linux
environment, we use Ubuntu 18.04 as the base image. After
specifying the base image we can start installing the packages
needed for the system in order for it to be able to install all
the dependencies and run the CNC. As the image is created
from an Ubuntu image as a base image, we can simply instruct
Docker to run apt-get, which is a command-line tool that
helps in handling packages in Linux. This instruction is given
to Docker with the RUN command as shown below:

RUN apt-get update && \

apt-get dist-upgrade -y && \

apt-get install -y \

systemd \

cmake \

git \

curl \

libpcre3 \

libpcre3-dev \

zlib1g-dev \

libssl-dev \

build-essential \

These are the packages needed to be able to install the
dependencies explained previously, that is libnetconf2 and
libssh among others. To install these dependencies we first
need to copy the files from the host computer into the new
image with Docker’s COPY command. In the folder where the
Dockerfile is stored we also place a folder called libs where

we store all the source files of the dependencies. In this way,
when we use the COPY command we can instruct it to copy
the whole folder into the image like so:

COPY ./libs /libs/

The first parameter in the command above indicates where
the source files are, that is, the folder in the host computer
running Docker. The second command indicates where the
files will be copied inside the Docker image once it has been
built.

After that, the next step is to instruct Docker to compile
the source code form the dependency libraries that have just
been copied. For each one of the libraries we run the following
instruction:

# Install libyang

RUN mkdir ./libs/libyang/build && \

cd ./libs/libyang/build && \

cmake .. && \

make && \

make install

Finally, we proceed to build the CNC. In the libs folder we
also store the source code for our CNC application. Thus, we
can also install the application in a similar way to how we
instruct Docker to install the dependencies:

# Install cnc

RUN mkdir ./libs/cnc/build && \

cd ./libs/cnc/build && \

cmake .. && \

cmake --build . --target all

At this point the Dockerfile has all the instructions necessary
to build the image. Once we run the build command in
a terminal the image will start to be created. Note that this
command has to be executed in the directory where the
Dockerfile is stored:

docker build --rm -t aservera/cnc:latest .

Once this process has finished the image is ready to use.
As said previously in Section II-E, a Docker image becomes a
container at runtime. So, the next step is to execute the image
and turn it in a running container.

Going back to Figure 7 we can see that the Docker container
has a Shared Volume. This volume is a file directory that can be
accessed both by the container and the host machine running
the Docker container. In this way, the configuration file can
be stored in the PC and the user can modify it outside Docker
with any text editor and also the CNC application can access
from inside the Docker container.

In order to be able to execute the Docker container with
the Shared Volume shown in Figure 7 it is necessary to use
Docker Compose, a tool provided by Docker for defining and
running multi-container Docker applications and managing
the application’s services. Basically, this tool is used by
defining some configuration parameters in a file called docker-
compose.yml. We do not go into much detail about how this
tool works, but we need to note that using this tool we can
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define the shared volume and execute the container. This is
done running the following command in the directory where
the docker-compose.yml files is stored:

docker-compose up -d

Once this is executed, the CNC Docker container will be up
and running on a background process inside the host machine.
At this point the user can modify the configuration file and
then execute the CNC by using these two commands:

docker exec -it cnc ./bin/bash

./libs/cnc/build/cnc

The first command opens a terminal in the Docker container
and the second one executes the CNC itself.

The source code for the project and the Docker implemen-
tation can be found in our git repository [2].

V. VERIFICATION

In this section we describe the processes that we have
carried out during the project in order to verify that the
different parts of the CNC are properly implemented. This
section is divided into several subsections, each one referring
to an independent part that can be independently evaluated.
Furthermore, the overall automatic configuration as a whole
is also verified.

A. Generation of the YANG Instance
This section refers to the first process that takes place during

the execution of the CNC. This first part is comprised of the
parsing of the configuration file and the later generation of the
YANG instance.

In order to verify the correct execution of these two parts
we only need to check if the parameters introduced in the
configuration file are then correctly translated into each gen-
erated YANG instance for each bridge. To do this verification,
we have included instrumentation code that prints the values
of the parameters on the terminal where the configuration is
executed. At the same time, this allows the user to check if the
parsing of the configuration file has been carried out correctly
and that the parameters introduced are the desired ones. Below
we explain a simple verification example that is carried out on
a bridge.

In Figure 8, referenced previously to explain the configura-
tion file, we show the configuration file used to perform the
first test. As we see, it is a simple configuration containing only
one bridge (switch 65) with parameters for two ports (PORT_1
and PORT_2. Once we execute the CNC inside Docker we get
the following print out in the terminal (Figure 11).

As we can see, the values of the parameters shown in Figure
10 correspond with the values indicated in the configuration
file. Also, the CNC generates an XML file containing the
YANG instance of the configuration. This file is stored in the
Docker container under cnc/generated-configs/ and it is the
one used to build the copy-config RPC that is later sent to the
corresponding bridge.

On top of the instrumentation prints and the generated XML
files, another way that the generation of the YANG instance

Figure 11. Print out generated by the CNC after parsing the configuration
file.

is checked is using yanglint, one of the dependency libraries
for the CNC which enables the parsing of YANG data models
and also validates them. So, when a new YANG instance is
uploaded to the bridges’ servers, yanglint automatically checks
if the instance is correct after parsing it. In this way, bridges
can discard erroneous configurations.

B. Transmission of the RPCs

Once the generation of the YANG instance is verified we
can proceed to the verification of the next step, that is the
transmission of the RPC commands to the bridges.

As explained in previous sections, the CNC first establishes
an SSH connection with the bridges that need to be configured.
After that, the CNC sends two RPC commands: copy-config
and get-config. The verification for this process can be done
by visualising the output of the CNC in the terminal where it
is executed. In both the SSH connection and the transmissions
of the RPCs there is an output on the terminal. In fact,
the SSH connection in some cases needs the user to enter
the password to establish a secure connection. Therefore,
the terminal will provide information on whether the SSH
connection has been successful and, when it comes to the
RPCs, the get-config command will finish with a print out
of the current configuration for the bridge after applying it
previously. By checking the output the user can manually
check if the configuration was carried out correctly.

To verify this process we use the same input example as
the previous section (Figure 8). Executing the CNC application
prompts the user to insert the SSH password. After introducing
it, the CNC sends the copy-config RPC and later the get-
config RPC. Once the last RPC is completed, the response with
the configuration is printed on the terminal. As expected, the
configuration parameters received in the get-config operation
correspond to the ones specified in the configuration file.
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Figure 12. Diagram of the connections for the testing of the configuration of
multiple bridges.

C. Configuration for Multiple Bridges
Until now, we have verified the correct operation of both the

generation of the YANG instance and the transmission of the
RPC to the bridges. To do so we have only used one bridge.
Thus, in this section we carry out a verification of the proper
configuration of bridges using a scenario with two bridges to
ensure that the whole configuration process is also performed
correctly with more than one bridge.

To perform this test we connect two bridges together, as
shown in Figure 12, by plugging an Ethernet cable between
them using one of the ports. Then, one of the bridges is
connected to the host machine where the CNC application
is executed. This way, the CNC will be able to establish a
connection between all of the necessary bridges.

The execution of the CNC application is performed as in
the previous tests. The only difference is that the configuration
file now has two bridges specified. The CNC is able to parse
the parameters of each bridge independently and then apply
the generated configurations.

Once the CNC has started we can see the instrumentation
prints that show that the configuration parameters have been
parsed correctly. After that, the CNC application prompts the
user with the SSH password for each bridge that is being
configured. If the connection is successful then the RPCs are
transmitted to each bridge and the final configuration is also
shown in the terminal to confirm the correct execution of the
automatic configuration.

D. Configuration of the output ports of bridges
So far we have verified the automatic configuration of the

TSN bridges. Nonetheless, in order to verify the correct oper-
ation of the system we next check whether the configuration
loaded in the bridges is applied in the output ports. To do that,
we inject traffic in the network and we check how the traffic
is shaped by the bridges.

To this aim we use Wireshark [10], a network protocol
analyzer that listens to any traffic that is received through the
specified network interface on the device that you are running
it on. In this case, we execute Wireshark in the same PC as
the CNC and we listen to one of the ports of the bridge that
we want to configure.

In order to carry out this verification, we must first decide
on a proper configuration for the port that we want to analyse
using Wireshark. Once the configuration is loaded, we execute
a frame generator application that transmits traffic through the

port that we want to analyse. Finally, this traffic is received
by the PC through the interface that Wireshark is supervising,
which allows us to capture the traffic to analyse it.

First, we perform a basic test that consists of checking if the
frames sent by the bridge are transmitted or not depending on
their priority. We must recall that TAS specifies which queue
of the output port of a bridge is open and which is closed at
each moment of time. We must also note that frames with a
specific priority are buffered in the queue with said priority
prior to their transmission. Therefore, if a queue with priority
i is open, frames with priority i are transmitted, while if queue
i is closed, frames with priority i are buffered in the queue.
For instance, we apply the following configuration for port
PORT_0:

"switch": "TEST_64",

"ip": "192.168.4.64",

"port_list": [

{

"port_number": "PORT_0",

"values":[

[500000, 00000001],

[500000, 00000000]

}

[...]

Given this configuration, PORT_0 of the corresponding
bridge can only send frames of priority 0 as indicated in
the GCL. After applying the configuration, we connect to
the bridge via SSH and we generate Ethernet frames with a
priority different than 0. In this case we use a priority of 5 and,
as a result, Wireshark does not register any received frames,
meaning that the bridge could not send any of them. We also
performed the same test but sending frames with priority 0 and,
unlike the previous step, Wireshark registers frames received
on the PC, which is the expected result.

Next we test another configuration to verify if the time
periods of the slots match with the applied configuration. To
this end, we apply the following configuration:

[...]

{

"port_number": "PORT_3",

"values":[

[1000000, 00100001],

[1000000, 00000000],

[1000000, 00000000],

[1000000, 00000000],

[1000000, 00000000],

[1000000, 00000000],

[1000000, 00000000],

[1000000, 00000000]

]

}

[...]

As we can see, PORT_3 has 8 different slots of 1.000.000 ns
each, but only the first one has open gates. More specifically,
the gates that are open are for priority 5 and 0. This means that,
when transmitting packets of priority 5 or 0, TAS only allows
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Figure 13. Plot of the Wireshark test performed on a TSN SoC-e bridge.

the transmission of these packets when the first slot is active.
Thus, the bridge can only transmit frames with priority 5 or
0 for 0.001 seconds (1.000.000 ns) and then the transmission
stops until the rest of the slots have finished, which equals
0.007 s (7 x 0.001 s). Once all the slots are executed, the bridge
starts again with the first one, transmitting frames with priority
5 and 0 again. We must note that in our next experiment we do
not transmit any frames with priority 0, even though the gate
is open. The reason is that the communication between the
bridge and the PC requires the transmission of frames with
priority 0. Thus, if we configure bridges to never allow the
transmission of these frames, the communication is lost.

Now we generate Ethernet packets with priority 5 in the
bridge with the configuration previously mentioned. At the
same time we run Wireshark and register the packets that
the bridge sends. Wireshark allows us to see the time elapsed
between the reception of frames. This time is also known as
step. Using this output we can plot the step value for each
transmitted packet, which we can see in Figure 13. On the
plot we have the step value on the Y axis and the packet
number on the X axis. We can see periodic peaks with values
close to 0.007 seconds. These peaks represent the total time
in which the packets are not being transmitted, which matches
the slots with the closed gates. The rest of the time frames are
being transmitted in a continuous manner, which is why the
time elapsed between frames in the rest of the plot is low.

VI. CONCLUSION

The aim of the fourth industrial revolution, known as
Industry 4.0, is the development of intelligent processes ca-
pable of planning, predicting, controlling and producing in
an autonomous manner. Industrial network communications
play an important role in the progress of this industry as
they require RT guarantees and the ability to reconfigure the
network to utilise its limited resources efficiently.

With the TSN new set of standards it is possible to provide a
network with RT guarantees and adaptability. On the one hand,
TSN provides hard RT guarantees to the network by means of
TAS, a standard that allows to configure bridges so they can
forward scheduled traffic. On the other hand, thanks to TSN’s
centralized online configuration and control architecture we
are able to reconfigure the network. Specifically, this network

architecture proposes the use of a central element named CNC,
which has a view of the whole network, allowing it to make
complex configuration decisions in a reasonable time.

In this document we have described the implementation and
verification of a CNC, the function of which is to automatically
configure the TAS of TSN bridges. This automatic configura-
tion eases the deployment of new large networks by automat-
ically configuring all the TSN devices that are provided with
scheduled traffic enhancements (TAS). Moreover, it enables
the reconfiguration of the network in order to adapt to changes
in the production chain and make a better use of the network’s
resources.

This implementation consists of a C program that executes
a series of processes in order to automatically configure the
TAS of a set of TSN bridges. The first process is the parsing
of a configuration file specified by the user, in which the
configuration parameters of the bridges are specified. The
second process is responsible for the generation of the YANG
instances that contain the configuration data for each TSN
bridge. Finally, the last process establishes a connection with
the bridges and sends the YANG instances in the form of an
RPC so that the NETCONF servers in the bridges can apply
the new configuration.

At the beginning of this work we established three objec-
tives. In order to meet our first objective, described in Section
I-B, this implementation adheres to the current specifications
of the TSN standards. Furthermore, it implements the currently
proposed specification of the YANG data model for the TAS
as defined in the ongoing standardization effort P802.1Qcw
from IEEE.

Additionally, to satisfy our second objective specified in
Section I-B, the implementation has been developed to require
the least supervision possible from the user, as the intention
is to configure the TAS of a set of TSN bridges in an
automatic manner. We have also focused on enabling the CNC
to integrate with future developments by creating a Docker
container in which the CNC is executed. This feature eases
the deployment process of the CNC and also eases the process
of extending or modifying the functionalities of the CNC.

In order to meet our third objective explained in Section
I-B, we carry out the verification of the CNC. Specifically,
we have first verified each one of its processes separately:
the reading of the configuration file, the generation of the
YANG instances and the transmissions of the RPCs to the
NETCONF servers. On top of that, we have verified the correct
integration of all the previous mechanisms and the correctness
of our application. We have done this by checking that the
configuration loaded in the bridges is applied in the output
ports of the bridges by injecting traffic in the network and
checking how the traffic is shaped by the bridges. This has
allowed us to see that the configuration provided to the CNC
was properly deployed in all the bridges.

Finally, it is important to note that both the implementation
and the verification process have been carried out using
commercial switches that have all the necessary TSN standards
to be able to use TAS. This ensured that the CNC is ready to
be deployed in a real TSN network.
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VII. FUTURE WORK

In this final section we make mention of possible future
tasks that could be carried out to continue with this project in
order to enhance it and provide more uses for it.

First, we can improve the automatic SSH connections to
the bridges in order to require even less supervision from
the user. In this implementation, the connection is established
using a password as the authentication process. This could be
improved by using authentication by public key. Public key
authentication is a way of logging into an SSH account using
a cryptographic key rather than a password. This way, the CNC
could establish an SSH connection with each bridge without
having to ask the user to introduce a password. However, it
is still necessary to generate the public key for each bridge.
This can be a tedious process if the network is very large, but
it would only be necessary once for each bridge which is still
a better option than introducing a password every time you
want to establish a connection with a bridge.

The majority of time-critical systems require a certain
degree of reliability and fault-tolerance. In this aspect, a
future work could be to carry out the replication of the CNC
and implementing mechanisms for the synchronization and
consistency between them.
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