
Citation: Ballesteros, A.; Barranco,

M.; Proenza, J.; Almeida, L.;

Pozo, F.; Palmer-Rodríguez, P. An

Infrastructure for Enabling Dynamic

Fault Tolerance in Highly-Reliable

Adaptive Distributed Embedded

Systems based on Switched Ethernet.

Sensors 2022, 22, 7099. https://

doi.org/10.3390/s22187099

Academic Editors: Paolo Visconti,

Iain Collings and Yuh-Shyan Chen

Received: 31 July 2022

Accepted: 8 September 2022

Published: 19 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

An Infrastructure for Enabling Dynamic Fault Tolerance
in Highly-Reliable Adaptive Distributed Embedded Systems
Based on Switched Ethernet
Alberto Ballesteros 1,* , Manuel Barranco 1 , Julián Proenza 1,* , Luís Almeida 2,3 , Francisco Pozo 4

and Pere Palmer-Rodríguez 1

1 Departament de Matemàtiques i Informàtica, Universitat Illes Balears, 07122 Palma de Mallorca, Spain
2 CISTER Research Center in Real-Time and Embedded Computing Systems, 4200-135 Porto, Portugal
3 FEUP Faculdade de Engenharia da Universidade do Porto, 4200-465 Porto, Portugal
4 Hitachi Energy, 72226 Vasteras, Sweden
* Correspondence: a.ballesteros@uib.es (A.B.); julian.proenza@uib.es (J.P.)

Abstract: Distributed Embedded Systems (DESs) carrying out critical tasks must be highly reliable
and hard in real-time. Moreover, to operate in dynamic operational contexts in an effective and
efficient manner, they must also be adaptive. Adaptivity is particularly interesting from a depend-
ability perspective, as it can be used to develop dynamic fault tolerance mechanisms, which, in
combination with static ones, make it possible to provide better and more efficient fault tolerance.
However, constructing a DES with such complexity presents many challenges. This is because all the
mechanisms that support fault tolerance, real-time, and adaptivity must be designed to operate in a
coordinated manner. This paper presents the Dynamic Fault Tolerance for Flexible Time-Triggered
Ethernet (DFT4FTT), a self-reconfigurable infrastructure for implementing highly reliable adaptive
DES. Here, we describe the design of its hardware and software architecture and the main set of
mechanisms, with a focus on fault tolerance.

Keywords: DFT4FTT; distributed; embedded; adaptivity; dependability; reliability; fault tolerance;
dynamic fault tolerance; resilience

1. Introduction

Distributed Embedded Systems (DESs) play a key role and are almost ubiquitous in
many economic sectors, such as civil avionics, the automotive industry, railway signaling,
road transportation, healthcare, energy distribution, and telecommunications. This type of
system is a combination of hardware and software. In a DES, the hardware is constituted
by computational elements called nodes, which are interconnected through a network that
includes multiple links. As for the software, it is typically implemented as a set of functional
elements called tasks that are executed on the nodes, that coordinate by exchanging messages,
and that cooperate to achieve some common goal.

DESs are mostly used to interact with the real world, where the specific instant in
which an action is carried out has a huge impact on its outcome. That is why DESs
typically have real-time requirements. A system is said to have real-time restrictions if
its correct operation depends on its ability to provide a correct response before some
deadline. Moreover, in some environments, a DES failing to provide a correct service may
have catastrophic consequences. DESs operating in such environments must guarantee a
trustworthy service, that is, they must be dependable. Dependability is a broad concept
that contains several attributes. Among them, in this work, we address the reliability, that
is, the ability of the system to provide a correct and continuous service [1].

Apart from the aforementioned requirements, nowadays there is a huge interest in
DESs that are capable of operating in dynamic and unpredictable operational contexts. By op-
erational context, we mean all the relevant aspects related to the operation of the system

Sensors 2022, 22, 7099. https://doi.org/10.3390/s22187099 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22187099
https://doi.org/10.3390/s22187099
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7194-213X
https://orcid.org/0000-0002-3937-0821
https://orcid.org/0000-0001-7238-0557
https://orcid.org/0000-0002-9544-3028
https://orcid.org/0000-0002-1228-5176
https://orcid.org/0000-0001-5794-6858
https://doi.org/10.3390/s22187099
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22187099?type=check_update&version=3


Sensors 2022, 22, 7099 2 of 33

that are susceptible to change. As shown in Figure 1, this includes both the operational
requirements and the operational conditions. The former can be defined as the set of function-
alities the system has to carry out, the functional requirements, together with the real-time
and reliability guarantees these functionalities have to provide, the non-functional require-
ments. The latter are the circumstances under which the system has to fulfill its operational
requirements. While the status of the environment comprises external aspects that could
affect the operation of the system, such as electromagnetic radiation, the status of the system
captures the situation of the hardware, which can change due to permanent faults.

Operational
context



Operational
requirements

{
Functional requirements
Non-functional requirements

Operational
conditions

{
Status of the environment
Status of the system

Figure 1. Definition of operational context.

Traditional DESs have been designed to operate in predictable operational contexts.
This has led to static approaches that guarantee that the operational requirements are
met, as long as the operational context has been foreseen correctly. However, if the DES
has to operate under dynamic operational contexts, these static approaches lead to an
inefficient use of the resources. This is because static DESs are dimensioned to cope with
the worst-case scenario in which they are assumed to operate. However, these scenarios
are unlikely to happen, and, thus, static DESs are typically over-dimensioned. One way
to overcome this limitation is through mode change [2]. That is, at design time the set of
operational contexts are identified and, for each one of them, a mode of operation is defined.
At runtime, a mode change protocol is responsible for applying the appropriate mode upon
a change in the operational context. Consequently, at each instant, only the required tasks
are loaded into the nodes, which is more efficient than a static approach. Note, however,
that solutions based on static or mode-change approaches require prior knowledge of the
operational contexts under which the DES is operating. That is why, if the operational
context changes in an unpredictable manner, both can be ineffective.

To operate under dynamic and unpredictable operational contexts efficiently and effec-
tively, the DES must be adaptive. An adaptive DES (ADES) has the ability to autonomously
manage, with a high level of granularity, the assignment of its computational and com-
munication resources to fulfill the operational requirements when the operational context
changes. An ADES must be able to determine when its current configuration does not meet
the operational requirements and, in response, find and apply a new configuration that
does so. A system configuration can be defined as an allocation of tasks and messages to
nodes and links, respectively, together with their execution and transmission attributes.
Note that this approach provides a level of granularity in the management of the resources
significantly higher than mode change as specific elements, like a single task or a task at-
tribute, can be changed. Some examples of potential applications of ADESs are autonomous
vehicles, exploration vehicles, smart machinery, and self-repairable devices.

Adaptivity is especially appealing from a dependability perspective as the rearrange-
ment capacity can be used to make fault-tolerance mechanisms dynamic [3].

Dynamic Fault Tolerance (DFT) is the capacity of the system to dynamically manage
its resources to meet the dependability requirements efficiently and effectively, despite
predictable or unpredictable changes in the said requirements or the operational conditions.



Sensors 2022, 22, 7099 3 of 33

It should be noted that, although the term Adaptive Fault Tolerance has been histori-
cally used to define this concept, we prefer to use the term Dynamic Fault Tolerance. This is
because, following the guidelines of Årzén in [4], we consider the word adaptive to be more
general and intended to be used to define the system as a whole. That is, we reserve the
term adaptive to talk about the system’s ability to “modify its behavior and/or architecture
to changing conditions and requirements”. Note, in this regard, that adaptivity includes
the application-level intelligence that decides on the changes to carry out. In contrast,
we reserve the terms flexible and dynamic to define the mechanisms that operate in the
subsystems and that give support to achieve said adaptivity.

The implementation of static fault-tolerance mechanisms in combination with dynamic
ones provides several benefits:

1. Efficient use of the resources. As already discussed, systems that use static ap-
proaches must be dimensioned to cope with the worst-case scenario in which they are
assumed to operate. However, these types of scenarios are unlikely to occur and, thus,
the system is built with an amount of resources far beyond the ones necessary most of
the time. This is particularly noticeable in critical systems where resource redundancy
is typically used to tolerate faults. By means of DFT, the system can dynamically
reserve at run-time the resources that are strictly necessary for the current operational
context. For example, if task replication is used to tolerate faults affecting the nodes,
instead of selecting a static number of task replicas to address the worst-case scenario,
this value can be dynamically selected to fulfill the reliability requirements in each
specific scenario, for instance, using fewer replicas when the environment is more
benign or when the reliability requirements are relaxed.

2. Resilience. This term [5] can be defined as “the persistence of dependability when
facing changes”. These changes can be classified according to their nature, prospect,
and timing. DFT can be used to make a system resilient when facing unforeseen
functional and environmental changes occurring at any moment during the operation
of the system. On the one hand, the number of external factors that can affect the
operation of a system can be enormous or even unknown. Consequently, designing
a system to cope with all their combinations using a solution based on a static or
mode-change approach can be unfeasible. A system including DFT can dynamically
manage fault tolerance resources with enough granularity and adjust its fault toler-
ance mechanisms to face operational conditions beyond those that could be faced
through static or mode-change approaches. Furthermore, the higher the level of
granularity in the management of these resources, the more appropriately the fault
tolerance mechanisms could be adjusted. On the other hand, as will be discussed later,
in dynamic operational contexts, the operational requirements can change in an un-
predictable manner. This includes the non-functional requirements and, in particular,
the reliability requirements. A system being able to adjust its fault tolerance resources
to face these changes dynamically can not only make efficient use of these resources
but also provide more effective fault tolerance. For example, if task replication is used
to tolerate faults that affect nodes, the number of task replicas can be increased to
meet higher reliability requirements.

3. Survivability. When the system must operate under extreme operational conditions,
the available resources may not be sufficient to meet operational requirements. This
can happen because, for instance, the accumulation of permanent hardware faults
that could significantly reduce the amount of resources available and/or severe
environmental conditions that could require an amount of fault tolerance resources
beyond the ones available. In these scenarios, the system can move into a degraded
mode [6] in which the system tries to survive as much as possible by operating with
the essential services at the expense of some less critical services and/or meeting
some of the reliability requirements. Although this can be implemented by means of
a mode change approach by specifying predefined operation modes, DFT makes it
possible for the system to find the most appropriate configuration, that is, one that



Sensors 2022, 22, 7099 4 of 33

maximizes the service delivery considering the available resources. This is interesting
in systems such as autonomous spatial exploration probes.

Constructing an ADES with DFT features presents two main challenges. The first
challenge is that it must provide a means to tune the operation of its underlying subsystems
dynamically, that is, they must be flexible. In particular, the mechanisms that support
real-time and fault-tolerance features must be flexible. For instance, in the event of a
node failing, with DFT it is possible to restore the service if the tasks being executed in
the said node are reallocated to other nodes. For this to happen, the system has to be
able to provide enough flexibility to (1) disable the faulty node so that it cannot generate
erroneous messages, (2) find a new allocation of tasks that meets the real-time requirements,
and (3) start the execution of the tasks in the corresponding nodes. Moreover, if active task
replication is used, replicas of the same group need to be synchronized. All of this calls
for extended mechanisms like holistic online scheduling of tasks and messages, triggering
the execution of tasks and transmission of messages, or reaching an agreement among task
replicas when one of them is recovered.

The second challenge of constructing an ADES with DFT capabilities is that its under-
lying subsystems cannot be designed orthogonally, that is, considering each subsystem
independently of the other ones, if we seek efficiency and effectiveness. An example of
inefficiency can occur when two fault tolerance mechanisms use the same type of resources.
For example, if task replication is used to tolerate software faults and link replication
is used to tolerate network faults, there will be message replicas generated by the task
replicas and by the link replicas. In a noncoordinated approach, the number of replicas
used in one of these two mechanisms is determined without considering the other one,
which leads to an inefficient use of the network resources. Regarding effectiveness, in a
system with such internal complexity, mechanisms can interfere among them in a way that
impairs their ability to operate correctly. For instance, two independent fault tolerance
mechanisms that unintendedly react to the same event will start performing changes in
the system in parallel with no coordination, potentially leaving the system in an unwanted
state. Consequently, ADES must be designed following a holistic approach so that specific
subsystems at different levels of the architecture can operate in a coordinated manner.

In this paper, we present the Dynamic Fault Tolerance for Flexible Time-Triggered Eth-
ernet (DFT4FTT) [7], a self-reconfigurable infrastructure for implementing highly reliable
ADES. This infrastructure defines a set of hardware and software elements that support the
execution of tasks and the transmission of their associated messages while guaranteeing
the real-time and reliability requirements imposed on the system.

With regard to hardware, DFT4FTT specifies a system architecture in which nodes,
sensors, and actuators are interconnected through a switched Ethernet network. Regarding
the software, DFT4FTT follows a centralized architecture in which a software component
placed inside the switch, called Node Manager (NM), controls the operation of the nodes.
Note that both the NM and the switch are duplicated to be able to tolerate their faults, as will
be discussed later. The goal of the NM is twofold. During normal operation, it orchestrates
the execution of tasks and the transmission of their associated messages. When a relevant
change in the operational context occurs, it carries out a self-reconfiguration process. This
process consists of determining when the current system configuration does not meet the
operational requirements (by a change in either the operational requirements or operational
conditions) and, in response, finding and applying a new one that does. Finally, to attain
high reliability, DFT4FTT includes various static and dynamic fault-tolerance mechanisms,
the last ones relying on the self-reconfiguration process previously introduced.

The rest of the paper is organized as follows. First, in Section 2, we survey some
solutions to implement ADES and point out their limitations. After that, we introduce the
basic aspects of DFT4FTT. In Section 3, we explain the software model, that is, how the
functionalities of the system are represented, and in Section 4, we describe the architecture
of the system, that is, the hardware components conforming to the system, how they are
interconnected, and the fundamentals of their operation. We then tackle fault tolerance.



Sensors 2022, 22, 7099 5 of 33

While in Section 5, we discuss the fault model we assume on the hardware components
and the failure semantics we enforce on them, in Section 6, we describe the fault-tolerance
mechanisms we designed. In Section 7, we explain the self-reconfiguration process, which
is what gives DFT4FTT its ability to implement DFT mechanisms. The feasibility of the
proposed solution is demonstrated in Section 8 by presenting its implementation and
showing its operation in different operational contexts. We identify the most relevant
limitations of DFT4FTT in Section 9. Finally, we summarize the contribution and point out
future work in Section 10.

2. Related Work

Over the last decades, multiple solutions for building a real-time dependable task-
based distributed embedded system have been proposed. We previously conducted a
thorough study of these types of solutions in [8], where we classified and characterized
them. In that work, we discussed that each of these solutions was designed for a different
purpose and, thus, that they are very heterogeneous in the set of services they provide.
Note, however, that this depends on the requirements imposed, which in turn have changed
over the years. Therefore, we classify these solutions into classical and contemporary.

The classical class comprises all those solutions that were developed between the
1970s and 2000s. These solutions tended to be small, not very complex, and isolated. Let
us explain these properties in more detail. First, the systems were made up of a few inter-
connected nodes. Second, the operation they had to carry out was typically simple and,
thus, the software and hardware required were not very complex. Finally, such systems
did not have to coordinate with other systems and, thus, the networks and communi-
cation protocols used were specialized. Some of the most relevant projects addressing
the development of such solutions are the Software Implemented Fault Tolerance (SIFT)
computer [9], the Maintainable Real-Time System (MARS) [10], the Delta-4 [11] or the
Generic Upgradable Architecture for Real-time Dependable Systems (GUARDS) [12].

The contemporary class comprises all those solutions that were developed more or
less from the 2000s until now. Note, in this regard, that at the end of the 1990s there
was a reduction in the price of hardware components which made it possible to develop
bigger and more sophisticated DES. This resulted in users demanding more complex
properties and functionalities. Some examples are more processing power, more network
bandwidth, generality in the design, integration with other systems, and more adaptivity.
Some of the most relevant projects that address the development of such solutions are the
Generic Embedded System (GENESYS) [13], the Industrial Exploitation of the GENESYS
Cross-Domain Architecture (INDEXYS) [14], the Embedded Multi-Core Systems for Mixed-
Criticality Applications in Dynamic and Changeable Real-Time Environments (EMC2) [15]
the Distributed Real-time Architecture for Mixed-Criticality Systems (DREAMS) [16].

It is important to note that although the solutions residing in the second class are
more modern, they do not invalidate the ones in the first class. First, from a dependability
perspective, note that the basic fault tolerance principles have not changed in decades and,
thus, the level of fault tolerance that can be achieved in any of the two classes of solutions
is the same. Second, each solution is designed having a set of objectives in mind, and thus,
each one is specialized in a given domain or context. In this regard, a classical solution may
be more suitable than any contemporary one, depending on the requirements.

Note also that this classification is not strict in the sense that classical solutions can
implement, to some extent, functionalities that are more typical for a contemporary solution.
In this regard, GUARDS can represent the point of transition between the two classes. This
is because GUARDS provide some level of generality as it allows one to create diverse
instances of itself to attain different levels of fault tolerance. Another example is its ability
to support COTS components that can be upgraded over time.



Sensors 2022, 22, 7099 6 of 33

In general, each of these solutions has its own approach with regard to dependability.
Some of them propose specific fault tolerance mechanisms, some others provide different
fault tolerance profiles to choose from depending on the application, and some others
are very open in the sense that only some guidelines are given. Nevertheless, all of them
support active task replication with voting to tolerate affecting the nodes. Moreover,
in some cases, they include reconfiguration capabilities to implement additional fault
tolerance mechanisms, for instance, to recover faulty task replicas to prevent the attrition
of redundancy (see Section 6). However, none of them truly exploits these capabilities to
implement dynamic fault tolerance mechanisms, in conjunction with static ones, to provide
high reliability. That is why, to the best knowledge of the authors, there is no infrastructure
for implementing reconfigurable real-time dependable distributed embedded systems that
includes dynamic fault tolerance.

3. System Software Model

The operation of a DES is defined by the objectives it has to accomplish, that is, its
operational requirements. Among them, the functional requirements are fulfilled due to
the execution of functionalities. Some examples of functionalities in an airplane are thrust
control, climate control, or infotainment. In Section 3.1, we explain how we model the
functionalities of the system, that is, we describe how tasks are characterized.

Note, however, that the interval of time during which a system has to operate, or mis-
sion time, can impose different functional and nonfunctional requirements at different
instants if the said system operates under dynamic operational contexts. This can happen
due to two reasons. On the one hand, a mission is commonly divided into various phases,
which are known at design time. Each of these phases defines the set of sub-objectives to be
met and, thus, the specific operational requirements to be met at every instant. For instance,
in an airplane, the objectives during the taxi phase are different from the ones during
the take-off phase. On the other hand, unpredictable events can also lead to changes in
operational requirements. For instance, in the event of a catastrophic hardware malfunction,
an airplane may require an immediate emergency landing.

Consequently, the normal situation is that the system is providing a subset of all its
possible functionalities, each of them with specific non-functional requirements. That is,
at every instant of time, some functionalities have to be instantiated with some particular
real-time and reliability requirements. In Section 3.2 we explain how we represent the
current operational requirements, what we call the system requirements. Finally, in Section 3.3
we define in more detail the concept of system configuration, that is, how the system can be
set up to fulfill the system requirements at each instant.

3.1. Modeling Functionalities

As introduced previously, functionalities represent what a system has to do. In DFT4FTT
each functionality is implemented by an application which, in turn, is composed of a set of
interrelated tasks that are executed in a sequential and/or parallel manner. More specifically,
an application can be represented as a directed graph in which vertices are the tasks and
edges are the messages these tasks send among them.

As an example, in Figure 2a, we depict a basic sequential control application composed
of three tasks and two messages. First, task S (sensing) consults the value of a sensor.
The value captured is then passed to task C (control) which determines the actuation value
by means of a PID controller algorithm, for instance. Finally, task A (actuation) receives this
value and performs the corresponding actuation. Note, in this regard, that the execution of
an application is a flow of data that starts with at least one input, is processed by multiple
tasks, and that finishes with at least one output. Moreover, although there could be several
inputs at the beginning of the flow and several outputs at the end, there could also be
inputs and/or outputs in the middle of the flow.



Sensors 2022, 22, 7099 7 of 33

S C A
sensor actuation

(a)

τ1

τ2

τ3

τ4

σ1

σ1

σ2

σ3

(b)

Figure 2. Example of applications. (a) Control application example. (b) Generic application example.

Another example, now of a generic application composed of four tasks (τ1, τ2, τ3 and
τ4) and three messages (σ1, σ2 and σ3), is shown in Figure 2b. The first task to be executed is
τ1. This task is responsible for reading a sensor and sending the sampling data to tasks τ2
and τ3 by means of message σ1. Bear in mind that an application always has at least one task
connected to an external input, like a sensor or a human interface. Additionally, note that,
although in this figure two edges emerge from τ1, both correspond to the same message.
This task only performs one transmission and the network is responsible for generating
two copies of the message and delivering them to the appropriated tasks. After that, tasks
τ2 and τ3 process the sampled data in parallel. This results in said tasks sending messages
σ2 and σ3, respectively, to task τ4. Finally, task τ4 processes the input values and performs
some actuation over an actuator. Similarly, as with τ1, every application has at least one
task connected to an external output, like an actuator or a human interface.

A more detailed definition of an application can be found in Equations (1)–(3). First,
as shown in Equation (1), an application can be represented as a 3-tuple, where Γ denotes
its set of n tasks, Ψ denotes its set of m messages and app_class identifies the application as
periodic, sporadic or aperiodic. The different classes of application and their associated
attributes are further discussed later in Section 3.2. Second, as seen in Equation (2), each task
τi can produce a message (σi ∈ Ψ) and can consume various (a set of) messages (Ψi ⊂ Ψ).
Note, however, that there can be tasks that do not produce any message (σi = ∅) and tasks
that do not consume any message (Ψi = ∅). It is important to clarify that, although the
symbol ∅ is typically used to represent an empty set, in this case, we also use it to represent
when this attribute does not have a value. Third, according to Equation (3), each message
σj is produced by one task (τj ∈ Γ) but can be consumed by more than one task (Γj ⊂ Γ).
Note, in this case, that a message always has one transmitter and, at least, one receiver
(τj 6= ∅ ∧ Γj 6= ∅ , ∀ j = 1 . . . m). Finally, note that the attributes τj and Γj represented in
Equation (3) contain redundant information, as in Equation (2) attributes σi and Ψi already
define the relations between tasks and messages. Moreover, formally speaking this could
lead to a non-valid application definition. For instance, one could state in Equation (2) that
task τa produces message σb and in Equation (3) that message σb is produced by task τc,
which is an inconsistency. However, for completeness and clarity, we prefer to describe this
model this way and we assume that these inconsistencies are not going to occur.

app = (Γ, Ψ, app_class) (1)

Γ = {τi(Ci, σi, Ψi), σi∈Ψ ∪ {∅}, Ψi⊂Ψ, i = 1 . . . n} (2)

Ψ = {σj(Cj, τj, Γj), τj∈Γ, Γj⊂Γ, j = 1 . . . m} (3)

Γ: List of tasks
n: Number of tasks
Ci: Worst case exec. time
σi: Message produced
Ψi: Messages consumed
Ψ: List of messages



Sensors 2022, 22, 7099 8 of 33

m: Number of messages
Cj: Worst case tx time
τj: Task producing
Γj: Tasks consuming

3.2. System Requirements

As already discussed, the operational requirements of the system, both functional and
non-functional, can change at runtime. To maintain the specific operational requirements
in the current instant, DFT4FTT uses the so-called system requirements list. This list contains,
from all the applications that could run on the system, only the subset of applications that
are required to meet the functional requirements. Moreover, to represent the nonfunctional
requirements, each of these application definitions is complemented with their specific
real-time and reliability requirements.

Equation (4) depicts one entry of the system requirements. For each application that is
required to be executed we specify not only its list of tasks, list of messages, and class but
also the attributes related to the real-time (rt_reqs) and reliability (rb_reqs) requirements.

app_req = (Γ, Ψ, app_class, rt_reqs, rb_reqs) (4)

The specific list of attributes that is necessary depends on the class of application,
as well as on the class of real-time and reliability requirements, at the current instant:

• Class of application. As previously introduced, this is a static attribute of the ap-
plication that indicates when its execution can be activated. A periodic application
is repeatedly activated after a certain time interval called period. A sporadic applica-
tion can be activated at any time, but there is a minimum interval of time between
two consecutive executions known as minimum inter-arrival time. Finally, an aperiodic
application can be activated at any time.

• Class of real-time requirements. In DFT4FTT, an application can have hard-, soft-,
and non-real-time requirements. A hard-real-time application has to finish its execution
before some deadline. The result of the execution of the said application is no longer
valid after the deadline and this can provoke a system failure, which can have severe
consequences. In a soft-real-time application, it is desirable to finish its execution
before some deadline. That is, missing some deadlines is allowed but the validity
of the result of said execution decreases after the deadline. Finally, a non-real-time
application does not have time restrictions in its execution.

• Class of reliability requirements. In DFT4FTT, an application can have or does not
have reliability requirements. An application with reliability requirements or critical, is
one whose operation is indispensable for the correct operation of the system and, thus,
if it fails the complete system can fail. That is why this type of application is expected
to operate without failing during mission time. As introduced previously, this property
is called reliability and its metric is the reliability level, the probability with which,
in this case, the application is expected to operate correctly and continuously during
the period of time that it is needed. In contrast, an application with no reliability
requirements, or non-critical, is one that could fail without impairing the ability of the
system to operate in a correct manner. Note, in this regard, that the term critical can
be used to refer to highly-safe systems as well as to denote a highly-reliable system.
In this paper, we will use this term with the second meaning.

These classifications of application attributes and requirements result in many combi-
nations. However, DFT4FTT only accepts the combinations that we consider more relevant.
As shown in Equations (5)–(7) periodic application can be hard-, soft-, and non-real-time.
All these three classes of applications require a new attribute T, which represents the period.
Moreover, hard- and soft-real-time applications have an associated deadline D. As con-
cerns the reliability requirements, only periodic hard-real-time applications can be critical.
Note, in this regard, that is very difficult to find a critical application that does not require



Sensors 2022, 22, 7099 9 of 33

a real-time response. Similarly, it is hard to think of a periodic soft- and non-real-time
application that is indispensable for the correct operation of the system. Therefore, we
added the reliability level of the application, or rb, only in Equation (5). This attribute
represents the probability with which the application must operate in an uninterrupted
manner during mission time.

app_req_hrt_p = (Γ, Ψ, app_class, (T, D), rb) (5)

app_req_srt_p = (Γ, Ψ, app_class, (T, D)) (6)

app_req_nrt_p = (Γ, Ψ, app_class, (T)) (7)

As seen in Equations (8) and (9), DFT4FTT also supports sporadic hard-real-time
critical and sporadic soft-real-time non-critical applications. From a real-time perspective,
in both cases, the minimum inter-arrival time is represented as mit in the expressions
below. Additionally, just like periodic applications, sporadic applications have a deadline
D. From the reliability perspective, just like periodic applications, we do not consider
critical applications that do not have strict real-time constraints. Finally, note that we
neither consider sporadic non-real-time applications.

app_req_hrt_s = (Γ, Ψ, app_class, (mit, D), rb) (8)

app_req_srt_s = (Γ, Ψ, app_class, (mit, D)) (9)

Equation (10) shows the attributes of the aperiodic applications supported by DFT4FTT.
Note, in this regard, only non-real-time and noncritical are considered. On the one hand,
as concerns the real-time requirements, aperiodic applications can activate at any instant,
which means that the system does not know when they will be executed and, thus, that the
scheduler cannot schedule them. On the other hand, regarding the reliability requirements,
just like periodic and sporadic applications, we do not consider critical applications that do
not have strict real-time constraints.

app_req_nrt_a = (Γ, Ψ) (10)

3.3. System Configuration

As introduced previously, a change in the operational context can provoke that the
operational requirements are no longer met and when this happens, DFT4FTT finds a
new proper system configuration that allows it to meet them. A system configuration (or
configuration for short) is a given allocation of tasks and messages to nodes and network
links, respectively, together with their execution and communication attributes. Note that
the specific execution and communication attributes depend on the class of the application
and its real-time and reliability requirements.

As concerns the real-time response note, first, the execution of an application can be
seen as a sequence of task executions and message transmissions. For instance, as shown
in Figure 3, the execution of the already mentioned example control application would be
composed of 5 execution phases: (1) execution of the task S, (2) transmission of data from S
to C (SS send sensor value), (3) execution of task C, (4) transmission of data from C to A
(SC send control value), and (5) execution of task A. One of the functions of DFT4FTT is to
trigger the execution of the tasks and the transmission of the messages in the appropriate
instant so that the dependencies between tasks and messages are met and all the deadlines
of the applications are fulfilled. For tasks and messages belonging to periodic or sporadic
applications, these activation instants are determined by a holistic real-time scheduler (see
Section 7.2). For tasks and messages belonging to aperiodic applications, the activation
instant is not pre-defined. Instead, the scheduler reserves part of the computing and
communication resources for the execution of this type of application.



Sensors 2022, 22, 7099 10 of 33

S SS C SC A

1 2 3 4 5

Figure 3. Execution phases of the example control application.

From the perspective of reliability, as will be explained in Section 6, one of the main
fault-tolerance mechanisms in DFT4FTT consists in using task and message replication.
In this regard, as will be further discussed in Section 7.2, DFT4FTT also includes a reliability
analyzer that determines the appropriate number of task and message replicas to meet the
reliability level requirements of the critical applications.

4. System Architecture

The architecture of the DFT4FTT infrastructure, as can be seen in Figure 4, is composed
of several Computational Nodes (CNs), Sensors (S), and Actuators (A) that are interconnected
by means of two custom Ethernet switch replicas, each one embedding a Node Manager (NM)
replica. Next, we describe all these components in more detail.

Figure 4. System architecture.

The CNs are the nodes of the DES, that is, they are the components that execute the
tasks. However, CNs do not decide which tasks they execute and when. As explained
below, it is the Node Manager (NM) the one that dynamically determines the allocation of
tasks in the CNs and then triggers the execution of said tasks and the transmission of their
associated messages appropriately to meet the operational requirements.

The sensors and the actuators (SAs) are the components responsible for interacting
with the environment. Note that, unlike many DES where SAs are attached to the nodes,
in DFT4FTT the SAs are connected directly to the network. This makes it easier for the NM
to allocate the tasks in the CNs, as the SAs can be accessed from any CN. Moreover, this
makes the architecture more fault-tolerant, as SAs and CNs are spatially separated and,
thus, it is hardly possible that they exhibit common-mode failures.

The communication subsystem of DFT4FTT is based on the Flexible Time-Triggered
Replicated Star (FTTRS) [17], which is a switched-Ethernet implementation of the Flexible
Time-Triggered (FTT) [18] communication paradigm. FTTRS was designed and developed
by our group in a previous study and it makes it possible for the nodes of a DES to exchange
real-time messages in a flexible and reliable manner. On the one hand, the real-time and
flexibility features are provided by the FTT paradigm. However, DFT4FTT does not use the
original FTT. Instead, it takes some of the services provided by FTT and adapts or extends
them. How this paradigm is implemented in DFT4FTT is further described in Section 4.1.
On the other hand, FTTRS introduces several fault-tolerance mechanisms to achieve high
reliability in the network. As can be seen in Figure 4, one of them consists in duplicating the
communication channel to tolerate faults affecting the physical components of the network.
We cover all these mechanisms in more detail in Section 6.1.

Finally, as already introduced, the Node Manager (NM) is a central component respon-
sible for controlling the operation of the rest of the components. As this is an indispensable



Sensors 2022, 22, 7099 11 of 33

component, just like the switch, it is duplicated. Actually, as shown in Figure 4, one NM
replica is embedded in each of the switch replicas. This physical placement has many
advantages in terms of monitoring and configuration. The purpose of the NM is twofold.
On the one hand, it is primarily responsible for deciding on the system configuration, that is,
for deciding on the allocation of tasks and messages into CNs and links, respectively, and on
their execution and communication attributes. Note, however, that this is done dynamically
as the operational context changes. For this, the NM carries out a self-reconfiguration process,
further discussed in Section 7, in which the NM constantly checks if the current system
configuration meets the system requirements and, if not, finds and applies a new valid
configuration. On the other hand, once a configuration is deployed into the system, the NM
is also responsible for triggering the execution of the tasks, and the transmission of their
associated messages, so that all the real-time requirements are met.

4.1. FTT in DFT4FTT

The Flexible Time-Triggered (FTT) [18] communication paradigm makes it possible for
the nodes of a DES to exchange real-time messages in a flexible manner. With flexibility, we
mean that FTT provides real-time flexibility, as it supports periodic and aperiodic traffic with
different real-time requirements and operational flexibility as it allows changing the real-time
requirements of the traffic at runtime. Due to its properties, FTT is a suitable solution for
implementing the communication subsystem of DFT4FTT. Typically, solutions relying on
FTT are built on top of it in a multi-layer fashion. However, this is not a good approach for
implementing DFT4FTT for three main reasons:

• First, implementing the additional services required to give support to the execution
and reconfiguration of tasks on top of FTT is non-trivial. This is because these services
require mechanisms already implemented inside FTT, but that are not exposed. For in-
stance, as will be explained below, FTT sets a periodic time base that specifies when
to carry out the different actions necessary to transmit, receive, and reconfigure the
messages. In DFT4FTT these actions are also carried out but they are a consequence of
task-related actions. That is why task-related actions must also be framed in this time
base. Unfortunately, this temporal information is not directly available.

• Second, another drawback of adopting FTT as an independent layer is that introduces
an overhead. On the one hand, note that in layered architectures there is the added
overhead of going through the layers that are not present if components are called
directly. This is an important aspect to consider if we want the system to operate in
real-time. On the other hand, as will be explained in the next item of the list, DFT4FTT
has a different approach than FTT concerning the way a reconfiguration is proposed.
In this sense, some reconfiguration-related services provided by FTT are not used in
DFTT4FTT. This resource overhead could be removed if FTT is not taken as it is.

• Third, recall from the description of the NM that DFT4FTT carries out a self-reconfiguration
process to be able to change the configuration of the system in a semi-automatically
manner. This process requires, among other things, recovery data on the operation of
the communication subsystem to diagnose it and the ability to reconfigure some of its
low-level aspects. Again, this is not possible if FTT is taken as an independent layer.

For all of these reasons, DFT4FTT has been designed to perform a holistic management
of tasks and messages. In this regard, DFT4FTT takes the relevant services provided by FTT
and adapts/extends them to take into account the dependencies among tasks of the same
application and tasks with messages. Moreover, new services have been implemented to
carry out the self-reconfiguration process. In this section, we discuss the most relevant
FTT-related aspects that have been revised, adapted, and implemented in DFT4FTT.

DFT4FTT divides time into fixed-duration time slots called Elementary Cycles (ECs).
Every EC starts with the NM sending a so-called Trigger Message (TM). The purpose of this
message is twofold. On the one hand, it is used to notify CNs, sensors, and actuators when
a new EC starts, that is, it is used as a synchronization mechanism. On the other hand,
this message contains the EC schedule, that is, it contains the list of tasks and messages



Sensors 2022, 22, 7099 12 of 33

that have to be executed and transmitted, respectively, during the current EC. Remember,
in this regard, that the NM includes a holistic real-time scheduler for periodic and sporadic
applications. In contrast, the activation of tasks and messages belonging to aperiodic
applications is not triggered by the TM. They are activated asynchronously.

Regarding the reconfiguration of tasks and messages, DFT4FTT introduces a set
of control messages that allow CNs to manually modify the system requirements (see
Section 7.2.1). Specifically, these messages allow to request for the execution of a new
application, removal of an existing application or change its non-functional requirements.
Furthermore, when the configuration of the system has to be changed, either by manual or
automatic changes in the system requirements, the NM uses command messages to instruct
the CNs to perform low-level changes in the tasks or messages (see Section 7.3).

5. Fault Model and Failure Semantics

Following the set of guidelines defined by Avižienis in [19] for building dependable
systems, this section discusses the most relevant aspects related to the design and the fault
tolerance mechanisms of DFT4FTT. On the one hand, we describe the fault model, that is,
the different classes of faults that are expected to affect the system. On the other hand, we
describe the failure semantics we assume on the components of the DFT4FTT architecture,
that is, in which manner are they expected to behave when experiencing a failure and how
we enforce these failure semantics.

Note that, among the different aspects to be covered according to Avižienis guidelines,
we already addressed partitioning of the system in Section 4 by defining the set of software
and hardware components conforming to the system, as well as their interconnections.
Moreover, the error detection and fault diagnosis mechanisms are later covered when
describing the monitoring process in Section 7.1.

5.1. Fault Model

The fault model describes the types of faults that can affect a given system and the prob-
ability of occurrence of said faults. Following the taxonomy defined by Avižienis et al. [20],
the fault model of DFT4FTT includes non-malicious operational faults affecting the hard-
ware, both internal or external, natural or human-made, deliberate or non-deliberate, due
to accidents or incompetence, and permanent or transient. Two examples of faults that we
consider that could affect a DFT4FTT-based system are the deterioration of the physical
components and electromagnetic interference affecting the execution of the tasks in the
nodes or the transmission of messages in the links. The fault model excludes development,
software, and malicious faults. For instance, manufacturing defects, bugs, and intrusion
attempts are excluded. As concerns the probability of occurrence of faults, we do not make
any assumptions. The only assumptions that we do make are that transient faults affecting
links shall be detectable by the Frame Check Sequence (FCS) error detection mechanism
of Ethernet and, to be able to parametrize the communication subsystem properly, these
transient faults have a known maximum duration.

5.2. Failure Semantics

The failure semantics, or failure mode, is the manner in which a system can behave
when experiencing a failure. It is important to characterize the failure modes of the
subsystems of the system during the design stage as they directly determine the necessary
fault tolerance mechanisms. Note, in this regard, that a subsystem potentially failing in
an unrestricted manner requires more complicated fault tolerance mechanisms. We now
discuss what are the assumptions on the failure modes of the DFT4FTT components (see
Section 4) and how we enforce these behaviors to ease the design of the fault tolerance
mechanism. For this, we follow the hierarchy of failure modes we proposed in [21], which
is strongly based on the one proposed by Poledna in [22].

By default, we assume that any hardware component can fail in an unrestricted manner
as we are using Commercial Off-The-Shelf (COTS) components. However, in the case of



Sensors 2022, 22, 7099 13 of 33

the switch replicas, which include the NMs, we restrict the failure mode to crash failures,
that is, they can only fail by omitting to deliver any result for the requested service, and for
all the subsequent ones. This is done by using internal duplication with comparison in
each switch replica. As concerns CNs and SAs, their failure mode is restricted to incorrect
computation, that is, they can only fail by delivering incorrect results, either in the value or
in the time domain. This is enforced by installing in the switch replicas one Port Guardian
(PG) in each link connected with a CN or SA. PGs police the traffic generated by CNs and
SAs and discard messages considered invalid. Specific unwanted behaviors eliminated are
two-faced behaviors and impersonations [17,23].

6. Fault Tolerance Mechanisms

Fault tolerance can be achieved by means of error processing and fault treatment [24], see
Figure 5. Error processing aims at removing errors from the state of the system before they
provoke a failure. This can be carried out by means of two different techniques. On the
one hand, error compensation consists in providing enough redundancy so that the system
produces correct results, even in the presence of faults. Some types of redundancy [25] that
could be used in a DES are hardware (or space) redundancy, which involves providing ad-
ditional hardware components, like nodes, links, switches, or sensors; software redundancy,
which involves providing additional software, like redundant tasks; and time redundancy,
which involves performing the same action multiple times, with the same hardware and
software, like message retransmission. On the other hand, error recovery consists in, first,
identifying the system state as erroneous and then replacing it with an error-free state.
Note that, in the first step, error detection mechanisms are used. Actually, the term error
detection and recovery is usually utilized. Furthermore, if the error-free state is a previous
state, the technique is called backward recovery; whereas if it is a new state, it is called forward
recovery. On the other hand, fault treatment aims to prevent faults from provoking errors
again, which is a two-step process. First, fault diagnosis is carried out to identify the fault
that causes errors. Second, fault passivation is used to prevent the activation of the fault
again. This can be done by disabling the faulty subsystem.

Fault
Tolerance



Error
Processing

{
Error Compensation
Error Recovery

Fault
Treatment

{
Fault Diagnosis
Fault Passivation

Figure 5. Definition of fault tolerance.

To attain high reliability in a real-time system, it is necessary that the errors do not
impair the ability of the system to meet its deadlines. This is more achievable if errors are
tolerated without introducing a recovery time. That is why DFT4FTT primarily utilizes error
processing with error compensation. For example, as will be explained in Section 6.1, critical
tasks and the messages they produce are replicated. Moreover, task replicas periodically
perform a majority voting on their results so that errors affecting them can be tolerated
even without being detected. This is called fault masking.

Note, however, that error compensation may not be enough to provide the required
level of reliability in critical systems. This is because faults affecting the task replicas,
even if the system is able to tolerate them, may decrease the available level of redundancy.
This issue is called redundancy attrition and reduces the ability of the system to tolerate
additional faults. It is important to address redundancy attrition as it can be caused not
only by permanent faults but also by temporary faults, which are more likely to occur than
permanent ones. DFT4FTT prevents redundancy attrition using a combination of complex
techniques based on error recovery that allows for salvaging faulty replicas of tasks. We
define various techniques, each one addressing a different level of fault severity. The first
technique is a classical forward error recovery mechanism in which a faulty replica uses



Sensors 2022, 22, 7099 14 of 33

the result of the vote to correct its own contribution (see Section 6.2). For faults that cannot
be dealt with using forward error recovery, DFT4FTT includes two reintegration techniques
based on a previous study [26] (see Sections 6.3 and 6.4). Reintegration is similar to error
recovery, but the new error-free state is obtained as a result of reaching an agreement and
performing the necessary resynchronization with other components of the system [21],
in this case, with the other replicas of the group. If the previous techniques do not suffice,
a restoration of the replicas is carried out. This is a technique we developed in this work
and takes advantage of the reconfiguration capabilities of DFT4FTT to reallocate the faulty
replica to a different CN. After that, the previous techniques are used to reintegrate the new
replica with the other replicas of the group (see Section 6.5). Finally, note that some of these
techniques can also be used with non-replicated tasks. In this case, the service provided by
those tasks is lost until these techniques manage to regain said service.

The reconfiguration capabilities of DFT4FTT are not only used to prevent redundancy
attrition. Apart from that, they make it possible for the NM to dynamically select the num-
ber of replicas for tasks and messages, depending on the operational context, to consume
as few resources as possible while guaranteeing the required level of reliability. That is,
as explained in Section 6.6, we can reconfigure the redundancy. Furthermore, in Section 6.7
we discuss a technique that has not been implemented in this work due to its complexity
but that fully exploits the reconfiguration capabilities of DFT4FTT to maximize the reli-
ability of the system while minimizing the amount of resources required. The idea is to
reconfigure not only the number of replicas for tasks and messages but to be able to select
the appropriate fault tolerance strategy at every instant.

In the rest of the section, we describe the set of fault tolerance techniques contained
in DFT4FTT. As shown in Table 1, we divide these techniques into static, here we find
both classical and advanced techniques; and dynamic, the ones that make use of the
reconfiguration capabilities of DFT4FTT. Each technique can include several associated
fault tolerance mechanisms. In the last column, we identify each mechanism as reused
(R) if no significant modifications were necessary to integrate it; adapted (A) if some
modifications were necessary; and new (N) if it was explicitly designed for DFT4FTT.

Table 1. Taxonomy of the DFT4FTT fault-tolerance mechanisms.

Type Technique Mechanism Origin

Static

Fault Tolerance

Error compensation

Spatial replication of the channel R

Temporal replication of critical messages R

Task Replication with majority voting R

Error recovery Forward error recovery R

Reintegration of Lost Redundancy

Periodic triggering of task execution and
message transmission A

Reintegration of task replica internal state
through voting A

Reintegration of very Lost Redundancy
Software reset and Reintegration R

Hardware reset and Reintegration R

Dynamic

Fault Tolerance

Restoration of Lost Redundancy Reallocation of task N

Reconfiguration of the Redundancy
Adjust number of message replicas N

Adjust number of task replicas N

Reconfiguration of the Fault Tolerance Select the proper fault-tolerance strategy N

6.1. Error Compensation

As already introduced in Section 4, to attain high reliability at the network level,
DFT4FTT relies on the Flexible Time-Triggered Replicated Star (FTTRS) [17]. To tolerate
permanent faults affecting the network FTTRS uses space replication in the communications.
Specifically, as shown in Figure 4, CNs and SAs communicate between them through two



Sensors 2022, 22, 7099 15 of 33

switch replicas, which are interconnected through two interlinks, so that the switch replicas
can coordinate their operation. Note, additionally, that this configuration also allows one
to tolerate temporary faults affecting the network. In particular, the type of temporary
network fault that is more relevant due to its probability of occurrence is a temporary fault
affecting a link. This type of fault can corrupt the messages being transmitted which, thanks
to the CRC error detection mechanism of Ethernet (see Section 7.1.2), results in dropped
messages. In any case, since the assumption is that the temporary fault is affecting only one
link and each pair of nodes communicate redundantly via both switches, we can assume
that messages will correctly reach their destinations via the path which is not affected by
the fault, thus tolerating the temporal fault. However, tolerating temporary faults by means
of hardware redundancy is not very efficient because, in the event of a permanently faulty
link, this fault tolerance is lost. This calls for a more suitable fault-tolerance mechanism.

In many systems temporary faults affecting the messages are tolerated using Auto-
matic Repeat Request (ARQ), that is, the transmitter of a message retransmits said message
if the receiver does not acknowledge the reception after a reasonable period of time. ARQ is
not the most appropriate approach for real-time systems since it introduces a non-negligible
and variable amount of delay. That is why in FTTRS temporary faults affecting the links
are tolerated by means of temporal replication. That is, critical messages are proactively
retransmitted k times, being k a static value that is proportional to the expected network
fault occurrence ratio. However, as explained in Section 6.6, in DFT4FTT, this value is
dynamically adjusted to address changing operational contexts efficiently and effectively.

Regarding the NM, it is duplicated to avoid being a single point of failure. Moreover,
the location of the NM replicas is crucial since they must be able to control the operation
of the CNs and the SAs. That is why they are placed in the center of the system, one
inside each switch. Note, additionally, that the two switch and NM replicas must be replica
determinate [22], that is, in absence of faults, assuming both replicas start with the same
state and receive the same inputs, they will produce the same outputs. This aspect has
already been addressed for the switches in [17]. The specific mechanisms ensuring replica
determinism between the NM replicas deserve more space than the one we can use here.
That is why their description is left for a future document.

Finally, at the node level, DFT4FTT uses task active replication with a majority voting
to tolerate permanent and temporary hardware faults affecting the CNs. More precisely,
each critical task is replicated and executed in parallel in different CNs. Additionally,
task replicas periodically vote on their results to obtain a consensus result. When, what,
and how to vote depends on the application. However, we already proposed, in a previous
study [26], an execution scheme for a replicated control application. Specifically, we assume
the type of application depicted in Figure 2a, a basic control application composed of three
tasks S, C, and A. For each of these tasks, several replicas are created and installed in
different CNs. To execute the application while ensuring consensus on replicas, we extend
the execution scheme shown in Figure 3 with new phases each one corresponding to one or
more ECs. This new execution scheme is shown in Figure 6.

S SS VS C SC VC A

Figure 6. Execution phases of a replicated control application. The colors denote the tasks involved.
Green is task S, blue is task C, and orange is task A.

First, in phase Sense (S), replicas of task S obtain the value of their corresponding
sensors. In phase Send Sensor (SS) each of these replicas sends its obtained value to the
other replicas and, also, to the replicas of task C. Then, in phase Vote on Sensor (VS),
replicas of both tasks S and C perform a majority voting with the received values. Note,
in this regard, that replicas of task S use the result of the vote for diagnosis (see Section 6.4),
while replicas of task C use it as their input value. During phase Control (C), replicas of
task C execute the control algorithm to obtain the actuation value, using the consensus
sensor value previously received. After that, the approach followed in phases SS and VS



Sensors 2022, 22, 7099 16 of 33

is repeated. On the one hand, in phase Send Control (SC), each replica of task C sends
the result of the algorithm to the other replicas and, also, to the replicas of task A. On the
other hand, in phase Vote on Control (VC), replicas of both tasks C and A carry out a
majority voting on the actuation values. Finally, in phase Actuate (A), each replica of task
A performs the actuation previously obtained from the voting, using the corresponding
actuators. Note that, when actuators are replicated, some voting mechanism has to be
implemented at the physical level [12] so that, if an actuator replica uses an erroneous
value, the remaining ones are capable of setting the controlled device in the correct state.

Regarding the number of replicas for each task, it has to be odd for the majority voting
to work properly. In general, to tolerate t faulty CNs, at least 2t + 1 task replicas must be
used. In particular, critical tasks have 3 or 5 replicas, depending on their reliability level
requirements and the operational conditions under which the system operates.

6.2. Error Recovery

The voting procedure explained in the previous subsection makes it possible for a task
to provide a correct service, as long as a majority of its replicas operate correctly. Note,
in this regard that if a fault prevents a task replica from operating correctly, the voting
directly masks the error, without the need to detect it. As already indicated, this is called
fault masking. However, if a task replica compares its proposed value with the result of
the voting, it can detect the error and even correct its internal state by substituting the
proposed value with the consensus value. By doing this, we could recover a faulty replica
and, thus, prevent redundancy attrition. Actually, this is a classical forward error recovery
mechanism and, again, its implementation depends on the application. Specifically, is the
developer’s decision when and how this recovery is carried out.

In the type of control application that we assume, the only task that can take advantage
of this error recovery mechanism is task C. This is because the result of the control algorithm
is the only one that can depend on the result obtained by the same algorithm in its previous
execution, that is, it has an internal state that determines the next result. Conversely, tasks
S and A, in principle, do not have an internal state, they just forward the value they receive.
Consequently, to implement error recovery in this type of application only phase VC must
be modified to carry out the actions described above, which is to substitute the proposed
value with the consensus value. In case the application is more complex and, thus, there
are more phases, the error recovery could be implemented in several of these phases so
it occurs more often, which could reduce the amount of time the internal state of a task
replica is inconsistent with respect to the other replicas.

Note, however, that some faults may lead a task replica to desynchronize at the
communication or application level. These faults require a fault tolerance technique beyond
simple error recovery. That is why in the next section we describe two more sophisticated
recovery mechanisms we refer to as reintegration mechanisms.

6.3. Reintegration of Lost Redundancy

To prevent the redundancy attrition provoked by permanent or temporary faults
affecting any of the CNs or the internal state of any of the critical tasks, DFT4FTT includes
two levels of reintegration. Here we describe the first level, which is composed of two
mechanisms that are designed to help a task keep in synchronization with the global timing
and to help the replicas of a task to keep coordination among them.

The first reintegration mechanism is the result of the manner in which CNs activate the
tasks they execute. As previously explained in Section 4, the NM is responsible for periodi-
cally triggering the activation of tasks and the transmission of their message. Consequently,
if a task or a CN suffers from a temporary fault that causes a temporal desynchronization,
the system should be able to resynchronize it upon the next triggering.

The second mechanism makes it possible for the task replicas to recover from a
temporary fault affecting its internal operational state. Note, in this regard, that most tasks
maintain several values that represent their operational state. For instance, the state in a task



Sensors 2022, 22, 7099 17 of 33

implementing a PID controller is the previous value of what in control theory is called error,
that is, the difference between the desired setpoint and the measured process variable. If the
state of a task like this is corrupted, it will permanently fail in delivering correct results.
This fault tolerance mechanism is an extension of the voting described in the previous
sections, and the main idea is to exchange and vote not only on the main output the task
replicas produce but also on the operational state of the application. The implementation
of this mechanism in the type of control application we assume implies modifying, on the
one hand, phase SC so that each replica of task C piggybacks its state in the messages sent
and, on the other hand, phase VC, so that each replica of task C substitutes its own state
with the result of the voting on the states of all the replicas.

6.4. Reintegration of Very Lost Redundancy

In some cases, a fault can corrupt the internal state of a task replica, or the CN where
this replica is being executed, in such a way that it is not possible to reintegrate it using the
just-described mechanisms. That is why DFT4FTT implements various fault-diagnosis and
reset mechanisms that make it possible for the NM to detect when a task replica is affected
by this type of fault and then restart the affected component to remove the error.

The fault-diagnosis mechanisms rely on two types of error counters: the Communica-
tion Error Counter (CEC) to diagnose problems in the communications and the Discrepancy
Error Counter (DEC) to diagnose problems in the operation of the task replicas. There is
one CEC for each message and one DEC for each replicated task, which are kept both in
the NM and in the involved CNs. Moreover, the CNs and the NM collaborate to update the
values of all of these counters properly. Note that these error counters are not exclusively
used in the scope of this fault tolerance technique. The information they provide is taken
into account, together with other information, to carry out a system-level diagnosis which
is part of the self-reconfiguration process of DFT4FTT. Therefore, the procedure followed to
update their value is further explained in Section 7.1.2.

If the value of any of these error counters surpasses a pre-defined threshold, the af-
fected task, the affected CN, and the NM try to recover the lost resources by carrying out
the next sequence of three actions. This procedure finishes when the error is successfully
removed or after the last action is carried out.

First, the task replica tries to reset itself to remove the error. The software reset consists
in initializing the internal state and starting the execution of the task replica from the
beginning. Second, if the NM determines that the task replica was unable to remove the
error, for instance, because the fault affected the ability of the task replica to update the
error counters properly, it sends a command message instructing the task replica to reset.
Finally, if the software reset did not suffice to remove the error, the NM sends a command
message instructing the CN to reset. When this occurs, the CN initializes its internal state
and then starts the execution of all the tasks assigned to it.

Note, at this point, that a node may fail to perform a hardware reset when instructed.
To overcome this issue, we propose a fault tolerance mechanism based on a watchdog timer
(WDT). Specifically, the NM periodically sends a You Are Alive message (YAA) to every
CN considered non-faulty. Then, each CN forwards this YAA message to a dedicated WDT,
which is directly attached but is independent of it. This WDT is responsible for performing
a hardware reset when several YAA messages have not been received for a certain amount
of time. To prevent the WDT from processing a forged YAA message unintentionally
generated by the CN, the NM includes in each YAA message a signature that is dynamically
updated in a way that only the NM and the WDT know. Note, additionally, that this
mechanism can also be useful for recovering a CN when a communication error prevents it
from communicating with the switches.

Finally, note that the set of reset mechanisms described here involves initializing the
internal state of the task replicas. Consequently, although they succeeded in removing the
error, the replica would not be synchronized with the other replicas of the group. That is
why the reintegration mechanisms described in the previous section are used afterward.



Sensors 2022, 22, 7099 18 of 33

6.5. Restoration of Lost Redundancy

In some cases, the set of fault tolerance mechanisms described in the previous section
may not suffice to reintegrate the faulty replica due to the severity of its erroneous situation.
One example is a crash of a CN caused by a permanent fault. However, note that the
NM can still try to prevent redundancy attrition by instructing the reallocation of the
affected tasks to other CNs and then reintegrating them using the mechanisms described
in Section 6.3. We call this technique restoration and it is only possible thanks to the
reconfiguration capabilities provided by the NM.

For critical (replicated) tasks this means that we can implement an N-Modular Redun-
dancy (NMR) with several spares. However, unlike the classical NMR scheme, here we
deal with software spares that can be continuously reallocated, as long as there are enough
communication and computational resources in the system. Similarly, as with the mecha-
nisms described in the previous section, restoration can also be used with non-replicated
tasks, however, in that case, the associated application will not provide its service during
the duration of the restoration process.

It is noteworthy that all the fault tolerance techniques that make use of the reconfig-
uration capabilities of DFT4FTT, like this one and the ones we will explain in the next
two subsections, rely on the self-reconfiguration process carried out by the NM. In this
regard, as will be explained in Section 7, all reconfiguration decisions are taken in a holistic
manner, that is, considering all the fault tolerance mechanisms at the different levels of
the architecture. Recall from the introduction that this is necessary if we want the fault
tolerance mechanisms to operate in an efficient and effective manner.

6.6. Reconfiguration of the Redundancy

The reconfiguration capabilities of DFT4FTT are not only used for implementing the
restoring mechanism previously described. This infrastructure also includes mechanisms
to dynamically select the number of replicas for tasks and messages, depending on the
operational context. Specifically, when the system starts operating in a more stringent
operational context, the number of replicas can be increased to maintain the level of
reliability. Conversely, the number of replicas can be decreased to free resources when the
operational context is more benign.

6.7. Reconfiguration of the Fault Tolerance

In the previous sections, we showed how the reconfiguration capabilities of DFT4FTT
make it possible to implement advanced fault tolerance mechanisms for reallocating tasks,
preventing redundancy attrition, and dynamically selecting the appropriate number of
replicas for tasks and messages to maximize reliability while minimizing the consumption
of resources. Note, however, that DFT4FTT has been designed having flexibility in mind
and, thus, it has a level of reconfigurability that allows implementing even more complex
and dynamic mechanisms. In this sense, we have considered the possibility of accommo-
dating other fault tolerance strategies to both improve fault tolerance and give support to
other dependability attributes.

On the one hand, recall from Section 6.1 that DFT4FTT uses active task replication
with majority voting. This mechanism is adequate for building highly-reliable systems.
However, in some scenarios, other approaches could be more suitable. For instance, if the
system is operating in a degraded mode, less critical tasks could use duplication with the
comparison [25] so that more resources can be used for other more critical tasks. That is,
in extreme situations, we could sacrifice reliability in less critical tasks to provide better
reliability to more critical tasks. On the other hand, DFT4FTT could include additional fault
tolerance strategies to cope with tasks with dependability attributes other than reliability.
Note, in this regard, that, as mentioned in the introduction, dependability contains several
attributes [1]. For instance, availability is a “measure of the delivery of correct service
with respect to the alternation of correct and incorrect service”. That is as availability
assumes that the system can sometimes provide an incorrect service, it is less stringent



Sensors 2022, 22, 7099 19 of 33

when compared with reliability, which requires the service to be provided continuously.
In this sense, DFT4FTT could give support to tasks with availability requirements in an
efficient manner if techniques like duplication with comparison or passive replication
are implemented [25].

Finally, note that these are preliminary ideas that have not been reflected in the
current design of DFT4FTT. Implementing this technique requires adding higher levels of
intelligence into the NM to take the decisions and additional components in the NM and
the CNs to implement the fault tolerance mechanisms that support the specific strategy.

7. Self-Reconfiguration Process

The most important feature of DFT4FTT is its ability to dynamically manage the
computation and communication resources so the system can operate correctly, even if its
operational context changes. As already explained, this is interesting from a functional per-
spective, as the system can change the services it provides to meet changing requirements,
but also from a dependability perspective, as we can implement more effective and efficient
fault tolerance mechanisms (see Section 6). This ability is achieved by means of what we
call the self-reconfiguration process, in which the NM and CNs collaborate to constantly carry
out three consecutive subprocesses called: (1) monitoring process to monitor the environment
and the system itself to obtain the system state; (2) decision process to determine if the system
state fulfills the system requirements and, if not, propose a new system configuration that
does, and (3) configuration change process, to apply the new configuration to the system.

In this section, we describe each of these subprocesses in detail. For this, we rely
on Figure 7 in which we show the internals of the NM, on the left, and one CN, on the
right. Specifically, we show the most relevant software components involved in the self-
reconfiguration process, their dependencies, and the information they exchange. Note,
in this regard, that there are several levels in this architecture. At the bottom, we have
the network, which allows the NM and the CNs to exchange application data and control
messages. Recall from Section 4 that it is based on FTTRS. Moreover, the Communication
Enabler component acts as an intermediary between the network and the rest of the system
components. In the center of the figure, we can see the low-level modules responsible for
collecting and diagnosing the state of the system, as well as for managing changes in the
tasks and messages. Above that, the Task Allocation Scheme (TAS) Service Interface makes it
possible for the set of high-level components to interact with these low-level components
in an easy manner. At the top, in the NM, we find the high-level components responsible
for instructing the changes in the system configuration when necessary; and, in the CNs,
the tasks themselves being executed.

7.1. Monitoring Process

The first step in the self-reconfiguration process is collecting the necessary information
to determine if a change in the system is needed. Specifically, the NM monitors the behavior
of the whole system to obtain a logical representation of its current state called system state.
The system state, as shown in Figure 7, is obtained by means of the Monitoring Manager
(MM). For this, the MM collects information from the PGs (see Sections 5.2 and 7.1.2), in-
spects the messages generated by each CN, and then infers the status of each hardware and
software component. The reason for inferring the state of the CNs is that we assume they
can fail by providing incorrect values and, thus, the information they could provide about
their status would not be reliable. Note, additionally, that collecting all this information is
possible thanks to the privileged placement of the NM in the architecture.

The system state is constituted by different information collected from several parts of
the system. Next, in Section 7.1.1, we explain, for each ingredient of the system state, which
data is gathered and how it is processed. Later, in Section 7.1.2, we describe the diagnosing
mechanisms that make it possible to identify the faulty components of the system.



Sensors 2022, 22, 7099 20 of 33

Figure 7. Internals of the Node Manager and a Computational Node.

7.1.1. System State

As introduced, the system state constitutes a snapshot of the current condition of the
system. Specifically, it encompasses different information about the hardware and software:

• Status of the hardware. This is the list of hardware components, how they are inter-
connected among them and whether they are permanently faulty or not. To determine
the status of the architecture, the MM is fed with the initial architecture of the system,
which is then updated upon the detection of any hardware component suffering
any fault considered permanent. Note that, as previously explained, this is done
exclusively by inspecting the messages transmitted through the network. Specifically,
the MM keeps track of the messages transmitted and detects untimely transmissions
and, in particular, omissions. If the behavior of a CN or a SA deviates from its specifi-
cation for a significant amount of time, it is considered permanently faulty. Further
information about the diagnostic capabilities of the NM can be found in Section 7.1.2.

• Reliability of the hardware. This is the probability with which CNs, SAs, and links
are expected to suffer from faults. Note, in this regard, that this probability can change
dynamically depending on the harshness of the environment. In the case of CNs and
SAs we are interested in their probability of failing, that is, suffering a permanent fault.
For the links, we are interested in their probability of suffering, both permanent and
temporary faults. That is, the probability of losing a link and the probability of losing
a message in a specific link.

• Status of the software. This is the list of tasks executed in each of the CNs and
whether these tasks are faulty or not. There are two ways in which the MM determines
the correct or faulty state of a task. On the one hand, the MM supervises the traffic
generated by each of the tasks to be aware of any message omission. This makes it
possible to detect a crash in the task or errors affecting its communication. On the
other hand, the MM also performs the voting on messages generated by replicated
tasks and then compares the consensus value with the actual value proposed by each
of the replicas. This makes it possible to detect errors affecting the internal state of
a task replica. Note that, for diagnostic purposes, tasks send their messages to the
network, even if the receiving task is in the same node.



Sensors 2022, 22, 7099 21 of 33

7.1.2. Diagnosis

Here we describe in more detail the list of techniques that can be used by the MM
to diagnose both temporary and permanent faults affecting the CNs, SAs, and their links.
This will help to obtain most of the information contained in the system state. For this
purpose DFT4FTT uses two diagnosis techniques: model-based and behaviour-based.

The model-based technique is used in DFT4FTT to determine the reliability level of a
given hardware component when the environment changes. For this, the MM monitors the
environmental conditions under which the system is operating. This monitoring can be
done by means of the sensors already available in the system and, additionally, by means
of new ones installed to capture specific environmental attributes. These data are then used
as the input for a specific model of the hardware component. For the CNs, SAs, and links,
since we are interested in their probability of failure, a reliability model is used. An example
of this kind of model is the one proposed in the MIL-HDBK-217 handbook [27].

The behavior-based technique is used in DFT4FTT to infer the status of a given
hardware or software component solely by inspecting its outputs. Next, we list the different
sources of information we use and explain how we can process the data they provide to
determine the system state.

• Error counters of the network interfaces. Each of the two endpoints of a link is con-
nected to a Network Interface Controller (NIC) implementing the Ethernet protocol.
NICs include mechanisms for detecting and treating network errors. Moreover, the in-
formation regarding the detection of errors is made available in the form of error
counters. Some examples of the information that can be consulted are the number
of malformed frames, collisions, or CRC errors. The MM uses this information to
determine the reliability of the links. On the one hand, it can determine the ratio of
occurrence of temporary faults. On the other hand, if the occurrence of temporary
faults is so high that the communication in a link cannot succeed, the link and its
associated CN or SA are considered permanently faulty and the status of the hardware
is updated accordingly.

• Port Guardians. As introduced in Section 5.2, behind every NIC of each DFT4FTT
switch, there is a module called Port Guardian (PG) [23] that prevents the propa-
gation of errors generated by the CNs and the SAs. Specifically, they discard any
incoming or any outgoing message considered incorrect from the DFT4FTT perspec-
tive. For instance, they detect and thwart attempts of impersonations and two-faced
behaviors [17]. Moreover, PGs have access to the message scheduling and, thus, they
can also detect messages sent untimely and messages omitted. This diagnosis informa-
tion is made available so that the MM can infer the probability with which links suffer
temporary faults, as well as identify permanently faulty links, CNs, tasks, and SAs.

• Acknowledgement messages. As explained in Section 6.4, DFT4FTT contains multi-
ple error counters that allow one to diagnose problems affecting the CNs. Moreover,
there are two copies of each of these error counters, one in the NM and one in the
associated CN. One type of error counter is the Communication Error Counter (CEC),
which helps to diagnose communication problems. In particular, each CEC increases
its value each time its associated CN is not able to transmit or receive a message.
While the NM can easily check if a CN is transmitting properly as it keeps track of
all the traffic passing through the switches, assessing the reception requires that the
CN informs about its received messages. This is done by means of acknowledge
messages, which are also used by the MM to determine the reliability level of the links.
Specifically, the MM can determine the probability of occurrence of temporary faults
affecting the downlinks, as well as identifying permanent faults affecting the links
and CNs.

• Discrepancy Error Counters. The MM also consults the Discrepancy Error counters
(DECs) to have information about the ability of replicated tasks to generate a correct
value. Specifically, as explained in Section 6.1, task replicas periodically exchange their
partial results and then vote on them to obtain a consensus result. Each time a task



Sensors 2022, 22, 7099 22 of 33

replica detects that its proposed result significantly differs from the consensus result,
it is considered that it is not able to produce correct results and, thus, its associated
DEC is increased. This is most likely to occur due to hardware errors affecting the
CN. An example is a bit flip in the memory affecting the internal state of the task.
Consequently, the DEC can serve as a means to determine the reliability level of
the CNs. Moreover, this diagnosis mechanism is also used by the MM to determine
the correct or faulty state of the tasks in the status of the software. Specifically, if a
task replica is unable to produce correct results for a significant amount of time, it is
considered permanently faulty.

• Node heartbeat. Note that all the sources of information previously described relying
on the tasks and CNs producing messages. Consequently, the MM can only do this
diagnosis if they are operating. Therefore, if the periodicity with which tasks in a CN
activate is large, identifying a fault can take a significant amount of time. To overcome
this issue DFT4FTT contains a heartbeat diagnosis mechanism consisting of each
CN periodically responding to the reception of each TM with an I Am Alive (IAA)
message. This makes it possible for the NM to periodically assess the ability of the
CNs to receive a message, generate a response message, and transmit this last message
back to the NM. Note, however, that a CN could fail in a way that it is able to produce
IAA messages but that it is not able to carry out high-level procedures like executing
a task. To also assess the ability of the CNs to execute code, the content of each IAA
message is the result of executing a function that depends on the content of the TM.

7.2. Decision Process

The decision process is responsible for selecting the appropriate system configuration
when the system state does not meet the system requirements. The central component in
this process is the Knowledge Entity (KE). As shown in Figure 7, the KE consults the system
state, as well as the system requirements, and outputs a new configuration, if necessary.
Specifically, it extracts from the system state the set of applications that are being executed
and compares it against the list of tasks from the system requirements to assess the func-
tional requirements. Moreover, the KE also extracts the behavior of the tasks to verify
that their real-time and reliability requirements are also fulfilled. If both functional and
non-functional requirements are met, the system configuration is left as it is. Otherwise,
the KE proposes a new system configuration that fulfills the system requirements.

Next, in Section 7.2.1, we explain how the system requirements (which were first
introduced in Section 3.2) are implemented in the NM. We discuss who can modify them
and how they should be modified. Later, in Section 7.2.2, we explain how the KE can
determine if a new configuration is required. Finally, in Section 7.2.3, we describe how the
KE can find a new configuration that fulfills the system requirements. Note that, as stated
in the introduction, this search process could be very complicated and time-consuming.
This is because the number of potential configurations is huge. Moreover, assessing the
real-time and reliability properties of a configuration could also be non-trivial. Actually,
this is a search problem, which is a very well-known problem existing in many domains
and still an open issue to be solved in an acceptable amount of time. That is why we will not
provide a final solution. Instead, we will present the problem, identify the actors involved
and point out different potential solutions for finding the new configuration.

7.2.1. System Requirements

We already described the system requirements in Section 3.2. In that section, we
explained that it is a list of applications, together with their real-time and reliability require-
ments, that are necessary to meet the operational requirements of the system. This is a very
important piece in the self-reconfiguration process as it dictates the system configuration.
In this sense, we must define well who can modify this list and in which manner so that the
reconfiguration is not compromised. In this section, we discuss the internal organization of
the system requirements, as well as how and by whom it can be modified.



Sensors 2022, 22, 7099 23 of 33

First of all, regarding the internal organization of the system requirements, applications
are divided into two groups depending on the event that triggered their need for execution.

The phase-related applications are those indispensable applications needed to fulfill
the operational requirements of a given phase of the mission. Each phase starts as a result
of the fulfillment of a specific condition. For instance, in a commercial flight, when the
plane reaches a certain altitude, it is considered that the climb phase has finished and that
the cruise phase has started. The Mission Manager in the NM is the one responsible for
properly updating the system requirements when the phase of the mission changes. For this,
before starting the operation, the Mission Manager is fed with the mission specification.
Then, at run-time, the Mission Manager inspects the system state, detects whether any
phase-related condition is fulfilled, and, if so, updates the system requirements accordingly.

The on-demand-related applications are those either indispensable or non-indispensable
applications that are started to cope with unplanned events occurring in the system. These
events are the result of either an external command sent by a human or an internal request
sent by an application. On the one hand, the users of the system can send commands to
change its operation. Some examples are a passenger of a vehicle requesting multimedia
services to the application responsible for the infotainment subsystem which then starts
an additional application to provide such services; and the driver of the vehicle sending
some overruling command, forcing the system to start a critical application to support said
command. On the other hand, tasks are also allowed to modify the system requirements.
Note, in this regard, that, although DFT4FTT tries to automate as much as possible the
operation of the system, designers can create applications that are allowed to change the
configuration of the system. This provides designers with full control of the reconfiguration
capabilities. Tasks, by means of system requirement updates, are allowed to start and stop
applications, as well as to modify the real-time and reliability requirements of the already
running applications (both phase-related and on-demand). Note that modifying the phase-
related applications allows one to do overruling.

These change requests are very powerful as they allow them to completely modify the
operation of the system. However, CNs can fail by producing incorrect results, so requests
could contain wrong information which would result in a wrong system modification.
To solve this issue, we ensure that requests affecting critical applications are only issued
in a reliable manner. For this, two different approaches are proposed. On the one hand,
critical requests can be issued by specific highly-reliable CNs. On the other hand, when a
highly-reliable CN cannot be provided, the task issuing a critical request must be triplicated,
and said request must be agreed upon among the three replicas.

7.2.2. Detecting the Need for a New Configuration

The need for a new configuration is triggered by a change in the operational context,
which results in a change in the system state or system requirements. When this happens,
the KE checks if the current system requirements are met, taking into account the system
state. This involves, first, checking the functional requirements. For this, the KE extracts the
list of tasks that must be executed from the system requirements and the list of tasks that
are being executed from the system state. If there is some discrepancy, the configuration
must be changed to introduce the new required tasks or to remove those that are no longer
necessary to free the resources.

Secondly, the non-functional requirements must also be checked. As concerns the real-
time requirements, there can be discrepancies if the real-time requirements of an application
have been changed. To check that the new requirements are met the KE uses a holistic
schedulability analyzer, that is one that considers tasks and messages together. We propose
to use the work described in [28] to determine a set of execution attributes that ensure that
all applications meet their deadlines. Afterward, we propose to use a task schedulability
analyzer and a message schedulability analyzer to ensure that, considering these execution
attributes, the available computational and communication resources also suffice to meet
the deadlines. Additionally, changes in the operational context can provoke reliability



Sensors 2022, 22, 7099 24 of 33

requirements to stop being met if the environment changes to a more stringent one or if
the reliability requirements change. The assessment of the reliability requirements calls
for a reliability analyzer. Specifically, the NM is provided with a parametrized model of
the system and checks if the level of reliability of the current system state is equal to or
higher than the required reliability level during the mission time. Finally, note that these
type of analyzers typically are very time-consuming. This is a problem since, during the
self-reconfiguration process, the system is not providing the expected service. Moreover,
from a fault tolerance perspective, the longer the system is suffering an error, the more
vulnerable it is to the occurrence of additional errors. That is why it is desirable these
analyzers are online, that is, they are designed to minimize the response time.

7.2.3. Finding a New Configuration

In case the current configuration of the system does not meet the system requirements,
the KE carries out a search to find a proper new one. We have identified three different
aspects involved in this search that are mandatory or desirable:

• The search, among all the possible configurations, has to find a valid configuration,
that is, one that fulfills both the functional and non-functional requirements.

• The time required to find a new valid configuration must be short enough to ensure
that the properties of the system are not compromised. The specific expected behavior
depends on the system itself. Moreover, this time has to be bounded if we want that
the self-reconfiguration process is carried out in a real-time manner.

• It is desirable that the new configuration is as similar as possible to the current one,
that is, it is preferable that that configuration change process involves as few changes
as possible. Note that in this regard, as will be explained in Section 7.3, applying a
new configuration could be complicated depending on the number of changes.

Apart from being the main source of time consumption, introducing non-functional
restrictions into the search process is not trivial. That is why we propose two search
approaches, each addressing these requirements in a different manner:

1. The first search approach consists in taking the list of tasks that are required to be
executed from the system requirements and generating all the combinations of task
distributions, that is, generating one by one, all the possible configurations that fulfill
the functional requirements. As shown in Figure 8, each new potential configuration
is checked by means of a holistic schedulability analyzer, following the guidelines
described in Section 7.2.2, and a reliability analyzer. If the configuration meets all
the requirements, it is output as a valid configuration. Otherwise, we can test the
next potential configuration. The main advantage of this approach is that, if we have
these two analyzers, it is very easy to implement. Moreover, if the non-functional
requirements are checked by separated components, we have the flexibility to change
those components at any time. Additionally, note that we could reduce the search
execution time in two manners. On the one hand, we can execute the two analyzers in
parallel and if one of them determines that the requirements are not met, the current
iteration can be skipped. On the other hand, note from the figure that there is a flow
of information from the different components to the beginning of the search process.
The idea here is, upon the rejection of a configuration, gives some feedback to the first
component to guide the generation of configurations in a smart manner. The main
disadvantage of this approach is that if the component generating the configurations
does not have any feedback, or the feedback is not useful, the configurations are
generated in a random order and, depending on the space of configurations, it can
take a huge amount of time.

2. The second search approach consists in including the real-time and reliability restric-
tions inside the search process. This makes it possible to discard invalid configurations
earlier. Moreover, during the generation of a configuration, these restrictions are taken
into account to allocate the tasks in the CNs, that is, the search process is driven



Sensors 2022, 22, 7099 25 of 33

by these restrictions. Consequently, the problem is converted into an optimization
problem. The main advantage is that, for big configuration spaces, a valid configu-
ration should be found in less time than with the previous approach. Moreover, we
could consider that one valid configuration is better that another valid configuration,
according to some criteria. For example, we could consider favoring configurations
that are easier to reconfigure, configurations that have less energy consumption,
or configurations that provide better fault tolerance. In this regard, it should be easy
to integrate additional criteria during the search. The main disadvantage is that,
in general, the implementation is more complex as we have to include the restrictions
for the non-functional requirements manually. Moreover, they should be properly
integrated into the search process. Furthermore, depending on the selected search
algorithm, it could be even harder.

Figure 8. Diagram of the first search approach where the assessment of the real-time and reliability
requirements is done separately.

Now that we have presented the problem and discussed the two search techniques
that we have considered, we can explain the experimental work we have carried out in
this regard and the results we have obtained. Specifically, we have formulated a simplified
version of the problem for which we have implemented and compared various search
techniques. The problem we have considered consists of allocating a given number of tasks
in a given number of nodes. Moreover, we modeled the real-time restrictions by assigning a
cost to each task and a capacity to each node. A valid configuration is one that contains all
the tasks and the aggregated cost of the tasks in the same node never surpasses its capacity.
In our first work, we solved this problem using classical techniques like backtracking,
heuristic-based techniques like branch and bound with a greedy algorithm, metaheuristic-
based techniques like Tabu search [29], and solvers like Satisfiability Modulo Theories
(SMT) solvers [30]. More details can be found in [31]. In a second work, we explored the
use of machine learning. Specifically, we designed, built, and tested a model based on deep
reinforcement learning that was able to produce valid configurations even faster than the
typical heuristics used in problems similar to this one [32].

We are currently investigating on a proposal for a search solution that fulfills the
different aspects stated at the beginning. Note, however, that depending on the size of the
system, the search process could require a non-negligible amount of time. That is why we
are also considering the use of proactive approaches. Specifically, instead of waiting for a
change to occur and then starting the search process, we propose to foresee the changes
that could affect the system and search for a valid configuration for each case in advance.
Next, we list the approaches we could follow to trigger the search process:

• Search when needed at runtime: This is the classical reactive approach in which the
search process is triggered by a change in the operational context.

• Pre-search one level at runtime: This approach takes the current configuration and
determines all the possible changes in the operational context, or at least the most rele-
vant ones that could occur. For each of them, the KE searches for a valid configuration
and saves it for later use.

• Pre-search all at runtime: This approach is similar to the previous one, but instead
of exploring just a single change in the operational context, we foresee multiple
consecutive changes. The result of this is a tree in which the root is the current



Sensors 2022, 22, 7099 26 of 33

configuration and then, at the level i, we find valid configurations for the occurrence
of i changes. Note that the depth of the tree could be established to any desired value.

• Pre-search all offline: In this approach, we assume an initial state of the system,
and then we determine all the possible sequences of changes that could occur during
the mission, and, for each one, we search a valid configuration. The result is a graph
where the vertices are the valid configurations and the edges are the changes. Note
that this is done offline and stored so it can be used during the operation of the system.

7.3. Configuration Change Process

When the KE determines that a reconfiguration is required, as shown in Figure 7,
the new configuration is delivered to the Configuration Change Manager (CCM), which
orchestrates the low-level changes. To carry out the changes related to the communications,
the CCM relies on the Main Communication Manager. This module sends communication
reconfiguration commands to the Secondary Communication Manager in the CNs to create,
remove, or modify the attributes of the communications. Similarly, the CCM relies on the
Main Task Manager to carry out the changes related to the tasks. This module sends task
reconfiguration commands to the Secondary Task Manager in the CNs to start and stop tasks.

As we discussed in [33], the Configuration Change process starts by releasing all
computational and communication resources that are no longer required according to the
new configuration. It is noteworthy that this is a critical procedure since stopping tasks
abruptly can leave the system in a unsafe state. Two aspects to consider in this regard are
the false errors that could be detected during the transition and the state of the actuators.

On the one hand, stopping tasks without any specific order can provoke scenarios that
can be interpreted as errors by the Monitoring Manager. For instance, if the communication
resources are removed before the associated tasks are stopped, it will happen that a task
will try to use these resources provoking, thus, an error, although this task is no longer
needed. Consequently, tasks and their communication resources must be stopped taking
into account their interdependencies and, in some cases, specific monitoring features must
be disabled for the affected applications.

On the other hand, stopping tasks without any knowledge about the semantics of the
applications can cause the state of the associated actuators to be wrong. For instance, when
a semi-automatic vehicle switches from automatic to manual mode, it can be necessary
to leave some of the actuators in a specific state so that the manual mode starts properly.
The state in which the actuators associated with an application have to be left to perform
a safe termination, we call it termination condition. In some applications, the termination
condition consists in leaving the associated actuators in a predefined state, while in others
consists in finishing the application cycle so that the state of the associated actuators is the
last one calculated.

When all the computational and communication resources that are no longer required
have been released, the CCM instructs the reservation of the new resources. To deal with
the dependency issues, this is done in the opposite order of liberation. First, the new
communications are created and then, the associated tasks are started. Note that neither
the tasks nor the communications start to operate right after being created. More precisely,
when all the computational and communication resources for a given application have
been reserved, the NM triggers the execution of the associated tasks and the transmission
of their messages in the appropriate order. This is possible since, as explained in Section 3,
the NM maintains and enforces the scheduling for each application.

8. Feasibility

In this section, we demonstrate the feasibility of the design of the DFT4FTT infrastruc-
ture by presenting its implementation and showing its operation in various scenarios, each
one involving a different change in the operational context.

As concerns the implementation of DFT4FTT, recall from Section 4 that it is composed
of multiple interconnected hardware components, each one with its own requirements in



Sensors 2022, 22, 7099 27 of 33

terms of computer resources. The CNs and the SAs can be built using simple computing
devices such as microcontrollers or more powerful embedded processors if the tasks to be
executed require it. This is because the basic logic that implements the DFT4FTT features
at the CNs and SAs requires a small amount of computational and memory resources. In
contrast, the custom switch, together with its embedded NM, has more stringent computer
resource requirements. This is because it is responsible for interconnecting and managing
the operation of the CNs and the SAs. The device implementing this switch must be
provided with multiple Ethernet interfaces and it must be able to carry out its operation
with very low delay. As explained later in this section, we propose to build the switch
using a regular multi-core computer equipped with enough Ethernet interfaces. Its logic,
conversely, can be implemented in software. This provides a high level of flexibility to
modify its behavior while having enough computational and memory resources to operate
effectively. In fact, modern computers can be used to execute resource-intensive programs,
such as programs for solving optimization problems. In this regard, using this type of
device for implementing the switch is still a convenient decision even if its logic becomes
more sophisticated. Note, however, that specific parts of the switch could be implemented
using other devices, like a Field-Programmable Gate Array (FPGA), to reduce its response
time when the system needs to operate under very tight time constraints.

Apart from the aforementioned implementation aspects, the amount of resources
required to build the system directly depends on: the amount of DFT4FTT features finally
implemented; the techniques used to implement them; the complexity of the application to
be executed and the number of CNs and SAs the application requires.

To demonstrate the feasibility of the design of DFT4FTT we constructed a prototype
composed of 1 NM and 6 CNs. Note that we tried to keep the physical architecture as
simple as possible to focus on the fault tolerance capabilities of DFT4FTT. In this sense, this
prototype did not cover de replication of the NM. Moreover, SAs are not directly connected
to the NM. Instead, we assume that the specific sensors and actuators required in each
scenario are already connected to the corresponding CNs.

This prototype includes all of the mechanisms that make it possible for the NM to:
monitor the CNs to determine the state of the system; change its configuration, that is,
the allocation of tasks; and, finally, enforce the corresponding scheduling of tasks and
messages. Note that, as already explained in Section 7.2, as the definitive specification
of the decision process is left for future work, in this experimental evaluation the set of
changes that must be applied in each of the scenarios is statically defined.

The logic of the NM, as well as the CNs, was implemented in software using the
C language, which is extensively used in embedded devices due to the high level of
determinism it exhibits. In the case of the NM, the resulting software runs on a computer
equipped with an Intel Core i7-4770 @ 3.40 GHz processor, 8 GB of RAM, and two Intel
I350-T4 quad-port Ethernet server Adapters. In contrast, for the CNs, we use specific
hardware typically used in embedded devices. Specifically, each CN is implemented
by means of a Jetway JBC373F38-525-B barebone, which contains an Intel Atom D525 @
1.80 GHz processor, 2 GB of RAM, and four standard Ethernet network adapters.

In the conducted experimentation, we reproduced the typical operational context
changes under which an ADES operates. This includes:

• The initialization of the system
• Changes in the operational requirements due to a change in the mission phase
• Changes in the operational conditions due to permanent hardware faults
• Changes in the operational conditions due to changes in the environment

Regarding the software executed by the CNs, although DFT4FTT supports many
different shapes of applications, to make the experimentation easy to construct, execute and
explain in this prototype all the applications are shaped like a regular control application,
which we believe is representative of the type of applications that are typically executed in
an ADES. Recall from Figure 2a that a typical control application is composed of three tasks
connected in the form of a chain. The execution cycle starts with task S which retrieves



Sensors 2022, 22, 7099 28 of 33

some sensor value that is sent to task C performing some processing on it to obtain an
actuation value that is sent to task A which enforces it. Additionally, note that, as explained
previously in Section 6.3, tasks may need to consult and modify data related to the state
of the application and as tasks can be placed in any CN, said state must be exchanged
among the tasks. That is why, every time a task sends a message to another one, the state of
the application is piggybacked into said message. Moreover, the last task (the actuation
task) sends the state of the application, and optionally the actuation value, to the first task
(the sampling task) to close the cycle. Finally, the execution scheme of the application is
comprised of 6 phases, each one involving the execution of a task (S, C, and A) or the
transmission of their messages (data and state).

Next, we describe each of the 4 scenarios involved in the experimentation we carried
out. This includes the specific operational context simulated, as well as the response of
the NM and the CNs. Figure 9 summarizes the configurations applied in each scenario.
Each row corresponds to one specific scenario, while each column corresponds to one
specific CN. Consequently, each cell of the table contains the list of tasks being executed
in a given CN in a given scenario. Regarding the notation, the capital letter indicates the
application, the subscript indicates the number of the task in said application and the
superscript indicates the number of replicas. For instance, B3

2 identifies the task 2 (control
task) of application B, replica 3. Note that the number of replicas is omitted when no
replication is used. The cells corresponding to the CNs that do not perform any task are
depicted as “–”. Finally, grey cells denote faulty CNs.

CN 1 CN 2 CN 3 CN 4 CN 5 CN 6

0
𝐴1 𝐴2 𝐴3

– – –
𝐵1 𝐵2 𝐵3

1
𝐶1 𝐶2 𝐶3

– – –
𝐵1
1 𝐵2

1 𝐵3
1 𝐵1

2 𝐵2
2 𝐵3

2 𝐵1
3 𝐵2

3 𝐵3
3

2
𝐶2 𝐶3 𝐶1

–
𝐵1
2 𝐵2

2 𝐵3
2 𝐵1

3 𝐵2
3 𝐵3

3 𝐵1
1 𝐵2

1 𝐵3
1

3
𝐶2 𝐶3 𝐶1

𝐵1
2 𝐵2

2 𝐵3
2 𝐵1

3 𝐵2
3 𝐵3

3 𝐵1
1 𝐵2

1 𝐵3
1 𝐵1

4 𝐵2
4 𝐵3

4 𝐵1
5 𝐵2

5 𝐵3
5

Figure 9. Experimentation scenarios.

8.1. Scenario 0: Initialization of the System

As soon as the hardware and software components have been powered on, the NM
instructs the CNs to start running the necessary applications to cover the basic operations
of the system. Specifically, as can be seen in Figure 9, in this prototype these applications
are A and B. While the three tasks belonging to the application A are distributed in CNs 1,
2, and 3, the three tasks of application B are all executed in CN1.

This scenario demonstrates the ability of DFT4FTT to start a set of predefined applica-
tions when it starts automatically.

8.2. Scenario 1: Change in the Mission Phase

As explained in Section 3.2 the Mission Manager can modify the list of system require-
ments when a relevant event occurs. For this experimentation, we provide the Mission
Manager with a mission specification indicating that the system must change to mission
phase 1 when the value obtained by task A1 through its sensor exceeds a certain threshold.

For this, the Mission Manager inspects the messages generated by CN1 and when
the condition is met, the associated changes are written into the system requirements.
This, in turn, triggers the execution of the KE, which instructs the CCM to apply the new
configuration. Specifically, as shown in Figure 9, application A is deallocated in favor of
application C, which is distributed in CNs 1, 2, and 3 identically as in the case of application
A. Moreover, the reliability requirements of application B are increased and, as a result,



Sensors 2022, 22, 7099 29 of 33

the number of its task replicas is increased. More precisely, two new replicas for each task
of application B are started in CNs 2 and 3.

This scenario demonstrates the ability of the NM to monitor the operation of the tasks
to identify relevant events, stop and start applications, as well as increase the number of
task replicas of an application from 1 to 3.

It is important to highlight several aspects regarding this scenario. First, all the changes
for applications A, B, and C are triggered at the same time, at the end of the application
cycle. This is possible since all of them have the same period and, thus, the end of the cycle
coincides. However, nothing prevents the CCM from orchestrating individual changes
in different phases of the cycle. Second, the mechanisms used to activate the replicated
tasks and their communication have been designed to make said replication transparent.
That is, it is not necessary to introduce special code to build a task replica. Finally, passing
from 1 to 3 application replicas is not straightforward. This is because the state of the
new replicas must be the same as the original replica. Moreover, this cannot be done
through the regular reintegration mechanisms described in Section 6.3, as the number of
new replicas is higher than the number of original replicas and, thus, the voting would
mask the correct state. To overcome this issue, the NM initializes the new replicas in a
particular manner. After loading the associated tasks into the CNs, the NM triggers the
execution of all the replicas in the last phase of the application cycle. By doing this, the NM
can intercept the message containing the correct state, transmitted by the actuation task
of the original replica, and forward the corresponding message copies to the new replicas.
During the first phase of the cycle, the new replicas update their state with the correct state
received previously.

8.3. Scenario 2: Change in the Architecture

After the system automatically enforces the configuration associated with mission
phase 1, we simulate the crash of CN1 by manually shutting it down. The NM is able to
detect this failure due to the heartbeat mechanism described in Section 7.1.2. When the
Monitoring Manager notices that CN1 omits the transmission of several consecutive IAA
messages, CN1 is diagnosed as faulty. This triggers the execution of KE, which instructs
the CCM to reallocate the tasks that were being executed in CN1 to other CNs. As shown
in Figure 9, we move C1 to CN5 and all the tasks of application B, replica 1, to CN4.

In this scenario, we demonstrate the ability of DFT4FTT to diagnose CNs as faulty and
to reallocate tasks that have been lost to restore them. Note that, in the case of application
C, this means that, after some downtime, its service is restored. However, in the case
of application B, its service is still provided thanks to the additional replicas operating
correctly. What the reallocation does is restore the lost replica to, in turn, restore its ability
to tolerate additional faults in the future. Recall that this restoration process is possible
thanks to the DFT mechanisms and it would not be possible with solely static ones.

8.4. Scenario 3: Change in the Environment

This experimentation finishes by simulating a more hostile environment. As a result,
to maintain the required level of reliability of application B, the number of its task replicas
is increased. For this, we simulate a radiation sensor connected to task C1 and, thus, we
can extract the level of harshness of the environment from the messages this task produces.
Specifically, the Monitoring Manager supervises these message and updates the reliability
level of all hardware components in the system state accordingly. Similarly to the previous
cases, a modification in the system state triggers the execution of the KE which, in turn,
instructs the CCM to increase the number of replicas of B from 3 to 5. As shown in Figure 9,
the new replicas are started in CN5 and CN6.

Note that in this case, the increase in replication is completely transparent, as there is
already a majority of replicas operating correctly. That is, the NM does not need to carry
any additional operation to initialize the new replicas; instead, the regular reintegration
mechanisms based on majority voting suffice to make the state of all the replicas consistent.



Sensors 2022, 22, 7099 30 of 33

In this scenario, we demonstrate the ability of DFT4FTT to monitor the traffic to
detect changes in the environment, update the system state accordingly, and increase the
number of task replicas of an application from 3 to 5. Recall that this reconfiguration of the
redundancy is only possible thanks to the DFT mechanisms. If only static ones were used,
the number of replicas would have been 5 from the beginning which is not efficient.

9. Limitations

DFT4FTT presents interesting features that make it suitable for implementing a wide
range of ADES. Note, however, that during the design some concessions were made to
achieve these features and, thus, it does not suit in some specific cases. The most important
limitation of DFT4FTT is derived from its use of a star topology. Having the NM in the center
of the network has several benefits: (1) the traffic can be monitored and controlled very
easily, (2) the process of finding a new system configuration is easier since the topology is
very simple, (3) changing the system configuration is straightforward and takes a short time
as the CNs are directly connected to the NM, and (4) the design of the fault tolerance is much
simpler, as it can be implemented in a centralized manner. Nevertheless, if the system to be
built requires CNs and SAs to be highly distributed, for instance, in a smart city, the amount
of necessary cabling would make this endeavor unattainable. Likewise, the maximum
number of CNs and SAs a DFT4FTT-based system can handle is also constrained. This is
because the NM needs to dedicate specific network hardware and computational resources
to each component connected to it. Consequently, a large number of components may
require an amount of hardware and resources impossible to place inside the switch.

A system requiring high distribution and/or a large number of nodes has to be
designed using a more appropriate topology. In these cases, it is typical to adopt a mesh
topology composed of multiple switches interconnecting the nodes. Moreover, in networks
like those, the Software-Defined Networking (SDN) paradigm is typically used to ease
the management of the switches. For this, SDN follows a centralized approach in which
one or more SDN controllers (the control plane) dynamically reconfigure the forwarding
tables of the multiple switches (the data plane). Despite SDN was not initially designed for
industrial application, due to its lack of real-time and dependability support [34,35], in the
last years, there have been many works, like these ones [36–38], trying to overcome these
limitations. Consequently, although SDN does not address the management of the tasks, it
is a potential solution that could be adapted to implement the communication subsystem
of DFT4FTT. Despite that, FTTRS natively ensures a real-time and reliable behavior, and
as explained above, provides several benefits that ease the design and implementation.

Another aspect that limits the self-reconfiguration capabilities of DFT4FTT is the
number of hardware resources. In this regard, note that these capabilities are built on top of
non-physical components like tasks and messages. These elements can be created, removed,
and modified dynamically. In contrast, physical components like CNs and network links
are also necessary, but they cannot be managed dynamically. When the system is started,
a specific amount of physical resources are available, and they gradually degrade due to
permanent faults. Since these resources cannot be regenerated, the self-reconfiguration of
DFT4FTT is constrained by the ones that are available at each instant.

It should be mentioned that, although we did not address the maintainability [20] of the
system, that is, the “ability to undergo modifications and repairs”, the flexibility with which
we designed DFT4FTT could be used to implement additional mechanisms to support the
replacement of CNs and SAs, with little effort.

10. Conclusions and Future Work

In this paper, we describe the work we carried out to design and implement the
fundamental aspects of a self-reconfigurable infrastructure to build distributed embedded
systems with real-time, reliability, and adaptivity requirements. At the network level, this
infrastructure relies on FTTRS, a network that makes it possible for the nodes to exchange
messages while guaranteeing the three previously mentioned requirements. Specifically,



Sensors 2022, 22, 7099 31 of 33

FTTRS provides a means to exchange real-time traffic while allowing to change online the
attributes of the communications. Moreover, it provides high reliability through space and
time redundancy. At the node level, this infrastructure implements the functionalities in the
form of applications. Each application has specific real-time and reliability requirements
and is composed of tasks executed in a sequential and/or parallel manner. We have
designed a set of mechanisms that make it possible to dynamically allocate tasks in the
nodes performing the computation. A given allocation of tasks and messages, together
with their operational attributes, is called configuration, and a change in the configuration
can be triggered by a change in the system requirements or in the system state.

To ensure that real-time requirements are fulfilled, every time a new configuration is
needed, the system searches for a configuration that makes all the tasks and messages meet
their deadlines. As concerns the reliability requirements, critical tasks are replicated using
the N-Modular Redundancy with spares technique. Consequently, when searching for the
new configuration, we also ensure that critical tasks have enough replicas.

One of the most important aspects to address in future work is the single point of
failure that the Node Manager represents. To solve this issue, we plan to duplicate the
Node Manager and introduce mechanisms to make both replicas replica-determine so that
they can operate in parallel and seamlessly tolerate the failure of one of them.

Another aspect we are working on is the characterization of the self-reconfiguration
time. This is a very important system attribute from a real-time perspective as it determines
how fast the system can react to changes. As explained, the self-reconfiguration is done in
three steps: detect the need for a new configuration, determine a new valid configuration
and apply the said configuration. While the first and the third steps are deterministic and,
thus, we can find an upper bound, we do not yet have any mechanism to determine how
much time it takes to find a valid configuration using the searching approaches discussed.

From a dependability perspective, it is also very appealing the idea of extending the
decision process and the fault tolerance mechanisms of DFT4FTT to support multiple fault
tolerance strategies that could be applied dynamically. This would make it possible to give
support to other dependability attributes such as availability or safety.

Finally, note that the name of the Knowledge Entity is not arbitrary. The purpose of
this software component is to collect information about the system and, by means of a
set of rules (the knowledge) decide on the system configuration. In this regard, we also
considered the idea of complementing it with a so-called Wisdom Entity that, instead of
rules, could operate by means of machine learning. In contrast to the Knowledge Entity,
which follows a reactive approach, the Wisdom Entity could follow a proactive approach
in which the artificial intelligence could foresee the need for changes in the configuration
and instruct them in advance to maximize the efficiency and effectiveness of the system.

Author Contributions: Writing—original draft, A.B.; Writing—review & editing, M.B., J.P., L.A., F.P.
and P.P.-R. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by grant TEC2015-70313-R (Spanish Ministerio de Economía y
Competividad), by FEDER funding, by grant PID2021-124348OB-I00 funded by MCIN/AEI/10.13039/
501100011033/ERDF, EU. Luís Almeida was supported by the Portuguese government through FCT-
MCTES within the CISTER Research Unit (UIDB/04234/2020).

Data Availability Statement: Not applicable

Acknowledgments: We thank Paulo Pedreiras who helped to clarify aspects related to the holistic
scheduling of tasks and messages. We are also immensely grateful to Antonio Teruel for his help in
the formalization of the software model.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2022, 22, 7099 32 of 33

Acronyms

The following acronyms are used in this manuscript:

ADES Adaptive distributed embedded system
CCM Configuration Change Manager
CEC Communication Error Counter
CN Computational Node
COTS Commercial Off-The-Shelf
DEC Discrepancy Error Counter
DES Distributed embedded system
DFT Dynamic Fault Tolerance
DFT4FTT Dynamic Fault Tolerance for the Flexible Time-Triggered Ethernet
EC Elementary Cycle
FTT Flexible Time-Triggered communication paradigm
FTTRS Flexible Time-Triggered Replicated Star
KE Knowledge Entity
MM Monitoring Manager
NIC Network Interface Controller
NM Node Manager
NMR N-Modular Redundancy
PG Port Guardian
SAs Sensors and actuators
SDN Software-Defined Networking
TM Trigger Message

References
1. Avizienis, A.; Laprie, J.C.; Randell, B. Fundamental Concepts of Dependability. UCLA CSD Report no. 010028, LAAS Report no.

01-145, Newcastle University Report no. CS-TR-739, 2001.
2. Burns, A. System Mode Changes—General and Criticality-Based. In Proceedings of the 2nd Workshop on Mixed Criticality

Systems (WMC), RTSS, Rome, Italy, 2 December 2014.
3. Kim, K.H.K.; Lawrence, T.F. Adaptive fault-tolerance in complex real-time distributed computer system applications. Comput.

Commun. 1992, 15, 243–251. [CrossRef]
4. Årzén, K.E. Preface to special issue on adaptive embedded systems. Real-Time Syst. 2013, 49, 337–338. [CrossRef]
5. Laprie, J.C. From dependability to resilience. In Proceedings of the 38th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks, Anchorage, AK, USA, 24–27 June 2008.
6. Knight, J.; Strunk, E.; Sullivan, K. Towards a rigorous definition of information system survivability. In Proceedings of the

DARPA Information Survivability Conference and Exposition, Washington, DC, USA, 22–24 April 2003; pp. 78–89. [CrossRef]
7. Proenza, J.; Barranco, M.; Ballesteros, A.; Álvarez, I.; Gessner, D.; Derasevic, S.; Rodríguez-Navas, G. DFT4FTT Project. Available

online: http://srv.uib.es/dft4ftt/ (accessed on 1 September 2022).
8. Álvarez, I.; Ballesteros, A.; Barranco, M.; Gessner, D.; Djerasevic, S.; Proenza, J. Fault Tolerance in Highly Reliable Ethernet-Based

Industrial Systems. Proc. IEEE 2019, 107, 977–1010. [CrossRef]
9. Wensley, J.; Lamport, L.; Shostak, R.; Weinstock, C.; Goldberg, J.; Green, M.; Levitt, K.; Melliar-Smith, P. SIFT: Design and analysis

of a fault-tolerant computer for aircraft control. Proc. IEEE 2008, 66, 1240–1255. [CrossRef]
10. Kopetz, H.; Damm, A.; Koza, C.; Mulazzani, M.; Schwabl, W.; Senft, C.; Zainlinger, R. Distributed fault-tolerant real-time systems:

The Mars approach. IEEE Micro 1989, 9, 25–40. [CrossRef]
11. Powell, D. (Ed.) Delta-4: A Generic Architecture for Dependable Distributed Computing; Springer: Berlin/Heidelberg, Germany, 1991.

[CrossRef]
12. Powell, D. A Generic Fault-Tolerant Architecture for Real-Time Dependable Systems; Springer: Boston, MA, USA, 2001. [CrossRef]
13. Obermaisser, R.; Kopetz, H.; Kuster, S.; Huber, B.; El Salloum, C.; Zafalon, R.; Auzanneau, F.; Gherman, V.; Kronlof, K.; Waris, H.;

et al. GENESYS: A Candidate for an ARTEMIS Cross-Domain Reference Architecture for Embedded Systems; Suedwestdeutscher Verlag
fuer Hochschulschriften: Chisinau, Moldova, 2009.

14. Eckel, A.; Milbredt, P.; Al-Ars, Z.; Schneele, S.; Vermeulen, B.; Csertán, G.; Scheerer, C.; Suri, N.; Khelil, A.; Fohler, G.; et al.
INDEXYS, a Logical Step beyond GENESYS. In Proceedings of the Computer Safety, Reliability, and Security, Vienna, Austria,
14–17 September 2010.

15. Weber, W. Embedded Multi-Core Systems for Mixed Criticality Applications in Dynamic and Changeable Real-Time Environments.
2017. Available online: https://www.artemis-emc2.eu/ (accessed on 1 July 2022).

http://doi.org/10.1016/0140-3664(92)90107-P
http://dx.doi.org/10.1007/s11241-013-9175-3
http://dx.doi.org/10.1109/DISCEX.2003.1194874
http://srv.uib.es/dft4ftt/
http://dx.doi.org/10.1109/JPROC.2019.2914589
http://dx.doi.org/10.1109/PROC.1978.11114
http://dx.doi.org/10.1109/40.16792
http://dx.doi.org/10.1007/978-3-642-84696-0
http://dx.doi.org/10.1007/978-1-4757-3353-2
https://www.artemis-emc2.eu/


Sensors 2022, 22, 7099 33 of 33

16. Larrucea, A.; Martinez, I.; Perez, J.; Brocal, V.; Peiró, S.; Ahmadian, H.; Obermaisser, R. DREAMS: Cross-Domain Mixed-Criticality
Patterns. In Proceedings of the Workshop on Mixed-Criticality System, Porto, Portugal, 29 November 2016.

17. Gessner, D.; Proenza, J.; Barranco, M.; Ballesteros, A. A Fault-Tolerant Ethernet for Hard Real-Time Adaptive Systems. IEEE Trans.
Ind. Inform. 2019, 15, 2980–2991. [CrossRef]

18. Pedreiras, P.; Almeida, L. The flexible time-triggered (FTT) paradigm: An approach to QoS management in distributed real-time
systems. In Proceedings of the International Parallel and Distributed Processing Symposium, Nice, France, 22–26 April 2003; p. 9.
[CrossRef]

19. Avizienis, A. Building dependable systems: How to keep up with complexity. In Proceedings of the International Conference on
Fault-Tolerant Computing, Pasadena, CA, USA, 27–30 June 1995; pp. 4–14.

20. Avizienis, A.; Laprie, J.C.; Randell, B.; Landwehr, C. Basic concepts and taxonomy of dependable and secure computing.
IEEE Trans. Dependable Secur. Comput. 2004, 1, 11–33. [CrossRef]

21. Proenza, J. RCMBnet: A Distributed Hardware and Firmware Support for Software Fault Tolerance. Ph.D. Thesis, Universitat de
les Illes Balears, Palma, Spain, 2007.

22. Poledna, S. Fault-Tolerant Real-Time Systems: The Problem of Replica Determinism; The Springer International Series in Engineering
and Computer Science; Springer: Boston, MA, USA, 1996; Volume 345. [CrossRef]

23. Ballesteros, A.; Gessner, D.; Proenza, J.; Barranco, M.; Pedreiras, P. Towards preventing error propagation in a real-time Ethernet
switch. In Proceedings of the 18th IEEE International Conference on Emerging Technologies & Factory Automation (ETFA),
Cagliari, Italy, 10–13 September 2013.

24. Laprie, J.C. Dependability: Basic Concepts and Terminology; Springer: Berlin/Heidelberg, Germany, 1992.
25. Johnson, B.W. Design & Analysis of Fault Tolerant Digital Systems; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA,

USA, 1988.
26. Barranco, M.; Derasevic, S.; Proenza, J. An Architecture for Highly Reliable Fault-Tolerant Adaptive Distributed Embedded

Systems. Computer 2020, 53, 38–46. [CrossRef]
27. DOD. MIL-HDK-217F-2 Military Handbook, Reliability Prediction of Electronic Equipment; Department of Defense: Washington, DC,

USA, 1995.
28. Calha, M.J.B. A Holistic Approach Towards Flexible Distributed Systems. Ph.D. Thesis, Universidade de Aveiro, Aveiro, Portugal, 2006.
29. Glover, F. Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 1986, 13, 533–549.

[CrossRef]
30. Steiner, W. An Evaluation of SMT-Based Schedule Synthesis for Time-Triggered Multi-hop Networks. In Proceedings of the 31st

IEEE Real-Time Systems Symposium, San Diego, CA, USA, 30 November–3 December 2010; pp. 375–384. [CrossRef]
31. Alcover, B.; Ballesteros, A.; Proenza, J. Evaluación de Técnicas de Búsqueda de Configuraciones en Sistemas Empotrados Distribuidos

Adaptativos; Technical Report; Universitat de les Illes Balears: Palma, Spain, 2021. (In Spanish)
32. Rotaeche, R.; Ballesteros, A.; Proenza, J. Exploring the use of Deep Reinforcement Learning to allocate tasks in Critical Adaptive

Distributed Embedded Systems. In Proceedings of the 26th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), Vasteras, Sweden, 7–10 September 2021. [CrossRef]

33. Ballesteros, A.; Barranco, M.; Arguimbau, S.; Costa, M.; Proenza, J. Temporal Replication of Messages for Adaptive Systems
using a Holistic Approach. In Proceedings of the 24th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), Zaragoza, Spain, 10–13 September 2019. [CrossRef]

34. Henneke, D.; Wisniewski, L.; Jasperneite, J. Analysis of realizing a future industrial network by means of Software-Defined
Networking (SDN). In Proceedings of the 2016 IEEE World Conference on Factory Communication Systems (WFCS), Aveiro,
Portugal, 3–6 May 2016; pp. 1–4. [CrossRef]

35. Wollschlaeger, M.; Sauter, T.; Jasperneite, J. The Future of Industrial Communication: Automation Networks in the Era of the
Internet of Things and Industry 4.0. IEEE Ind. Electron. Mag. 2017, 11, 17–27. [CrossRef]

36. Ternon, C.; Goossens, J.; Dricot, J.M. FTT-OpenFlow, on the Way towards Real-Time SDN. SIGBED Rev. 2016, 13, 49–54. [CrossRef]
37. Moutinho, L.; Pedreiras, P.; Almeida, L. A Real-Time Software Defined Networking Framework for Next-Generation Industrial

Networks. IEEE Access 2019, 7, 164468–164479. [CrossRef]
38. Álvarez, I.; Proenza, J.; Barranco, M. Time Redundancy Mechanisms for Tolerating Temporary Faults in the Communication

Subsystem of Systems Based on Time-Sensitive Networking Standards. Ph.D. Thesis, Universitat de les Illes Balears, Palma,
Spain, 2021.

http://dx.doi.org/10.1109/TII.2019.2895046
http://dx.doi.org/10.1109/IPDPS.2003.1213243
http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1007/b102609
http://dx.doi.org/10.1109/MC.2019.2944337
http://dx.doi.org/10.1016/0305-0548(86)90048-1
http://dx.doi.org/10.1109/RTSS.2010.25
http://dx.doi.org/10.1109/ETFA45728.2021.9613409
http://dx.doi.org/10.1109/ETFA.2019.8869470
http://dx.doi.org/10.1109/WFCS.2016.7496525
http://dx.doi.org/10.1109/MIE.2017.2649104
http://dx.doi.org/10.1145/3015037.3015045
http://dx.doi.org/10.1109/ACCESS.2019.2952242

	Introduction
	Related Work
	System Software Model
	Modeling Functionalities
	System Requirements
	System Configuration

	System Architecture
	FTT in DFT4FTT

	Fault Model and Failure Semantics
	Fault Model
	Failure Semantics

	Fault Tolerance Mechanisms
	Error Compensation
	Error Recovery
	Reintegration of Lost Redundancy
	Reintegration of Very Lost Redundancy
	Restoration of Lost Redundancy
	Reconfiguration of the Redundancy
	Reconfiguration of the Fault Tolerance

	Self-Reconfiguration Process
	Monitoring Process
	System State
	Diagnosis

	Decision Process
	System Requirements
	Detecting the Need for a New Configuration
	Finding a New Configuration

	Configuration Change Process

	Feasibility
	Scenario 0: Initialization of the System
	Scenario 1: Change in the Mission Phase
	Scenario 2: Change in the Architecture
	Scenario 3: Change in the Environment

	Limitations
	Conclusions and Future Work
	References

