
MASTER’S THESIS

EXPLORING THE USE OF DEEP REINFORCEMENT
LEARNING TO ALLOCATE TASKS IN CRITICAL ADAPTIVE

DISTRIBUTED EMBEDDED SYSTEMS

Ramón Rotaeche Fernández de la Riva

Master’s Degree in Intelligent Systems (MUSI)

Specialisation: Artificial Intelligence and Internet of Things

Centre for Postgraduate Studies

Academic Year 2020-21



EXPLORING THE USE OF DEEP REINFORCEMENT
LEARNING TO ALLOCATE TASKS IN CRITICAL ADAPTIVE
DISTRIBUTED EMBEDDED SYSTEMS

Ramón Rotaeche Fernández de la Riva

Master’s Thesis
Centre for Postgraduate Studies
University of the Balearic Islands

Academic Year 2020-21

Key words:

Deep Reinforcement Learning, Distributed Embedded Systems, Combinatorial Optimization, Machine Learning

Thesis Supervisor’s Name:

Alberto Ballesteros Varela, PhD

Julian Proenza Arenas, PhD



Exploring the use of Deep Reinforcement Learning
to allocate tasks in Critical Adaptive Distributed

Embedded Systems
Ramón Rotaeche Fernández de la Riva

Tutor: Alberto Ballesteros Varela and Julián Proenza Arenas
Trabajo de fin de Máster Universitario en Sistemas Inteligentes (MUSI)

Universitat de les Illes Balears
07122 Palma, Illes Balears, Espanya

ramonrotaeche@gmail.com

Abstract—A Critical Adaptive Distributed Embedded System
(CADES) is a group of interconnected nodes that must carry
out a set of tasks to achieve a common goal, while fulfilling
several requirements associated to their critical (e.g. hard real-
time requirements) and adaptive nature. In these systems, a key
challenge is to solve, in a timely manner, the combinatorial
optimization problem involved in finding the best way to allocate
the tasks to the available nodes (i.e. the tasks allocation) taking
into account aspects such as the computational costs of the tasks
and the computational capacity of the nodes. This problem is
not trivial and there is no known polynomial time algorithm to
find the optimal solution. Several studies have proposed Deep
Reinforcement Learning (DRL) approaches to solve combinato-
rial optimization problems and, in this work, we explore the
application of such approaches to the tasks allocation problem
in CADESs. We first discuss the potential advantages of using a
DRL-based approach over several heuristic-based approaches to
allocate tasks in CADESs, and we then demonstrate how a DRL-
based approach can achieve similar results to the best performing
heuristic in terms of optimality of the allocation, while requiring
less time to generate such allocation.

Index Terms—Deep Reinforcement Learning, Distributed Em-
bedded Systems, Combinatorial Optimization, Machine Learning

I. INTRODUCTION

A Distributed Embedded System (DES) is a combination of
hardware and software, where the hardware is a set of inter-
connected nodes, and the software is typically implemented
as a set of computational elements, called tasks, which are
executed in the nodes in order to achieve some common goal.
DESs play a key role in many engineering fields, such as
avionics, energy management or telecommunications.

DESs are used in real-world applications, and some of
them have real-time (RT) and dependability requirements. We
refer to DESs that have demanding RT and dependability
requirements (i.e. strict real-time response and very high
dependability) as critical DESs. A system is said to have
RT requirements if its correct operation depends, not only
on its ability to provide a correct response, but also on
its ability to provide such response before some deadline.
On the other hand, a system is said to have dependability
requirements [14] if it is required to have certain attributes
that provide enough trustworthiness on the system’s ability to

provide a correct service. Two key dependability attributes are
reliability and availability. A system has high reliability when
it exhibits high probability of providing a correct service in
a continuous manner. This is an essential requirement when
the consequences of an incorrect service can be significantly
negative (e.g. harm to humans or significant loss of data). In
contrast, a system has high availability when it exhibits high
probability of being prepared to provide a correct service. This
is a requirement in systems where failures might be acceptable
as long as the time and effort required to go back to a correct
operation are minimal. For example, in a local WiFi network.

Nowadays there is strong interest in using critical DESs
in changing operational contexts. By operational context, we
mean all the relevant aspects involved in the operation of
the system that are susceptible to change. More specifically,
as seen in Fig. 1, we consider changes in the functional
requirements (i.e. the fundamental functionalities the system
must carry out) and in the non-functional requirements (e.g.
the RT guarantees or the dependability guarantees). These
requirements are referred to as operational requirements. Ad-
ditionally, we also consider the operational conditions, that
is, the circumstances under which the system has to operate.
This includes both the state of the environment and the state
of the system itself which could change, for example, due to
faults in its components. For a critical DES to operate effi-
ciently and effectively under a changing operational context,
it needs to be adaptive. Adaptivity in the context of a critical
adaptive distributed embedded system (CADES), implies that
the system must be able to dynamically assign its computing
and communication resources while in operation.

Figure 1. Components of the operational context



4

The Dynamic Fault Tolerance for Flexible Time-Triggered
Ethernet (DFT4FTT) project [3] proposes a complete infras-
tructure that enables CADESs to meet their RT and depend-
ability requirements while adapting to changing operational
contexts. In DFT4FTT, a privileged node called Node Manager
(NM) (Fig. 2) is responsible for continuously monitoring
the operational context. If a change jeopardizes the correct
operation of the system, then the NM is also responsible for
searching and applying a new system configuration in a timely
manner. A system configuration (or configuration for short)
in DFT4FTT determines several attributes for each task and
message. In particular, for each task and message, it defines the
node to which it is assigned; schedule-related attributes such
as the period, the deadline, or the priority level; and the level
of replication. Replication consists of executing redundantly
(multiple times) a given task or a given communication in
order to increase the dependability of the system by making
it tolerant to faults in some of the replicas.

Figure 2. DFT4FTT architecture. A key component of the DFT4FTT
network is the Node Manager (NM), which is in charge of monitoring the
operational context, finding a new configuration if a change occurs, and
applying such configuration.

The general goal that motivated this work was to explore the
use of Machine Learning (ML) techniques to find new system
configurations in the context of the DFT4FTT project. There
are several reasons that make us consider ML, and in partic-
ular Deep Reinforcement Learning (DRL), as an interesting
approach to solve this problem. For example, several studies
have shown that DRL can outperform other approaches for
solving similar problems. The reasons for exploring a DRL-
based approach as well as the main theory behind ML and
DRL are presented in more detail in section III.

Motivated by the general goal of exploring the use of
ML to find new system configurations in DFT4FTT, and
as discussed further in section II, we decide to focus on
the tasks allocation problem (i.e. deciding which tasks are
assigned to each node), which is one of the multiple parts
of a system configuration. Thus, the specific objective of this
project is to design and implement a ML-based approach
capable of allocating tasks to nodes in a CADES that follows
the DFT4FTT guidelines, and analyze the potential benefits of
such approach both qualitatively and quantitatively. In order to
achieve such objective we have executed the following tasks:
• Define the specific tasks allocation problem that needs to

be solved (e.g. allocation criteria, assumptions made)
• Select the best ML-based approach to solve our problem
• Analyze the potential benefits of the selected ML-based

qualitatively

• Define and implement the selected ML-based approach
• Execute the experiments required to quantitatively ana-

lyze the potential benefits of our approach
The results presented in this document show that a DRL-

based approach is a promising option to find new system
configurations in DFT4FTT, and the conclusions of this work
will help guiding future research in the line of work of
the DFT4FTT project. The remainder of this document is
structured as follows. In the next section, we specify the
problem to be solved, including the necessary simplifications.
In section III we justify the use of a DRL-based approach and
introduce the theory behind DRL and the specific techniques
employed in this work. In section IV, we present our DRL-
based solution. In section V, we show the experiments we
have carried out together with their results. Additionally we
compare these results with those obtained for heuristic-based
solutions. In section VI we discuss related work. Finally, in
section VII, we discuss the conclusions and future work.

The remaining sections assume some basic understanding
of ML concepts and, in particular, of the design and training
of Deep Neural Networks (DNNs).

II. PROBLEM STATEMENT

As with many engineering and mathematical problems, a
reasonable approach to solve a complex issue is to break it
down into smaller and simpler parts on which to gradually
build a solution. In line with this principle, we have decided
to narrow the scope of this work by simplifying the concepts
of system configuration and operational context introduced in
section I.

A. System configuration: simplifications considered

In this work we focus on a key aspect of a system configu-
ration: the tasks allocation. Given a set of tasks that must be
executed, a tasks allocation can be defined as the distribution
of such tasks into the nodes of the system. More formally, it
is a many-to-one binary relation between the set of tasks and
the set of nodes available.

We leave aside other elements of the system configuration
such as the tasks replication or the communications between
nodes. Therefore, in the rest of this document we use the term
“tasks allocation” rather than “configuration” to emphasize
that we are only solving this aspect of the system configu-
ration. Similarly, we will refer to “tasks reallocation“rather
than “reconfiguration“ when talking about the specific act of
finding a new tasks allocation after changes in the operational
requirements.

It must be noted that the ability to reallocate tasks not
only makes the system more adaptive, but also contributes to
improve the dependability. This is because such reallocation
ability allows the system to recover tasks, meaning that it can
tolerate faults affecting tasks or nodes.

B. Operational context: simplifications considered

As discussed in section I, adaptive distributed embedded
systems must be able to operate under unpredictable dynamic



5

Figure 3. Minimizing the number of active nodes - Illustrative example. A reallocation in order to keep the number of active nodes at a minimum

operational contexts, which encompass both the operational
requirements and the operational conditions.

The operational requirements considered in our problem
are the set of tasks that must be allocated. We assign a
computational cost to each task, which is a scalar number
representing the quantity of resources that each tasks needs in
order to be properly executed.

The operational conditions considered in our problem are
the resources available to execute tasks in each node, which
we refer to as the computational capacity of each node. A
node’s computational capacity determines the number of tasks
it can execute at the same time. The tasks allocated to a given
node cannot add up to a total computational cost higher than
the node’s capacity.

The Node Manager (NM) must allocate any given set of
tasks to the available nodes. Each set of tasks may have a
different size (i.e. different number of tasks), and each task
of the set might have a different computational cost. In our
system, the sets of tasks could change unpredictably and the
NM should be able to reallocate the tasks as a response to this
changes. This is in contrast to a non-adaptive system where
the NM would only be programmed to deal with some specific
sets of tasks defined a priori.

To simplify, we set the nodes’ computational capacity to be
constant for all the nodes and throughout the entire duration
of the system operation.

We simplify the RT requirements by factoring them via the
computational cost of the tasks and the computational capacity
of the nodes, This means that if the NM is able to allocate all
the tasks to the available nodes so that no node receives a sub-
set of tasks with an aggregated computational cost higher than
its computational capacity, we can consider that the tasks will
meet their deadlines (see subsection D, Assumptions made,
for a discussion on the assumptions required for this to be
true). This is a simplification that allows us to avoid explicitly
addressing the tasks deadlines, execution time, periods, RT-
related factors, etc; which would add enormous complexity to
the problem and hence we leave it for future research.

C. Tasks allocation criteria
When the set of tasks that must be allocated changes (i.e.

when the operational requirements change) the NM must find

a new tasks allocation. Such allocation could be chosen based
on different criteria. We will model the problem where the NM
must find the tasks allocation that, for a given set of tasks, uses
the least number of nodes, which we will refer as the number
of active nodes. If a new task appears, the set of tasks that need
to be allocated changes, and a reallocation might be required
to keep the number of nodes at a minimum. See the example
in Fig 3: initially, the set of tasks to be allocated is Task 1
to Task 5 (represented in the top half of the picture), but if
in a later step a new task (Task 6 in the picture) needs to be
allocated, the new set of tasks that the node manager must
allocate is Task 1 to Task 6, which triggers a reallocation.

We chose to try to minimize the number of active nodes
as our main goal for several reasons. The first one is that
it results in us essentially trying to solve a version of the
well known bin-packing problem [10], meaning that there are
several well studied algorithms that we can compare with our
DRL-based solution in terms of their performance. In addition,
this allocation criterion would help to achieve the potential
non-functional operational requirement of reducing the energy
consumption, since a minimum number of nodes would have
to be active in order to execute all tasks. Lastly, and this
is more contentious, it could be argued that minimizing the
number of active nodes contributes to meet the RT requirement
(which, as discussed earlier, is a typical non-functional opera-
tional requirement in critical systems), because concentrating
tasks in the same node reduces the network traffic (as less
messages are required between nodes, which simplifies the
scheduling of the complete distributed system). Of course,
concentrating tasks in a minimum number of nodes has its
own disadvantages (e.g. more challenging scheduling in each
of the active nodes, higher severity in the event of a failure),
and therefore it is not our intention to present this allocation
criteria as a sufficient condition for a well-designed CADES.

It must be noted that despite we model the search for tasks
allocation that minimizes the number of nodes as an opti-
mization problem, our system does not need to find the best
possible tasks allocation (i.e. the optimum). The system can
work with just "good" tasks allocations. In fact, as discussed
later, our proposed approach will find good solutions but is
not guaranteed to find the optimal solution. This is completely



6

expected since, as discussed later, no algorithm has been found
for this problem, other than an exhaustive search, capable of
guaranteeing the finding of the optimal solution for any given
set of tasks.

D. Assumptions made

We consider the problem in which all the tasks presented
to the Node Manager (NM) must be allocated to nodes.
Therefore, it is necessary to guarantee the existence of an
allocation that includes all the tasks (i.e. no task is left without
a node assigned). This could be enforced in the design of a real
system by having a number of nodes large enough to guarantee
a solution given the maximum possible number of tasks and
the possible maximum cost. In a real scenario, this cannot
be fully guaranteed because there is always the possibility of
failing nodes, meaning there is a always a chance that there are
not enough nodes to execute all tasks. In this work, we will
assume that in such case, we would have some mechanism
like the one in DFT4FTT [3] by which the system enters in
degraded mode, taking measures such as prioritizing the most
critical tasks or stop replicating some tasks.

An additional condition is required to meet the RT re-
quirements, which is that the subset of tasks assigned to
each node is schedulable. Schedulable means that, given each
task’s computation time and period, it is possible to find a
schedule for the node that always meets the deadlines for
said tasks.This requirement could be enforced (for nodes that
use RT operating systems applying rate-monotonic scheduling)
by capping each of the nodes’ capacity made available in
the allocation process to 69.3% of its actual computational
capacity, since Liu & Layland [16] proved that for any set
of n periodic tasks, a schedule exists if the resulting node’s
utilization is below 69.3%. The node’s utilization is the sum
of each task’s utilization, which is defined as the computation
time required to execute the given task in the given node,
divided by the task’s period. Therefore, in order to use this
theorem to enforce our schedulability assumption (i.e. that
the subset of tasks assigned to each node is schedulable) in
practice, it would require to express the tasks’ computational
cost as the number of operations required each time the task is
executed divided by the task’s period, and to express the node’s
computational capacity as 0.693 multiplied by the number of
operations that the node can execute in a time unit.

E. Tasks reallocation requirements

Lastly, two requirements related to the tasks reallocation
that are common in CADES have been considered: memory
requirements and latency. Given that in many systems the
NM’s software needs to be deployed in resource-constrained
processors such as microcontroller units (MCU), it is important
to develop an algorithm that can be stored in these devices’
flash memory, which is up to 1MB in industrial settings [15],
and that is able to generate a new tasks allocation as fast as
possible to increase the likelihood that that not only the tasks
meet their RT requirements but also that the reconfiguration
itself can be done in a quick manner (although we will not
try to establish any strict RT response requirements for the

reconfiguration itself). In our work, we have factored these
requirements by ensuring that our model’s size is below 1MB
and by having the inference latency as one of the dimensions
benchmarked in our experiments.

F. Summarized problem statement

Recapitulating, the actual problem tackled in this work has
been the design of a solution capable of allocating tasks to
nodes in a way that ensures that no node receives more tasks
than it can handle, while minimizing the total number of active
nodes (i.e. nodes that receive at least one task). In addition,
special attention will be paid to the memory requirements and
time required to generate a solution.

III. INTRODUCTION TO DRL AND MOTIVATION FOR A
DRL-BASED APPROACH

The problem we are trying to solve (as described in the
previous section) is an optimization problem, since we want
to minimize the number of active nodes. More precisely, it
is a combinatorial optimization problem, which is a type of
optimization problem where the objective is to find the optimal
object from a finite set of objects (in our case, the set of objects
would be the set of all possible ways in which the tasks can be
allocated, and an object would be a specific mapping between
tasks and nodes).

As mentioned in the previous section, our problem is
equivalent to the bin-packing problem [10], which is an
NP-optimization problem, meaning that there is no known
polynomial time algorithm to find the optimal solution [12].
This types of problems are typically be solved using solvers
(e.g. [4]) or heuristics. In this work, we wanted to explore
alternative approaches based on ML techniques, which, as
detailed later in this section, might present a number of
advantages.

In the rest of the section, we first introduce the concept
of Deep Neural Network (DNN), which is a key component
of the discussed Machine Learning approaches. Secondly, we
introduce the concept of supervised ML and discuss why it
is not fit for our purpose. We then introduce the concept of
Reinforcement Learning and Deep Reinforcement Learning
(DRL). Lastly, we elaborate on why DRL is the right approach
for this problem and reflect on its suitability to a CADES.

A. Deep Neural Networks

As discussed in section II, in our problem the input is a
set of tasks and the computational cost of each task, while
the output must be some representation of how these tasks are
assigned to the available nodes. We need to learn some way to
map our inputs to the output. Given the high dimensionality
of our input-output pairs, we considered Deep Learning (DL),
that makes use of Deep Neural Networks (DNNs) [7] to
parameterize the input-output mapping function.

A deep neural network, given an input x and an output y,
is a mapping function y′ = f(x, θ), that tries to approximate
the unknown function f∗ which maps any possible set of
input-output pairs y = f∗(x). The symbol θ represents the



7

parameters that define this mapping function (i.e the operations
that map x to y) and they can be “learnt" using different ML
algorithms. There are many types of DNNs, which differ in
the computations they perform to compute the output based on
the input. However, all DNNs have some things in common
that is precisely what makes them a DNN.

First of all, the input and outputs are always represented
as multidimensional arrays (a.k.a. tensors), with no specific
restriction to the number of dimensions. For example, the
output can be a simple scalar (which can be seen as a 1x1
array), or a colored image, which is represented as a three-
dimensional array.

Secondly, all the computations of a DNN can be represented
as a composition of functions, each function is referred to
as a layer that takes the array output by the previous layer,
performs a mathematical operation, and returns a new array.
The array taken by the first layer would be the input, and
the array returned by the last array would be the output. This
layered representation is the reason we call it a “network",
and they are called "deep" because they typically chain a large
number of layers. See Fig 4.

Figure 4. Schematic view of a Neural Network. Deep Neural Networks
(DNNs) are just Neural Networks with multiple hidden layers[7]

Lastly, each of these layers typically have several neurons
which take each element from the input array, multiply it by a
scalar and then apply an activation function. The scalars that
multiply the elements of the input array are precisely the learnt
parameters θ of a network. The activation function is typically
a non-linear transformation (e.g. ReLU [7], soft-max [7])

Figure 5. Schematic view of a neuron. Elements from the array returned
by the previous layer are multiplied by a scalar (the parameters θ) and then
a non-linear activation function is applied.

B. Supervised Machine Learning

The first family of ML techniques that we considered was
supervised ML, which allows to infer a function (a.k.a learn
a function) that is able to map input data to an output (a.k.a

estimation or prediction) even if the model has never ‘seen’
that input data before. That is why it is said that supervised ML
models learn to ‘generalize’. In order to do this, supervised
ML techniques require a training dataset with examples of
input-output pairs. However, supervised ML is quite limited
for our purposes, because it requires examples of the optimal
tasks allocation (desired output) for each set of tasks in the
training dataset. There is no known polynomial time algorithm
to find the optimal solution for our problem [12], so generating
optimal solutions is complex and time consuming, specially
with large sets of tasks.

C. Reinforcement Learning

Once supervised learning was discarded for the reasons
described in the previous section, further research led us
to conclude that the right approach for this problem was
Reinforcement Learning (RL). Reinforcement Learning (RL)
is the sub-field of machine learning that studies methods for
a decision maker, the agent, to learn, only by interacting with
the environment (everything outside the agent), what actions
to take so as to maximize a numerical signal, the reward [20],
accumulated over time.

The RL problem is formalized using a decision process
(Fig. 6), where at each time step t, the agent receives a
representation of the environment’s state St and on that basis
selects an action At. As a consequence of its action, the agent
receives the numerical reward Rt and the new state St+1.

Figure 6. The agent–environment interaction in a RL decision process[20]

The mechanism that the agent uses to decide which action
to take is called policy. A policy is a mapping from states
to actions [20], which we denote by π(At | St). In some
RL approaches like the one used in our work, the policy is
a parameterized policy, meaning that such mapping between
states and actions is a parameterized function. The objective
is to learn the parameters (i.e. to learn the policy) that yields
the maximum reward. The parameters, which we denote by θ,
are modified based on the reward obtained in the interactions
with the environment, using techniques like the policy gradient
method [20], which is the one we use and which we explain
in detail in the next section.

D. Deep Reinforcement Learning

One way to parameterize the policy that is followed by
the agent is with a DNN, since a DNN is effectively a
parameterized function that takes an input (in this case, the
state) and produces an output (in this case, the action). Using a
DNN, is particularly useful when the states space is very large
(or infinite), like in our case where the number of different sets
of tasks that the agent can receive is very large (as the number



8

of total tasks can vary as well as the cost of each task). Given
that we use a DNN to parameterize the policy, our approach
falls into the field of Deep Reinforcement Learning (DRL),
which is the term used to refer to the set of RL techniques
that make use of DNNs. Note that our approach is only one of
many ways in which DNNs can be used in RL, so the method
we will detail later on is not a comprehensive view of what
DRL is.

E. Rationale for a DRL approach

One of the main reasons for DRL being a better approach to
our problem is that, as opposed to supervised ML, the model
can learn to take better actions (in our case the actions would
be the tasks allocation) without actual examples of what the
right action is. The only signal it needs is the reward associated
to each action that is undertaken. For example, in our case and
based on the problem statement from previous section, the
reward would be higher the lower it is the number of active
nodes.

One can see that our problem fits perfectly in the RL
framework: the NM (the agent) has to select among a set of
possible tasks allocations (the actions), based on the tasks cost
and nodes capacity (the state), in order to minimize the number
of active nodes (the reward). In fact, although the study of
modern RL falls under the ML umbrella, its “modern fathers”
A. Barto and Richard S. Sutton [20] were highly influenced
(as declared by themselves [20]) by previous ideas in the field
of adaptive optimal control (e.g. [13]), a field concerned with
controlling unpredictable dynamical systems, and which one
could see as more closely related to CADESs.

Lastly, it is worth mentioning that when we first decided to
explore the use of DRL to tackle this problem, although we
had some intuitions on its potential advantages, it was driven
primarily by the desire to undertake such an academic exercise.
However, as we progressed in our research, we realized that a
DRL-based approach, when compared to solvers and heuristic
based algorithms, could have several advantages that make it
a real alternative for CADESs. Namely:
• DRL methods have proved to be near as good or even

better than many popular heuristics in solving different
combinatorial optimization tasks [5], [9].

• The same algorithm can be used to teach the agent
to maximize any reward function. In contrast, solvers
and heuristics used in combinatorial optimization are
generally specific to the problem statement. This is
especially relevant when using high-dimensional states
(i.e. states characterized by a large number of variables)
and/or complex reward functions. In those cases, finding
a heuristics-based solution might require significant ad-
hoc work.

• Once a DNN is trained, the inference latency (i.e. the
time required for the DNN to generate a solution) is
relatively low, with the potential to be lower than many
heuristics that might require exploring the search space,
sorting the inputs, etc. This suggests that DRL agents
might be a suitable solution for a CADES with real-time
requirements.

• Recent developments in Tiny ML [15], [6] propose frame-
works to deploy complex DNN models on resource con-
strained processors such as microcontroller units (MCU),
with good results in terms of inference accuracy and
latency. This suggests that DRL agents could be used
in resource-hungry CADESs.

IV. PROBLEM FORMULATION AND APPROACH

As discussed in section II, in this work we aim to design of
a solution capable of allocating tasks to nodes in a way that
ensures that no node receives more tasks than it can handle,
while minimizing the total number of active nodes (i.e. nodes
that receive at least one task).

Our tasks allocation problem maps to the DRL framework
discussed in the previous section as follows:

1) the state is the set of tasks that must be allocated, each
of them with a cost

2) the environment is the set of nodes available and its
capacity

3) the action is a specific mapping of tasks to nodes
4) the reward must be some scalar that is inversely propor-

tional to the number of nodes used (since we want to
minimize this number)

5) the policy is a DNN that maps any given state to an
action (i.e. any given set of tasks to a specific allocation
of tasks to nodes)

Before jumping into the details in the upcoming subsec-
tions, let’s discuss the items listed above, which will help to
outline the design decisions that are required to formulate an
approach. These design decisions are then discussed one by
one in the upcoming subsections.

If we want our DNN to take a given set of tasks as an
input, and generate as the output a specific allocation of those
tasks to nodes, the first thing we need is a way to numerically
represent both a set of tasks and an allocation of tasks to
nodes. This is what we call the input-output representation
approach, and is discussed in section A.

The second thing we need to define is how the reward
is computed, because as mentioned above, the only real
restriction we have is that it needs to be scalar that is inversely
proportional to the number of nodes used. This, the reward
signal approach, is what we discuss in section B.

Third, we need to choose a specific RL technique that
can be used to “teach" our policy to allocate tasks in a
way that maximizes the reward. For the sake of clarity, note
that "teaching our policy to allocate tasks in a way that
maximizes the reward" is equivalent to saying “finding the
DNN parameters that map inputs to outputs in a way that
maximizes the reward". The RL approach is discussed in
section C.

Lastly, the DNN has to take the input (the set of tasks)
and generate the output (the allocation of tasks to nodes). As
mentioned, the numeric format for the input and the output is
discussed in section A. However, we also need to define the
operations that take place to compute the output based on the
input, which depends on the architecture of the DNN. This,
the DNN’s architecture, is discussed in section D.



9

A. Input - output representations approach

The input (i.e. the state) to our parameterized policy (i.e.
to our DNN) is the set of tasks that must be allocated. We
decide to represent it as a sequence S of l tasks characterized
by their cost ci, i ∈ [1, L].

We decide to represent a tasks allocation (i.e. a specific
mapping of tasks to nodes) as follows. Our representation (i.e.
the output of the DNN) will be a sequence A that represents
the order in which the tasks in S are allocated to nodes
following a given heuristic H . To represent this allocation
order, we define A as a sequence of L integers ai ∈ [1, L],
i ∈ [1, L], where ai represents the position of the task in the
input sequence S. This representation is better understood with
an example, like the one shown in (Fig. 7).

With regards to the heuristic H that we use once we have
defined the allocation order A, we will experiment with two:
• A Next-Fit (NF) heuristic: the first available node receives

tasks until task ai does not fit, at which point ai is
allocated to the next node, which keeps receiving tasks
until the same happens, and so on.

• A First-Fit (FF) heuristic: as with NF, the first node is
“opened" and tasks are sequentially allocated until a task
does not fit. However, when a new node is “opened"
the previous one is not “closed". Nodes are kept “open"
unless they are completely full. On each allocation step
all “open" nodes are checked until a node where the task
fits is found. If no node is found, then a new node is
“opened".

Figure 7. Input-output representation example for a set of 5 tasks and node
capacity C = 5, for the case where the NF allocation heuristic is followed.
The set of available tasks is a sequence containing the cost of each task.
The output of the DNN, the sequence A is the order in which the tasks are
allocated following the NF rule. This is a simple example, but maximizing the
occupancy ratio is an NP-optimization problem which becomes challenging
to solve for large sets of tasks

Note that what we are doing is using the allocation order
sequence A generated by the DNN to implicitly dictate how
tasks are grouped together. Alternative representations for the

output were considered, such as a sequence containing the
index of the node to where each task is allocated. However,
that leads to a large equivalence class of solutions, and, as
pointed by [5], restricting as much as possible the equivalence
class for the outputs leads to better results. Moreover, the cho-
sen representation, when combined with the selected allocation
heuristics, guarantees that all generated solutions comply with
the nodes’ maximum capacity constraint. If the former was
not guaranteed, then the reward function would also need to
check for whether there is any node that exceeds its capacity,
and return a negative or zero reward.

B. Reward signal approach

We have selected the average node occupancy ratio (O) as
the reward to maximize. O, as its name suggests, is calculated
by averaging the node’s occupancy ratio (sum of allocated
tasks’ cost divided by node capacity) of all the active nodes
(i.e. nodes that receive at least one task). For example, the
value of O in fig. 7 is 0.867 which is the mean of 1.0, 0.8
and 0.8.

Note that we could have chosen a more direct metric to
maximize, like the inverse of the number of active nodes.
However, our metric is more independent of the total number
of tasks in the set. This facilitates learning a policy that can
be applied to sets of tasks of different sizes.

C. RL method used

It is not the objective of this work to present and explain
all of the techniques and algorithm that fall under the RL
umbrella. We will only explain the method used in our
solution, which is a DRL-based actor-critic policy gradient
method. The first reason why we chose this method over the
rest was because it can handle very large (even infinite) states
spaces, which is a requirement in our case (there are many
possible sets of tasks). In addition, this method had shown fast
convergence and good results for other types of combinatorial
optimization problems [5].

In a DRL-based actor-critic policy gradient method, the pol-
icy is parameterized using a DNN. As mentioned in previous
sections, the DNN maps each state to an action and we denote
it by π(A | S, θ). The symbol θ, as it is common practice in
ML and as explained in section 2, represents the parameters
of the DNN, and stresses the fact that the mapping of states
to actions depends on those parameters.

Before detailing the specific algorithm and formulas, let’s
explain the training process at a more conceptual level.
Remember that we want to find the parameters θ for the
DNN that maximize the reward. We start with a DNN with
random values for θ. Policy gradient methods rely on running
a large number of simulated interactions with the environment.
A simulation starts by generating a random initial sequence of
tasks St (the state), we then use our existing DNN π(A | S, θ)
to generate a tasks allocation A (the action) and then we
calculate the associated reward O. Lastly, the parameters θ
of the DNN are then updated using a formula discussed in
next paragraph. Each simulation and parameters update step
is known as a training step.



10

Intuitively, if A has led to a better reward than the average
reward of current policy π(A | S, θ), we want to update
the parameters θ of the DNN in the “direction" that leads
to more outputs like A. In the formula that we present later
in this section, the concept of “updating parameters in the
direction that leads to more outputs like A”, is represented by
∇θp(π(A | St, θt) = At), which is the gradient with respect
to the parameters θ of the probability of having chosen At.
The concept of “better reward than the average reward that we
were getting” is represented by the term (Ot − v̂(St, θ′t+1)),
where Ot is the obtained reward and v̂(St, θ′t+1) is a function
that estimates the expected reward that will be obtained with
the current policy and parameters v̂(S, θ′) given the sampled
state St‘.

The function v̂(S, θ′) is known as the critic. The critic is
a state-value function, meaning that it takes a given state S
and approximates the expected reward that will be obtained
following policy πθ. We use another DNN with parameters
θ′ to parameterize the critic. The critic parameters θ′ are also
continuously updated during training. Fig. 8 gives an overview
of the training process.

Figure 8. DRL-based actor-critic policy gradient. We use a DRL-based
actor-critic policy gradient method. This means that two DNNs are trained.
The first DNN parameterizes the policy used by the agent (a.k.a actor) to map
states to probabilities of taking each action. The second DNN parameterizes
the critic, which maps states to the reward that it is expected to receive from
the environment following the current policy

The specific algorithm followed in the training process
that we just described is the so-called actor-critic reinforce
stochastic gradient ascent algorithm, based on the policy
gradient theorem [20]. The algorithm, on each training step,
updates the parameters θ and θ′ of the policy and the critic
DNNs respectively as follows:

At time step t:

Randomly generate state St, and then sample
action a from π(A | St, θt)

Calculate reward Ot = O(St, a)

Update critic parameters:

θ′t+1 = θ′t − α′∇θ′tMSE(Ot, v̂(St, θ
′
t)) (1)

Update policy parameters:

θt+1 = θt+α(Ot−v̂(St, θ′t+1))∇θp(π(A | St, θt) = At) (2)

Note that equation (1) is just a standard training step for a
supervised ML regression problem where we want our critic
DNN v̂(S, θ′) to learn to estimate O(A,S), and hence we
use as a loss function the Mean Squared Error (MSE) of the
difference between the obtained reward and the estimated one.
α′ and α are the learning rates, which are simply two scalars

representing the update “step size” for equation (1) and (2)
respectively.
p(π(A | St, θt) = At) is the probability of having chosen

At, given state St and following policy π(A | St, θt). This
probability can be calculated because the DNN that we use
(more details on its architecture are provided in the next
subsection) does not directly output a specific action (i.e. a
specific mapping of tasks to nodes), but rather, it outputs a
probability for each possible action. Therefore, we can know
what was the probability of choosing At. A natural question
is how we choose At from all the possible actions. During
training, we choose action At by sampling it from the discrete
probability distribution for each possible action given by our
DNN π(A | S, θ). Note that this is different to supervised ML,
where we would select the action (or the class in supervised
ML) with the highest probability. This means that during
training we might select an action which does not have the
highest probability according to policy π, but this is actually
essential to ensure the exploration of the actions space, a
fundamental principle in RL. During inference, however, once
training has been completed, we make the policy greedy on
the action values, meaning that in inference we always select
the action with the highest probability.

D. Architecture of the policy and critic DNNs

We use a pointer network [21] to parameterize our policy
π(A | S, θ). A pointer network is a DNN architecture for
solving variable length sequence-to-sequence problems whose
output can be interpreted as a sequence "pointing" at positions
in the input sequence. This is ideal for the input-output
representation approach defined in subsection A.

The pointer-network follows a encoder-decoder Recurrent
Neural Network (RNN) architecture [18]. This architecture
is widely used in problems where the inputs and output are
sequences (like our problem, but also in areas like Natural Lan-
guage Processing since text is also sequential data), because
it is designed to process each element of the input sequence
S in order in what is known as the encoding (allowing the
DNN to take the order of the elements into account) and
then recurrently generate the output sequence A in what is
known as the decoding. The decoding takes place in recurrent
decoding steps where at each step i, the element i of sequence
A, ai, is a function of the input sequence S as well as of
the previous outputs a1, ..., ai−1. We have based our specific
implementation on the architecture proposed by [5].



11

Figure 9. Neural network architecture. The encoder reads the input sequence S = [c1, ..., cL] of task costs and ultimately produces an allocation order
sequence A, which can be defined as numbers “pointing" at positions in the input sequence S

See Fig. 9 for a detailed overview of the architecture of
our policy DNN. The encoder reads the input sequence S =
[c1, ..., cL] of task costs, one at a time, and transforms it into a
sequence of latent memory states of dimension LxH . Where
H is the hidden dimension of our DNN. Each element of
the input sequence is first transformed into a H-dimensional
embedding, obtained via a linear transformation shared across
all input steps whose parameters are also learned. The decoder
network also maintains its latent memory states and uses a
pointing mechanism to produce a probability distribution over
the next task that should be “pointed” at. Once the next task
is selected (by sampling from the distribution), it is passed
as the input to the next decoder step, together with the last
memory states.

The pointing mechanism is based on the so-called Bah-
danau’s attention mechanism first proposed in [2]. It takes the
decoder hidden state as the query vector, and the hidden states
from the encoder as the reference vectors. The output of the
pointing mechanism is masked first (to avoid pointing to the
same input element twice) and then a soft-max activation is
applied, so that the output can be interpreted as a probability
distribution representing the degree to which the model is
pointing to each element of the input sequence. The allocation
order A (see subsection A) is generated by sampling ai, at each
decoding step i, from the probability distribution of ai, whose
discrete density function is the output of the DNN (which has
a softmax activation in the last layer). Appropriate masking is
applied before the softmax activation to ensure that the same
position cannot be “pointed" twice.

The DNN used to approximate the critic function v̂(S, θ′)
is made of an encoder with the exact same architecture as
the DNN used for the policy, followed by a similar attention
mechanism but using the encoder outputs as the query and

reference vectors. Lastly, it has two standard feed-forward
layers, the last one with a single neuron since v̂(S, θ′) is a
regression model that attempts to estimate a scalar (i.e. the
expected reward given state S).

E. Additional remark for readers familiar with other RL
problems

One thing to note is that we have defined an action as the
sequence A representing the allocation order. This means that
in our RL framework, when the agent receives a set of tasks
that must be allocated, it allocates all of them in one action.
Using the RL terminology: the episode lasts only one time
step, and the recurrent nature of the tasks allocation decision
is already taken care by the RNN architecture of the policy.

An alternative approach would have been to define an action
as the allocation of a single task to a node, and the RL episode
would last L time steps, where L is the length of the input
tasks sequence S. This alternative approach is equivalent to
our approach if in the alternative one the reward is set to zero
for all timesteps except for the last one, which would make
sense because the average occupancy ratio is not known until
the end (and using a partial average occupancy ratio on each
timestep would deviate the agent from learning to optimize
the final average occupancy).

Our one-timestep approach is more convenient to imple-
ment. The only difference that needs to be taken into account is
in equation (2) from section IV.A above. In that equation, the
term p(π(A | S, θ) = a) represents the probability of having
selected action a. In our approach a is actually a sequence A
of L integers ai ∈ [1, L], i ∈ [1, L] (where ai represents
the position of the task in the input sequence). Therefore,
p(π(A | S, θ) = a) in equation (2) should be the probability



12

of generating the sequence A following policy πθ, which can
be calculated using the chain rule as:

p(π(A | S, θ) = {a1, ..., aL})

=

L∏
i=1

p(π(ai) | a1, ..., ai−1, S, θ)}
(3)

p(π(ai) | a1, ..., ai−1, S, θ) is the probability of sampling
ai in the decoding step i of the pointer network, which is
given by the output of the masked soft-max layer (note that
p(π(aL) | a1, ..., aL−1, S, θ) = 1 always because in the last
timestep there is only remaining task that can be pointed at).

V. EXPERIMENTS

A. Experiments objective

The primary objective of our experiments is to evaluate how
well the policy learns to generate allocations with high average
occupancy O.

Figure 10. Problem conditions in our experiments. Tasks costs are sampled
from the uniform distribution over the interval [Min. task. cost, Max. task.
cost]

In addition we want to gain some basic understanding of
the inference latency and of the model size, in line with our
hypotheses exposed in section III.E, related to the suitability
of a DRL approach for time-sensitive and resource constrained
environment like CADESs.

B. Experiments approach

We have considered four different problem conditions (Fig.
10). In problems 1 to 3, the sets of tasks that the agent learns
to allocate all have always the same size (24, 40 and 50
respectively). We have chosen these three different problem
conditions pseudo-arbitrarily. We say “pseudo” because we
have paid some attention to choosing a set of conditions that
did not easily lead to very high occupancy ratios which could
not pose a big enough “challenge” to our agent. Problem 4
tests the ability of the agent to learn to allocate sets of tasks
of variable length, with a minimum of 3 and a maximum of
50 tasks. This means that the same parameters θ of the policy
DNN are applied to sequences of length 3, 4, 5, .. up to 50.
In practice, all the sets of tasks are input as an array of length
50, but they might have zeroes at the end, meaning that there
are no tasks. The DNN has two masking layers (one for the
inputs and one for the outputs) that ensures these tasks are not
taken into account.

As discussed in section II, we assume that there is always
at least one valid tasks allocation (i.e. there is always one
valid allocation where no task is left unassigned). In our
implementation we enforce this by assuming that we always
have the number of nodes required to fulfill the most optimal
allocation that our NM is able to generate. Therefore, the
number of nodes available is not a fixed value which is part of
the problem conditions, but rather we assume it is high enough
to accommodate the generated tasks allocations.

We will train our parameterized policy to see how well it
learns to allocate tasks, by analyzing the average occupancy
ratio O achieved after 10,000 training steps. One training step
consists of one iteration of the actor-critic reinforce stochastic
gradient ascent algorithm described in section IV.C.

As it is common in ML, specially in stochastic gradient
ascent algorithms like ours, we will use training batches. This
means that in each training step, we don’t just use a single
randomly generated state (i.e a set of tasks), but rather, we use
a batch of randomly generated states, which in our case is of
size 128 (i.e. the batch consists of 128 randomly generated sets
of tasks). In batch training, the parameters of the DNNs are
updated using the mean of the individual updates calculated
for each of the 128 samples (following equations (1) and (2)
in section IV.C). This approach, i.e. updating the parameters
only once with the mean of the batch rather than 128 times
with the value of each single element of the batch, has been
shown to achieve faster and closer to the optimal convergence
[7].

For comparison purposes, we will also evaluate the avg.
occupancy ratio obtained for the batch with three popular
heuristics [10] used to solve the bin-packing combinatorial
optimization problem (Fig. 11): the Next-Fit (NF), the First-
Fit (FF), and the First-Fit Decreasing (FFD) heuristic. The
NF and FF heuristics are the same as the ones described in
section IV.A, when discussing the Input-Output representation
approach and the heuristic H assumed for the allocation order
A generated by the DNN. Nevertheless, for ease of read, we
describe the NF and FF heuristics again below, together with
the additional heuristic used in the benchmark: the FFD. Thus,
the benchmark heuristics are:
• Next-Fit (NF): Tasks in the input set are considered in

an arbitrary order (i.e. in the order in which they are
randomly generated). The first node is “open" and tasks
are sequentially allocated until a task does not fit. At that
point the node is "closed" and the next node is “opened".
A “closed" node does not receive any additional task
during the remaining of the allocation.

• First-Fit (FF): As with NF, tasks in the input set are
considered in an arbitrary order and the first node is
“opened" and tasks are sequentially allocated until a task
does not fit. However, when a new node is "opened"
the previous one is not “closed". Nodes are kept “open"
unless they are completely full. On each allocation step
all “open" nodes are checked until one where the task fits
is found. If no node is found, then a new one is “opened".

• First-Fit-Decreasing (FFD): Similar to the FF heuristic
but the input tasks are first sorted in non-increasing order
of their cost.



13

Figure 11. Benchmark heuristics. Visual example of how a given sequence of tasks would be allocated following each of the three benchmark heuristics

We have selected the NF and FF heuristics because they are
two well-studied online heuristics used to solve this problem.
Online means that they do not have to process the full input set
prior to the start of the allocation. Online heuristics are faster,
have lower time complexity and lower memory requirements
than offline heuristics such as FFD or our own DRL-based
approach (which, as opposed to online methods, require to
process the entire set of tasks prior to generating a solution),
and that is precisely why we included two online heuristics in
our benchmark. If such heuristics were to lead to a similar or
better average occupancy ratio than our DRL-based approach,
it would be hard to find reasons in favour of the DRL-based
method.

We also include an offline heuristic, FFD, in our benchmark
because we also wanted to compare against a solution that it
is proven (and observed in our experiments) that yields results
closer to the optimal than online heuristics.

To calculate the average occupancy ratio obtained with each
of the heuristics, we take the mean of 1280 random samples
of sets of tasks (100 batches of 128 samples).

As explained earlier, in our DRL approach, we take the
allocation order A output by the DNN and test both the
case where tasks are allocated following a NF heuristic, and
following a FF heuristic. When looking at the avg. occupancy
ratio that we obtain just using those heuristics, those are the
baseline values for each respective case, since those are the
avg. occupancy ratios that the policy would score if it does not
manage to learn at all and simply generates random allocation
orders A.

We have not tried to improve the results with hyper-
parameter tuning, i.e. changing different combinations of
parameters in the network architecture and training algorithm
to see if it drives better results, or with more sophisticated

decoding strategies (e.g. beam search or those proposed by
[5]), which could potentially yield better average occupancy
ratio O.

In order to have it as a reference, we tried to calculate the
optimal average occupancy for the four problems analyzed.
We used Google’s tools for optimization [1]. However, it
was not possible due to the amount of computation time
required. We needed to calculate the optimal for a large sample
size (as discussed above, to benchmark the results we are
using 1280 samples, 100 batches of 128 samples), which was
unfeasible since, already for Problem 1 (which is the one with
the shortest input length), it took the solver > 10h to find
the solution for some of the samples. There are some exact
algorithms like [12] that claim to be very fast for most of the
problem instances (although still no guarantees of polynomial
time). However, implementing such algorithms was beyond
the scope of this work. Something that can be said regarding
the optimal average occupancy is that it is likely not far from
the ratio obtained with the FFD heuristic: the FFD heuristic
guarantees a solution with no more than 11/9 of the optimal
number of nodes [10] , and [12] empirically showed that the
FFD achieved the optimal solution in 94.7% of the problem
instances tested.

For the inference latency comparison, we will compare the
time it takes to allocate the tasks following the FFD heuristic
(the one that achieves better occupancy ratios) with the time it
takes to generate an allocation with our agent, using the same
hardware.

To understand the model size, we will just look at the
storage space that the agent’s DNN uses in the hard drive,
which is directly related to the number of parameters of the
DNN and the format in which they are stored, which in our
case is 32-bit integers.



14

C. Experiments implementation

For each of the experiments, we have trained 3 models, each
with a random weight initialization, during 10,000 training
steps and selected the model with the best results. An initial
learning rate of 0.001 was used for both the agent and the
critic network, with a 0.9 decay rate every 1000 steps. This
simply means that the learning rate (i.e. the scalars α′ and
α in equations (1) and (2) in section IV.C) is reduced every
1000 steps by a factor of 0.9. This is shown to improve the
convergence, because it helps to escape spurious local minima
at the beginning of the training while avoiding oscillation
around local minima at the end of the training [11].

The actor and critic DNNs have been implemented in
Python using the popular Tensorflow framework [8]. We have
implemented both the DRL-based approach and the bench-
mark heuristics as Tensorflow’s [8] functions in graph mode,
and run them on a laptop with an Intel(R) Core(TM) i7-7600U
CPU, no GPU, and 32GB of RAM.

D. Experiments results

As shown in Fig. 12 our agent matches the best heuristic
(the FFD) when being trained to generate allocation orders that
then follow a FF rule. Perhaps more interesting, when trained
to generate allocation orders that then follow a NF rule (which
is faster than the FF and the FFD), it achieves a higher avg.
occupancy ratio than the NF and the FF heuristics, and gets
close to the FFD performance. This is is consistent across all
experiments.

Figure 12. Optimization performance experiments results. Avg. occupancy
ratio (%) comparison between our trained DRL-agents and the selected
heuristics. Values are the average across 100 randomly generated batches of
128 samples each.

In Fig. 13, it can be seen how the average occupancy ratio
that the agent achieves improves over time as the DNNs are
trained (both the agent’s DNN and the critic DNN).

For Problem 4, where the agent achieves an average occu-
pancy ratio of 86.2% and 86.7% (depending on the allocation
heuristic H used), we checked that results were consistent for
all possible input lengths. As it can be seen in Fig. 14, the
combination of the DNN plus the NF heuristic is consistently
better than the NF and FF heuristics and consistently ends
up close to the FFD for all algorithms. As expected, the
average occupancy for all approaches tends to be higher the
longer the sequence of tasks, because there are more possible
combinations. The same consistency across all lengths is
observed for the DNN plus the FF heuristic.

With regards to the inference latency. As mentioned earlier,
given an input set of tasks, we have compared the time it

Figure 13. Training history. Problem 2: batch average occupancy ratio (%)
after each training step, compared to the average occupation ratio obtained
using the NF, FF and FFD heuristics

takes to our agent (when using the NF allocation rule) and to
the FFD algorithm to generate a solution. The FFD heuristic
requires a pre-sorting of the input tasks and a FF allocation,
which impacts the time required to generate a solution.

Figure 14. Problem 4 results by size of the input set of tasks. Average
occupancy ratio obtained in Problem 4 when applying the trained DNN plus
a NF heuristic, and when applying the three benchmark heuristics. A batch
of 128 random samples was generated for each possible length, the values
shown are the mean of the average occupancy ratio for each of those 128
sequences

For the Problem 2 conditions, on average, it takes 18 ms to
generate a solution using our RL-based agent, while it takes
68 ms with the FFD algorithm. Note that the time measured
for the RL agent includes the time required to allocate the
output sequence following a NF heuristic.

This does not pretend to be a rigorous comparison of



15

inference latency as among other things, it depends on the
implementation and the hardware used. For example, the use
of GPUs, given their parallelization capacity, would speed up
the DNN inference. Nevertheless, the results align with our
hypothesis that DRL has a better time-reward trade off than
heuristic based approaches. Specially in memory constrained
environments where time-optimized implementations of sort-
ing and searching operations might not be feasible.

Figure 15. Inference latency comparison. Problem 2: average time required
to generate a solution with the FFD vs with the DRL + NF approach

Regarding the model size, our model required 264 KB of
storage memory. Our DNN’s hidden dimension (i.e. number of
neurons in the hidden layers) is 64. This is lower than typically
used sizes (e.g. 128), but in the spirit of developing something
that can easily be deployed into resource hungry CADESs,
we wanted to test the performance of a lighter DNN. The
pointer network architecture and the hidden dimension size
of 64 resulted in the agent’s DNN having 66,754 parameters
(this was for problem 3, where the input length was 50. The
other problems had less parameters since the maximum length
was smaller). These 66,754 parameters are ultimately stored as
32-bit integers requiring a storage memory of 264 KB. which
is more than enough to fit a standard micro-controller unit
(MCU), which might have up to 1 MB of storage capacity
[15].

VI. RELATED WORK

In this work we solve a combinatorial optimization problem
using DNNs. The general term for this type of approach is
neural combinatorial optimization. A significant contribution
to this area was made by [21] with the pointer network
architecture mentioned earlier. The authors proved that such
architecture worked well for several combinatorial optimiza-
tion tasks in a supervised ML setting (where examples of the
optimal solutions were needed for the network to be trained).

A framework to tackle combinatorial optimization problems
using DNNs and RL was proposed by [5]. Our DNN architec-
ture (except for the input and output layers which are specific
to our problem’s input-output representation) and the selection
of the specific RL algorithm to use (the actor-critic reinforce

stochastic gradient ascent algorithm) is based on their work.
However, they apply it to different combinatorial optimization
problems with different problem conditions. We had to design
all the aspects of this work that are specific to the tasks alloca-
tion problem (or equivalently, to the bin packing problem). For
example, the input-output representation approach, the reward
signal or the benchmark heuristics.

On the grounds of [5], several studies have tackled resource
allocation problems [9], [17], [22], [19] with DRL techniques.
Perhaps, the most related to ours are [19] and [9]. In [19],
the authors aim to allocate services to hosts in a way that
minimizes power consumption, resulting in a reward function
similar but not identical to ours. The DNN architecture,
problem constraints and constraints-enforcing strategies are
also different. In [9] they solve a 3D packing problem by
minimizing the surface required to pack a set of items, which
requires to take 3 decisions for each problem instance. They
use DRL for taking one of the decisions and heuristics for the
other two.

To the best of our knowledge, our work is the first to use
DRL to train a DNN to directly generate solutions to the 1D
bin packing problem [10]. A problem which, despite its simple
formulation, is NP-hard and has multiple applications like the
one discussed here for CADESs. The degree of optimization
achieved combined with the low inference latency suggest that
this approach might be a better option for a CADES than
traditional heuristics.

VII. CONCLUSIONS AND FURTHER WORK

Our solution for the tasks allocation example has illustrated
the potential of using DRL-based methods to find system
configurations in CADESs. This is in line with the general
aim of this project (as presented in section I) of exploring the
use of Machine Learning (ML) techniques to find new system
configurations in the context of the DFT4FTT architecture.

Moreover, we have fulfilled the specific objective of this
project, which was stated as follows: design and implement
a ML-based approach capable of allocating tasks to nodes in
a CADES that follows the DFT4FTT guidelines, and analyze
the potential benefits of such approach both qualitatively and
quantitatively. In section III, based on our research, we have
outlined, in a qualitative manner, the potential benefits of using
a DRL-based approach in a CADES. With our solution design,
implementation and experiments presented in sections IV and
V we have shown that:
• Our DRL agent, combined with an intermediate per-

forming heuristic (the FF), can achieve similar average
occupancy ratios to the best performing heuristic (the
FFD).

• Our DRL agent can be used in combination with the
fastest heuristic (the NF), yielding better average occu-
pancy ratios than two popular heuristics (the NF and FF)
and getting close to the best performing one (FFD).

• Our latency comparison supports our hypothesis that the
agent’s inference latency might be significantly lower
than the best performing heuristic’s latency (which re-
quires pre-sorting the inputs).



16

Further work in this area could be targeted at modelling
more complex operational contexts closer to real-life applica-
tions. On the one hand, this could be achieved by including
a wider range of variables in the state information consumed
by the DRL-agent. Examples of these additional variables are:
the time required by each task to complete its execution, the
number of nodes available (which could change over time due
to node failures or incorporations), or a varying computational
capacity for the nodes (which could vary over time due to, for
example, some nodes being partially busy executing a task
that cannot be reallocated). On the other hand, more complex
operational contexts could also be factored in the reward
function that defines the allocation criteria. For instance, the
cost of reallocating a task could be factored in the reward
function, which would give priority to tasks allocations that
do not require moving a large number of tasks from one node
to another.

We are convinced that the full potential of DRL-based
configurations search can be realized when modelling more
complex operational contexts such as the ones just described.
The more complex the problem is, the harder it is to find
heuristics or search strategies that deliver good results in a
timely manner, and that is precisely where a versatile approach
such as using a DRL-trained policy can have a greater impact.

VIII. PUBLICATIONS RELATED TO THIS WORK

R. Rotaeche, A. Ballesteros and J. Proenza, Exploring the
use of Deep Reinforcement Learning to allocate tasks in
Critical Adaptive Distributed Embedded Systems. Published
in the WIP (work in progress) papers section of the 2021
26th IEEE International Conference on Emerging Technolo-
gies and Factory Automation (ETFA), 2021, pp. 01-04, doi:
10.1109/ETFA45728.2021.9613409. Presented to the audience
of this online conference by the first author.

REFERENCES

[1] Google OR-Tools for optimization - The Bin-Packing Problem.
[2] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by

jointly learning to align and translate. ICLR, 2015.
[3] A. Ballesteros, J. Proenza, M. Barranco, L. Almeida, and P. Palmer. First

Description of a Self-Reconfigurable Infrastructure for Critical Adaptive
Embedded Systems. Technical report, 2019.

[4] C. W. Barrett. SMT solvers: Theory and practice. 2008.
[5] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio. Neural

combinatorial optimization with reinforcement learning. 5th Int. Conf.
on Learning Representations, ICLR 2017, 2019.

[6] R. David et al. TensorFlow Lite Micro: Embedded Machine Learning
on TinyML Systems. 2020.

[7] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[8] Google Research. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems. Network: Comp. in Neural Sys.,
2015.

[9] H. Hu, X. Zhang, X. Yan, L. Wang, and Y. Xu. Solving a new 3D bin
packing problem with deep reinforcement learning method. 2017.

[10] D. S. Johnson. Near-Optimal Bin Packing Algorithms. Thesis, 1973.
[11] B. Kleinberg, Y. Li, and Y. Yuan. An alternative view: When does

SGD escape local minima? In Proceedings of the 35th International
Conference on Machine Learning, 2018.

[12] R. Korf. A new algorithm for optimal bin packing. pages 731–726, 01
2002.

[13] P. R. Kumar. A survey of some results in stochastic adaptive control.
SIAM Journal of Control and Optimization, 23:329–380, 1985.

[14] J.-C. Laprie, A. Avizienis, and B. Randell. Fundamental Concepts of
Dependability. 1145:7–12, 2001.

[15] J. Lin, W. M. Chen, Y. Lin, J. Cohn, C. Gan, and S. Han. MCUNet:
Tiny Deep Learning on IoT Devices. (NeurIPS), 2020.

[16] C. L. Liu and J. Layland. Scheduling algorithms for multiprogramming
in a hard real-time environment. Journal of the ACM, 20:46 – 61, 1973.

[17] S. Sheng, P. Chen, Z. Chen, L. Wu, and Y. Yao. Deep reinforcement
learning-based task scheduling in IOT edge computing. Sensors, 2021.

[18] A. Sherstinsky. Fundamentals of recurrent neural network (RNN) and
long short-term memory (LSTM) network. CoRR, abs/1808.03314,
2018.

[19] R. Solozabal, J. Ceberio, A. Sanchoyerto, L. Zabala, B. Blanco, and
F. Liberal. Virtual Network Function Placement Optimization with Deep
Reinforcement Learning. IEEE J-SAC, 2020.

[20] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction,
volume 16. 2005.

[21] O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. Advances in
Neural Information Processing Systems, 2015.

[22] Z. Xu, Y. Wang, J. Tang, J. Wang, and M. C. Gursoy. A deep
reinforcement learning based framework for power-efficient resource
allocation in cloud RANs. In IEEE Int. Conf. on Comms. (ICC), 2017.


