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Abstract

Most of the land terrain on Earth is being constantly mapped using sub-meter resolution spaceborne
images. However, about eighty percent of the oceans’ seafloor remains unexplored and most of the benthic
habitat and geological structure distribution continues unknown. The main problem is that the methods
that work on land are not applicable underwater. Remote sensing (RS) methods using spaceborne or
airborne images can be used to map shallow water environments up to 10m depth and acoustic RS
methods using multibeam echosounders are now providing increased resolutions on the backscatter data
that can be used for benthic habitat mapping (BHM). Nonetheless, the feature richness of data collected
with these types of methods is very limited. Most of the methods used for BHM require the use of in
situ (IS) data in order to validate or even train their mapping algorithms.

This Thesis aims to facilitate the acquisition of IS data by pushing the boundaries of autonomous under-
water vehicles (AUVs). Nowadays, AUVs are increasingly used to acquire ocean data, bridging the gap
between the use of remote operated vehicles (ROVs) and shipborne acoustic RS. However, their auton-
omy is usually limited by the condition of following preprogrammed paths, their behavior is blind with
respect to benthic data collected and are autonomous only in the sense that they are not tethered and
are able to estimate their location and control their motion. This Thesis presents three novel methods
to (1) provide an online semantic perception of the environment by processing the online data flow and
building a probabilistic model of the benthic environment, (2) enlarge the decision-making autonomy of
AUVs providing an adaptive capacity to replan mission paths based on a semantic understanding of the
physical variable under study that depends on the objective of the campaign, (3) improve the autonomous
navigation for in situ image recording of AUVs.

All in all this thesis build a data-driven exploration architecture that automates the in situ sampling
process on unknown environments while maximizing data informativeness.

The algorithms described in this Thesis have been extensively validated in field using an AUV equipped
with a stereo camera rig used to gather images of the seabed partially covered by Posidonia oceanica
seagrass meadows.
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Resum

La major part del terreny terrestre es continuament cartografiant mitjançant l’ús d’imatges satelitals
de resolució submètrica. Tot i això, un vuitanta per cent del fons marí dels oceans encara no ha estat
explorat. El problema principal és que els mètodes que funcionen a terra no són aplicables sota l’aigua.
Els mètodes basats en tècniques de Remote Sensing (RS) que utilitzen imatges satel·litàries o aèries
poden utilitzar-se per cartografiar entorns d’aigües poc profundes, i els mètodes de RS que utilitzen
ecosondes acústiques multifeix proporcionen una resolució suficient per cartografiar hàbitats bentònics
(BHM) a majors profundidats. Tot i això, la riquesa de les dades recollides amb aquests tipus de mètodes
és molt limitada. La majoria dels mètodes utilitzats per a BHM requereixen l’ús de dades in situ (IS)
per validar o fins i tot entrenar els algorismes.

L’objectiu d’aquesta tesi és facilitar l’adquisició de dades IS millorant les característiques que ofereixen
els vehicles submarins autònoms (AUV) actuals. Avui dia, els AUVs s’utilitzen cada cop més per adquirir
dades oceàniques, salvant la distància entre l’ús de vehicles operats a distància (ROVs) i mètodes de RS
acústics. No obstant això, la seva autonomia sol estar limitada per la necessitat de seguir trajectòries
preprogramades, el seu comportament no té en compte les dades bentòniques recollides durant la nave-
gació. Són autònoms tan sols en el sentit que no requereixen connexió cablejada i són capaços d’estimar
la seva ubicació i controlar el seu moviment. Aquesta Tesi presenta tres nous desenvolupaments per a
(1) proporcionar una percepció semàntica de l’entorn mitjançant el processament de dades recollides a
temps real i la construcció d’un model probabilístic de l’entorn bentònic, (2) ampliar l’autonomia en
la presa de decisions dels AUVs proporcionant una capacitat d’adaptació per replanificar les rutes de
la missió basant-se en una comprensió semàntica de l’entorn, i (3) millorar la navegació autònoma per
al gravat dímatges in situ dels AUVs. Finalment, els desenvolupaments esmentats s’utilitzen per con-
struir una arquitectura d’exploració adaptativa que automatitza el procés de mostreig in situ en entorns
desconeguts alhora que maximitza la informació de les dades recollides.

Els mètodes descrits en aquesta Tesi han estat àmpliament validats mitjançant assajos de camp utilitzant
un AUV equipat amb una càmera estereoscòpica utilitzada per recollir imatges del fons marí parcialment
cobert per praderies de Posidonia oceanica.
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Resumen

La mayor parte del terreno terrestre es continuamente cartografiado mediante el uso de imágenes
satelitales de resolución submétrica. Sin embargo, un ochenta por ciento del fondo marino de los océanos
aún no ha sido explorado. El principal problema es que los métodos que funcionan en tierra no son
aplicables bajo el agua. Los métodos basados en técnicas de Remote Sensing (RS) que utilizan imágenes
satelitales o aéreas pueden utilizarse para cartografiar entornos de aguas poco profundas, y los métodos
de RS que utilizan ecosondas acústicas multihaz proporcionan una resolución suficiente para cartografiar
habitats bentónicos (BHM) a mayores profundidades. Sin embargo, la riqueza de los datos recogidos con
este tipo de métodos es muy limitada. La mayoría de los métodos utilizados para BHM requieren el uso
de datos in situ (IS) para validar o incluso entrenar los algoritmos.

El objetivo de esta tesis es facilitar la adquisición de datos IS mejorando las características que ofrecen
los vehículos submarinos autónomos (AUV) actuales. Hoy en día, los AUVs se utilizan cada vez más para
adquirir datos oceánicos, salvando la distancia entre el uso de vehículos operados a distancia (ROVs) y
métodos de RS acústicos. Sin embargo, su autonomía suele estar limitada por la necesidad de seguir
trayectorias preprogramadas, su comportamiento no tiene en cuenta los datos bentónicos recogidos du-
rante la navegación. Son autónomos tan solo en el sentido de que no requieren conexión cableada y son
capaces de estimar su ubicación y controlar su movimiento. Esta Tesis presenta tres novedosos desar-
rollos para (1) proporcionar una percepción semántica del entorno mediante el procesamiento del datos
recojidos a tiempo real y la construcción de un modelo probabilístico del entorno bentónico, (2) ampliar
la autonomía en la toma de decisiones de los AUVs proporcionando una capacidad de adaptación para
re-planificar las rutas de la misión basándose en una comprensión semántica del entorno, y (3) mejorar
la navegación autónoma para el grabado de imágenes in situ de los AUVs. Por último, los desarrollos
mencionados se utilizan para construir una arquitectura de exploración adaptativa que automatiza el
proceso de muestreo in situ en entornos desconocidos al tiempo que maximiza la información de los datos
recogidos.

Los métodos descritos en esta Tesis han sido ampliamente validados mediante ensayos de campo utilizando
un AUV equipado con una cámara estereoscópica utilizada para recoger imágenes del fondo marino
parcialmente cubierto por praderas de Posidonia oceanica.
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Chapter 1

Introduction

1.1 Objectives
This Thesis has the main objective of developing a set of methods to enable data-driven exploration of
benthic environments with AUVs. The rationale for this research is the need to improve the current
methods used for recording high-resolution underwater data.

AUVs have proved to be a very effective platform for underwater inspection. However, actual limitations
on underwater communications slow down underwater exploration, which usually require a human on the
loop for data post-processing and mission planning.

The main goals of the data-driven exploration framework proposed in this Thesis are:

■ Eliminate, or at least reduce, human intervention in underwater exploration campaigns.

■ Maximizing the time that an AUV spends to data recording during field campaigns.

■ Maximizing the quality of the recorded data by reducing their uncertainty and increasing their
informativeness.

The methods described in this Thesis aim to improve the quality and extension of the recorded data
by proposing (a) an enhanced perception capacity for modelling the environment, (b) a decision-making
capacity to enable adaptive mission replanning, (c) an improved untethered navigation method to increase
the vehicle autonomy, and (d) a data-driven exploration framework that joins (a), (b) and (c).

This Thesis targets the in situ data gathering and processing of geo-referenced images in order to generate
spatial distribution data for benthic habitat mapping (BHM), with the focus set on the identification of
P. oceanica seagrass meadows.

Although the testbed of the research has been the P. oceanica, this Thesis aims to provide a modular
framework that can be adapted to gather data of particular processes with different spatial distributions,
using disctint sensors and strategies. The common goal of the methods proposed is the generation of
high-resolution datasets that try to get an informative representation of a process in an accurate and
time efficient manner. Targeting long-lasting unsupervised monitoring, with communication limitations
and no (or uncertain) prior environmental knowledge.
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1.2 Motivation
Most of the Earth’s terrestrial terrain is constantly mapped with sub-meter resolution imagery collected
by Worldview and PlanetScope spaceborne systems, the Moon surface has been recently mapped with a
20− 60m/px resolution using multiple sources of data [1], and the HiRISE has been providing 0.3m/px

resolution images from Mars surface for the last 15 years. However, about an eighty percent of the oceans’
seafloor remains unexplored, and only a 10%−15% has been mapped considering spatial resolutions up to
100m/px. There are emerging coordinated efforts to map the world oceans’ depth for 2030 [2]. However,
such efforts only consider bathymetric mapping using acoustic remote sensing, with expected spatial
resolutions ranging from 100 to 800m/px depending on the sampling depth. Figure 1.1 provides an
illustration of the loss of information when gathering data as such spatial resolutions. The figure shows
the downscaling of a raw image of Mars recorded from the HiRISE satellite and a raw image of the Earth
recorded from the WorldView-3 ; from left to right the original image and the downsampling to 100m/px

and 800m/px. Notice the loss of very relevant detail.

Figure 1.1: Spatial image resolution comparison; the columns represent different spatial
resolutions (original, 100m/px and 800m/px) and the rows represent different images.
The top row represents an image from Mars surface taken from the HiRISE satellite, the
bottom row represents an image from the Earth gathered with the WorldView-3 satellite.
Notice how the loss of resolution affects the image interpretation. Only a 10% − 15% of

the oceans have been mapped with spatial resolutions lower than 100m/px.

Higher resolution data is required to map the seafloor, not only for bathymetric studies but also for benthic
mapping. The main difficulty that we face for mapping the oceans seabed is the rapid attenuation of
electromagnetic waves in the underwater medium. Some remote sensing techniques used on land can still
be used on shallow waters, but they become less accurate as the depth increases. While acoustic devices
for remote sensing have become more precise and less expensive during the last decades, reducing the
spatial data resolution is usually a matter of getting the sensing devices closer to the seabed. In situ
data gathering systems, in contrast to remote sensing ones, are required to record high-resolution data
and enable precise mapping of the seafloor.

In situ underwater data gathering has largely relied on scuba divers, towed systems and ROVs. However,
last technological advances on AUVs are filling the gap between the use of the aforementioned systems
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and the use of RS methods, improving the spatial and temporal resolutions of the recorded data [3]. AUVs
are extensively used today to perform nested surveys because of their ability to follow preprogrammed
inspection paths independently of a support vessel. In such nested surveys, for instance, acoustic RS
from ships, AUVs and ROVs work in a complementary way for increasing details in specific target areas
[4].

1.2.1 Change of paradigm: from inspection to exploration
Autonomous navigation is the basic nature of AUVs, being able to follow a mission path given several
sensor measurements. In its classical conception, the robot is insensitive to the recorded data, that
is stored for post-processing after recovery. Such behavior involves the execution of a control loop for
path following; using the measurements from the navigation sensors, the AUV pose is estimated by
a localization process and compared to the reference one in the control given a desired mission path,
thus generating the thruster set points to minimize the errors. Figure 1.2 illustrates such autonomous
navigation framework.

Control

Environment 
interaction

Path

Thruster setpoints

Localization

Measurements

Pose

Data

Figure 1.2: Autonomous navigation framework used for inspection applications: the
control process commands the motor setpoints given a desired mission path and the

estimated pose generated by the localization filters.

A typical autonomous navigation mission would require to follow a preprogrammed path, for instance a
lawn mower pattern. This is a very useful method for inspection purposes, to be able to choose precisely
where to sample and leave the robot executing autonomously the recording. However, this framework is
not effective for dealing with large unknown regions and uncertain data.

In the case of dealing with an unknown environment, it can be difficult to preprogram a mission path;
several decisions have to be made in terms of mission extension, resolution and location. Such decisions
can lead, for instance, to over-record low informative areas and under-record hotspot regions. We solve
such difficulties evolving from inspection to an exploration framework. In this context, exploration refers
to the ability to retrieve and interpret data from an unknown environment that can be used to modify
the initial mission plan during its execution.

In the case of having permanent and high bandwidth communication, a remote operator could act as
the exploration agent, adapting the sampling paths according to the mission requirements. However,
benthic data gathering operations with AUVs usually involve a low communication bandwidth, which is
not sufficient to transmit the sampled data to a remote operator. Hence, the data transmission with a
remote operator can only take place between robot dives.

Figure 1.3 illustrates the change of paradigm. When using an inspection framework for exploration of an
unknown target area, the pipeline is usually based in the following steps: (i) an operator preprograms
the sampling paths using the information extracted from prior existing data, (ii) the robot is deployed to
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navigate autonomously along the programmed paths while recording data, (iii) the robot is surfaced or
recovered to retrieve the recorded data, (iv) the recorded data is post-processed in order to plan further
missions and iterate over the same processes.

Figure 1.3: Data gathering process of an unknown environment following either an
inspection or an exploration framework. In red the processes in which the robot is

gathering data.

Following an inspection framework based uniquely on autonomous navigation to explore target regions
has several limitations. This means to stop the robot from sampling, recover or surface it to download the
recorded data, process such data, replan further missions and deploy it again. In contrast, the exploration
framework includes two extra processes that enable the addition of an adaptive loop composed by two
extra autonomous processes.

Notice that in the inspection framework the operator defines preprogrammed missions using the informa-
tion extracted from data collected in prior dives. In contrast, in the exploration framework the operator
would define a set the sampling goals (such as the target region, or physical processes of interest) and the
mission planning would be automated and conditioned to such mission goals and to the online processed
data. The main objective of such change is to increase (1) the time that the AUV can spend sampling
and (2) the informativeness of the gathered data.

First, increasing the sampling time is a matter of taking the operator out of the sampling loop, or at
least reducing its presence. Considering that tasks related to human intervention require stopping the
sampling process, a higher degree of autonomy or adaptability is required to enlarge the time that the
robot is able to keep in the sampling process. Second, increasing data informativeness is a question of
adapting the sampling process to the knowledge about the environment. The addition of an adaptive
loop will provide a faster response to drive the robot to high informative regions.

The change of paradigm involves the automation of the decision about where to sample; this is the
automation of the exploration process.
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1.2.2 Towards automating underwater exploration
AUVs have many challenges to overcome in terms of mission endurance [5] and increased autonomy [3].
Nevertheless, last improvements on edge computing are enabling the execution of adaptive sampling
methods on board of AUVs and automate the exploration process. According to Huvenne et al. [4], the
improved resolution of unmanned vehicles together with their rapid cost reduction is expected to increase
their use on the future, being the coordination of multiple vehicles together with autonomous adaptive
sampling for ocean exploration the most promising development of next future.

For the automation of the exploration process a robot must be able to assess the environment in terms
of data informativeness, and to balance the exploration vs. exploitation trade off. This means that the
exploring agent has to (a) integrate the capacity of perceiving and modelling the variable under study,
and (b) leverage the exploration of the environment in order to improve the model, and the exploitation
of the model to sample the most useful data. In any case, automating underwater exploration involves
the integration of enhanced perception and decision-making capabilities.

This Thesis aims advance the boundaries of marine exploration by developing new methods for enhanced
perception, decision-making and autonomous navigation to enable data-driven exploration. This will
facilitate in situ data collection, reducing data uncertainty and increasing AUV mission performance and
autonomy.

1.3 Context
The drive towards automating underwater exploration is the urgency on developing new methods to record
high resolution data on seagrass ecosystems in order to ease the management of such environments. The
introduction of new technologies based on AUVs is promising, and allow the substitution of tedious, high
risk and repetitive tasks usually performed by divers.

1.3.1 Seagrass ecosystems
Seagrass ecosystems generate huge ecological value [6, 7, 8]. According to Olyarnik et al. [9], they
provide key ecological benefits to coastal marine environments, including organic carbon production and
export, nutrient cycling, sediment stabilization, enhanced biodiversity, and trophic transfers to adjacent
habitats. Considering that changes in seagrass distribution directly affect the health of an ecosystem,
seagrass meadows are also valued as biological sentinels: reduced seagrass density or spread points to
major problems in ecosystems, generating losses in the ecological services provided. In this sense, they
can be used as an environmental descriptor.

Posidonia oceanica is an endemic seagrass species to the Mediterranean Sea. According to Telesca et al.
[10], P. oceanica has seen an estimated 35% aggregate reduction in extent over the last 50 years. Seagrass
has a long evolutionary history. Nevertheless, its adaptation is now threatened by rapid environmental
changes of anthropogenic origin. A central concern is its rapid regression, that creates a feedback loop that
hampers restoration. In order to defend and encourage scientific research on P. oceanica meadows, they
have been included amongst priority habitats in several European directives: the EU Habitat directive
92/43/CEE and, more recently, in the Marine Strategy Framework Directive 2008/56/EC. Seagrass
meadows restoration is key to rebuild the marine life [11] and reducing CO2 levels to meet the targets of
the Paris Agreement of 2016 on climate change.
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Knowledge about the environment is essential for seagrass management. Whereas the interest of scientific
research into seagrass has heightened over recent decades, a consensus on quantifying the causes under-
lying P. oceanica regression has not yet emerged: some authors identify climate change as a major threat
[12], whilst others focus on sewage spills or mechanical damage caused by anchoring [13], or trawling
[14]. Nonetheless, there is general agreement that the main threats are anthropogenic [15, 16, 17, 18,
19]. The lack of definitive answers explaining the recession of P. oceanica is broadly linked to the lack
of precise data, which are key for proper ecological management and conservation [20]. More specifically
[21] highlight a lack of data on spatial distribution and a need to introduce modern data acquisition
techniques.

The spatial distribution of seagrass meadows is usually described in terms of shoot density, upper/lower
limits and sea bottom coverage [22, 20], with the most common sampling methods based on mapping,
discrete quadrat sampling and transects [21]. Figures 1.4a and 1.4b show two raw images recorded from
a 4m and 3m altitude, and Figure 1.5 represent a mosaic build from the images recorded with an AUV
following a preprogrammed mission path.

(a) 4m altitude image (b) 3m altitude image

Figure 1.4: Images from two benthic environments covered by P. oceanica seagrass.

Figure 1.5: Image mosaic from a benthic environment covered by P. oceanica seagrass.
Recorded with an AUV following a preprogrammed lawn mower pattern of 40x15m.

This work attempts to answer Abadie’s call for the need to introduce modern techniques to generate
data on the spatial distribution of P. oceanica [21]. It aims to fill the gap between academic research and
end users by proposing a functional solution for spatial data-gathering, using cutting-edge technologies
in lightweight marine autonomous vehicles and the latest developments in image processing and machine
learning.
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1.3.2 Local interest
The work presented in this Thesis has been supported by the Government of the Balearic Islands (CAIB)
under Grant FPI/2031/2017, and developed in the Systems, Robotics & Vision research group of the
University of the Balearic Islands. The objectives set for this Thesis were driven by the opportunity of
working in the line of research that the group was approaching about benthic habitat mapping of P.
oceanica meadows, and by the goals defined in the Science, Technology, Innovation and Entrepreneurship
Plan (PCTIE) of the Balearic Islands 2013–2017 relative to Area of Marine Science and Technology.

At that moment, the research group started providing proof of the advantage of using automatic methods
for seagrass image classification and habitat mapping [23, 24], and aroused the interest of the Mediter-
ranean Institute for Advanced Studies (IMEDEA) to begin a series of collaborative works. The develop-
ment of this Thesis has been simultaneous to the execution of the DETECPOS project 2018 − 2022 for
the development of new technologies for the automatic and periodic assessment of changes in P. oceanica
meadows due to anthropogenic causes.

The aim of improving the methods for automatic monitoring P. oceanica meadows has lead to the
renovation of two marine vehicles, the AUV Turbot and the ASV Xiroi, which are equipped with stereo
camera rigs and a complete sensor payload to allow autonomous navigation in challenging environments,
maintaining a short recording distance from the seabed, and a high level behavior based in an enhanced
perception system and decision-making capacity resulting from this Thesis.

1.4 Document overview
This document is structured in the following chapters:

• Chapter 2 provides a background on benthic data acquisition methods, describes and enumerates
different remote sensing and in situ methods used for benthic habitat mapping, and reviews recent
works related to data driven exploration.

• Chapter 3 describes a novel method for online benthic habitat modelling. This method processes
the data recorded by an AUV and trains a probabilistic model used to generate habitat predictions,
which are key to enable autonomous exploration.

• Chapter 4 describes a novel decision-time adaptive replanning framework. The presented framework
integrates a variation of the Monte Carlo tree search algorithm to solve the information path
planning problem.

• Chapter 5 describes a set of navigation methods implemented on a hovering AUV to enable sampling
stereo images from the seabed with a high spatial resolution and low localization error.

• Chapter 6 describes a novel data-driven exploration framework. This framework integrates the
methods described in the previous chapters for modelling, replanning and navigation in a unified
framework developed for adaptive visual information gathering.

• Chapter 7 concludes the work by providing a quick summary and discussion of the results obtained
during the development of this work, drawing the main conclusions, contributions and future lines
of research.
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Chapter 2

Related work

This chapter provides some relevant background to contextualize the methods proposed in this Thesis.
First, Section 2.1 focus on the benthic data acquisition problem. Reviewing different type of methodolo-
gies; ranging from remote sensing methods such as satellite imaging to in situ alternatives such as image
recording with ROVs or AUVs. Afterwards, Section 2.2 sets the focus on the in situ data generation with
AUVs, introducing a taxonomy of relevant works regarding data-driven exploration.

2.1 Benthic data acquisition
The objective of this section is to provide a review of general methods used to acquire benthic data.
In particular, we are interested on recording spatial data that can be used for benthic habitat mapping
(BHM). The term spatial data refers to data that references a specific geographic location. Such data,
for instance, could contain bathymetry, bionomy or geological information, and could be used to classify
benthic environments or assess their condition. In general, benthic data acquisition methods are used
to provide knowledge about certain physical, biological, chemical or geological processes, that may vary
depending on the application.

Benthic data acquisition methods are usually classified in two general groups depending on the location
of the sensing device: remote sensing (RS) and in situ (IS) methods. RS methods include the acquisition
of optical data such as spaceborne and airborne imagery, as well as acoustic data from echo sounders.
In contrast, IS methods typically include human inspection, video recording and sediment sampling. RS
and IS methods are not mutually exclusive, but complementary. Whereas RS methods provide data with
a large footprint that allow large area coverage, IS methods are able to generate high-resolution data.
Sections 2.1.1 and 2.1.2 delve deeper in both methods.

2.1.1 Remote sensing
RS methods are very effective to generate long time series due to their repeatability. RS methods have
been used for the assessment of coastal resources for long time [25], and they remain the most used method
for retrieving long time series of data in shallow waters [26]. Such methods are a great choice for large
scale mapping (over 1km2) of blue carbon ecosystems [27] and have been used extensively for seagrass
monitoring [28, 29]. For example, in the latter case the lower bound and the deep bottom coverage of
the seagrass meadow can be determined using acoustic backscattering methods, whilst the upper bound



Chapter 2. Related work 10

and the shallow bottom coverage can be determined with airborne or spaceborne images [30]. Here we
divide RS into optical and acoustic methods depending on the type of sensor installed.

Optical RS
Optical methods include the use of multispectral and hyperspectral cameras. The main difference between
them lie in the number of bands that they provide and in the narrowness of each of the bands. While
multispectral cameras provide from 3 to 10 bands, hyperspectral cameras provide from a hundred to more
than a thousand bands. The main practical drawback of hyperspectral cameras at the moment is their
cost and their image resolution.

Moreover, in the optical group of RS methods we consider passive methods such as spaceborne imaging
and active methods such as aircraft and unmanned aerial vehicle (UAV) imaging methods.

In terms of spaceborne RS systems, the launch of IKONOS (1999-2015) enabled the acquisition of 0.82
meters resolution panchromatic1 images and 3.28 meters resolution multispectral images (4 bands). And
two years after QuickBird-2 (2000-2015) started producing high resolution multispectral images with
four bands; 0.61 meters resolution panchromatic images and 2.44 meters resolution multispectral images.
This pushed forward the research on remote sensing methods for benthic mapping in shallow waters in
general [31], and specifically for mapping seagrass [32, 33, 34].

More recently, other commercial spaceborne systems such as WorldView-2 (2009) and WorldView-3 (2014)
are providing higher spatial resolutions and more spectral bands than prior RS systems. The data
generated from both systems have been extensively used for land [35, 36] semantic analysis. Some recent
studies have assessed their performance for marine and estuarine environments [37, 38, 39, 40]. Table 2.1
provide more details about the spaceborne RS systems mentioned above.

(a) WorldView-3 satellite. Credit: geoimage. (b) PlanetScope satellite. Credit: Planet.

Figure 2.1: Example of optical spaceborne systems.

PlanetScope is the most up to date RS system launched for multispectral imaging. It is a new concept of
constellation formed by 130 small-size satellites, called Doves, with a design life of 2 to 3 years. It provides
multispectral images with 4 bands and a very high temporal frequency (almost daily observations) suited
for monitoring fast dynamic events on land [41] and on marine environments [42, 43].

Freely available spaceborne datasets from Sentinel-2 (S2) have been also extensively used for seagrass
mapping [44, 45, 46]. However, most public RS datasets resolution range from 10 to 60 meters depending
on the spectral band and, unfortunately, they are still far away from commercial options.

In contrast with spaceborne, since airborne systems fly at lower altitudes, the spatial resolution of the
images can be increased and the atmospheric attenuation of light reduced. Lathrop et al. [47] and

1A panchromatic image is a single-band grayscale image with a high spatial resolution that contains the information
from the visible R, G, and B bands. It yields a single integrated band containing no wavelength-specific information.

http://www.https://www.geoimage.com.au/satellites-sensors/worldview-3/
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Table 2.1: Spaceborne RS systems specifications. PC and MC refer to panchromatic
and multispectral bands respectively.

RS system Bands Spatial resolution [m] Altitude Launch Decommission Design
life

PC MS [km] [year]

IKONOS 4 0.82 3.28 681 1999 2015 7
QuickBird 4 0.61 2.44 450 - 482 2001 2015 5
WorldView-2 8 0.46 1.84 770 2009 - 7.25
WorldView-3 16 0.31 1.24 617 2014 - 7.25
Sentinel-2 13 - 10,20 or 60 786 2015 - 7.25 - 12
PlanetScope 5 0.8 3.00 450 - 580 2016 - -

Uhrin et al. [48] use multispectral images for seagrass mapping with a mean spatial resolution after
orthorectification of 1.0m and 0.3m, respectively. At airborne altitudes hyperspectral camera images
start providing data with a spatial resolution fine enough to map seagrass environments accurately.
Clarke et al. [49] describe a study case where the authors map an area of 784km2 in coastal waters
using airborne hyperspectral images, recorded with a spatial resolution of 2m. They validate the method
performing a series of video transects, getting an overall mapping accuracy of 98% for seagrass cover and
a 85% for genus classification in waters up to 10m depth.

The use of unmanned aerial systems (UAS) for RS has been increasing during the last years thanks to
their increased autonomy and reduced costs. Colomina et al. [50] provides a complete review of the
use of nano-micro-mini UAS for photogrammetry and RS purposes. The authors also provide a detailed
description of the most relevant/used imaging sensors.

Taddia et al.[51] presents a study case in which the authors use a 5 band multispectral camera MicaSense
RedEdge-M mounted on a quad-rotor UAV to monitor seaweed growth, providing a spatial resolution
of the recorded images around 8cm and 5cm for a recording altitude of 120m and 70m respectively.
Komarek et al. [52] describe a study for the classification of land cover and vegetation type. The authors
use a fixed wing UAS equipped with three imaging sensors (RGB, 4 bands multispectral, and thermal
cameras) providing 0.03 − 0.18m spatial resolution data for identification of individual species of plants
in land. They obtain very accurate results, and conclude that increasing spectral resolution leads to a
significantly better performance.

Moreover, Nahirnick et al. [53] provides research about the environmental conditions in which UAS should
be used to obtain high confidence seagrass mapping. The authors conclude that the best conditions for
recording are: (1) sun angles below 40◦ to avoid reflectance, (2) positive theoretical visibility with Secchi
depths > 5m, (3) cloud cover conditions of < 10% or > 90% to reduce impact on the radiometric
consistency, and (4) wind speeds less than 5km/h.

Considering that each of the above-mentioned systems have their own advantages, Gray et al. [38]
describes the use of UAS RS data for training spaceborne RS data classification algorithms. The authors
use UAS RS data with 3cm spatial resolution and three spectral band images as a groundtruth to train
spaceborne RS data from WorldView-3 and achieve a seagrass coverage classification accuracy of 93%,
which is very high considering the exhaustive field groundtruth used for validation.

Acoustic RS
Acoustics have been largely used for benthic mapping [54, 55]. By retrieving bathymetry and backscat-
tering it is possible to infer different benthic areas. In this section we focus on the description and uses
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of the most common systems used for benthic habitat mapping; single beam echosounders (SBES), side
scan sonars (SSS), and multibeam echosounders (MBES).

Bathymetry information is directly obtained by measuring the time of flight of the acoustic echos to
return to the receiver. However, backscatter information intrinsic to the seafloor is more difficult to
obtain. It is not only determined by the consistency and the roughness of the seabed but also by the
range distance and the angle of incidence of the acoustic wave. The retrieved backscatter information
also depends on the frequency of the acoustic wave used, low frequencies < 100kHz are typically used
for substrate identification, whilst high frequencies > 400kHz are used for benthic habitat classification
purposes.

Acoustic profiles obtained from SBES have been largely used for characterization of benthic environments
[56, 57]. However, due to their narrow beam width they are not used for coverage mapping on their own,
but complementary with other RS approaches such as spaceborne images [58, 33].

In contrast, backscatter data obtained from an SSS provide a very wide field of view (around 120◦) that
have been extensively used for coverage mapping of benthic habitats during the last few decades. For
instance, SSS data has been used to determine sediment variations [59] and for seagrass monitoring [60,
61]. The intrinsic issue of SSS RS is that the backscatter data can not be localized relative to the acoustic
beams. The SSS does not provide bathymetric data, it only allows to get a temporal response for each
ping. In order to plot the acoustic response on a map, several works mount a SBES to measure the central
altitude and project the temporal data assuming a roughly flat environment or a pre-existent bathymetry
of the area.

The first approach for mapping seagrass meadows using MBES is described by Komatsu et al. [62]. The
authors use a MBES operating frequency of 455kHz with 60 beams and an angular resolution of 1.5◦ for
building a three-dimensional spatial distribution map of seagrass meadows.

The last decade has supposed a big leap for MBES development. According to Lucieer et al. [63]
the improvements in the backscatter data quality measured using MBES come from (a) the precise
co-registration of backscatter with the MBES bathymetry dataset, (b) the optimal signal-to-noise ratio
imposed from bathymetry measurements, and (c) the increased resolution of the measurements. MBES is
now, by far, the most used device for acoustic benthic habitat mapping. The co-registration of bathymetric
and backscatter data enables more accurate benthic classification since the range distance and incidence
angle of backscatter data is known [64].

Prampolini et al. [65] describes the use MBES for substrate classification surveying at depths up to
250m with an operating frequency of 70 − 100kHz and obtaining a maximum spatial resolution of 1m.
Advances in MBES technology have made possible substrate classification on shallow waters up to 30m

depth with a sub-meter resolutions, and operating frequency of 360kHz [66, 67]. Ierodiaconou et al.
[68] and Montereale et al. [69] used a Kongsberg Maritime EM2040 MBES equipped with 800 beams
with an angular resolution of 0.28◦ for mapping in very shallow waters up to 22 and 13m depth and
achieving spatial resolutions of 25 and 5 − 20cm respectively. With such resolutions the authors where
able to distinguish different types of biota, including seagrass, macroalgae and sponges using an operation
frequency of 300 and 360kHz.

Furthermore, since the intensity response changes depending on the sampling frequency used, recent work
have focused on the use of multiple frequency backscatter data for benthic mapping. Using backscatter
data recorded with different operating frequencies has lead to improve seabed classification accuracy
using data recorded during different surveys [70, 71] and data generated using multiple-frequency MBES
to record backscatter data at different frequencies simultaneously [72, 73]. Costa et al. [73] suggests that
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multiple-frequency backscatter maybe most useful for soft-bottom habitats, whereas single-frequency
backscatter may be adequate for hard bottom applications.

2.1.2 In situ sampling
IS sampling methods are extensively used in tandem with RS methods. In fact, most of the RS based
methods for BHM require the acquisition of IS data, either for validation or for training classification
algorithms. Hence, whilst IS sampling provides poor coverage and might be labor intensive, the high
resolution and feature richness of the resulting data makes a good fit to be used as groundtruth for RS
BHM methods.

There are many IS sampling methods depending on the physical variable under study. The most common
group of methods used for BHM are: (1) sediment sampling, (2) direct observation, and (3) underwater
photography. Sediment sampling includes the use of hand samplers by divers and remotely operated
vehicles (ROVs), as well as grab samplers such as the Van Veen sampler used from a boat by Trzcinska et
al. [70]. Tuit et al. [74] provides an extensive review of current methods for marine sediment sampling.

Direct observation is the most traditional way to retrieve spatial data from benthic environments. Either
from surface by boat or snorkeling in very shallow waters with good visibility or by scuba divers. Whereas
samples obtained from surface can be geo-referenced using GPS positioning, geo-referencing scuba diver
observations is more complicated. In order to be methodical, scuba divers usually sample following
transects or using quadrants (see Figure 2.2 for a representation of typical sampling strategies). Although
these methods can vary significantly depending on the research study, they set the basis to reference
samples. The main idea behind the transect method consists on mounting a metric line and annotate
the benthic type changes along the line, providing an approximate resolution of 10cm. The quadrant
sampling consists on annotating the benthic type and conditions contained on a quadrat of maximum
50x50cm. Both transects and quadrants can be placed randomly or in specific locations. However, in
order to track temporal changes it is recommended to take the measurements in the same locations, since
the habitat patchiness could have a major effect on the measurements than the temporal changes [21].

(a) Transects (b) Random quadrats (c) Transect quadrats

Figure 2.2: Different examples for visual inspection of benthic environments by scuba
divers: (a) using three 100m long transects, (b) sixteen 30x30cm random samples or (c)

sixteen 30x30cm samples localized along the transects.

Quadrant sampling is usually performed annotating the type of environment found in a quadrat placed
in a random or specific location, content and coverage. Figure 2.2b shows a random sampling example,
and Figure 2.2c shows a sampling example where the quadrants have been placed in specific locations
along the transects. The advantage of guiding the sampling using transects is that if the central spike is
localized using a GPS from surface and the orientations of the transects are measured using a compass,
the sampled data can be geolocalized.
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Underwater photography enables to store high quality seafloor images containing color and texture,
including the use of monocular, stereo, and hyperspectral cameras. Such images have been recorded
typically by scuba divers, by tethered systems such as drop-down cameras, towed cameras and ROVs,
and more recently with autonomous underwater vehicles.

Scuba divers
In general, data acquisition by scuba divers has many drawbacks in terms of health, autonomy, control
and localization. First, the risks associated with scuba diving. Second, the duration and extension of
the sampling is limited by the scuba tanks. Third, some environments might be confusing and lead to
undesired recording paths with bad coverage or uninformative data, Figure 2.3 represents the recording
path followed by a scuba diver: some areas are unrecorded (lack of overlap between neighboring images
in the orange circles) while others are over recorded. Finally, for the images to be geolocalized, scuba
divers have to be equipped with acoustic transponders to enable localization [75], or follow the transect
or quadrants strategies at known locations using a GPS on surface. If the divers are not geolocalized,
the techniques used are prone to inaccuracies, e.g. drift during the immersion after taking the GPS
positioning, or drift on the metric tape. Johnson et al. [76] provides a relevant study and Pizarro et al.
[77] describes a relevant method to generate full image coverage for building small-scale photogrammetry-
based seabed reconstructions.

Figure 2.3: Lawn mower path followed for image recording with scuba divers. In red
the camera keyframes, in blue the lines that join the overlapping images. The orange

circles point out some unrecorded spots. Credit: Pizarro et al. [77]

Tethered imaging systems
Drop-down, towed and ROV image recording have a common characteristic of enabling a remotely oper-
ated in situ image recording, avoiding the human risks associated with scuba diving at expenses of a wired
connection to a host ship. Whereas the sensing features of each specific device can vary depending on
the target application, the main difference between them is the type of movement they are designed for.
Drop-down systems are usually dived and left underactuated for a period of time, they are typically used
to record images in particular spots, such as quadrant sampling. In contrast, towed systems are equipped
with fins in order to record steady image transects when dragged from a host ship. Most drop-down
and towed camera systems are designed to be lightweight and low cost, and rely on the host ship GPS



Chapter 2. Related work 15

for data localization [56, 78, 58]. However, more complex systems are equipped with three-axis compass
for measuring orientation–i.e. roll, pitch and heading–[79] and acoustic positioning systems [80], which
improves the sampling accuracy and repeatability.

Figure 2.4 shows some examples of a particular ROV, towed camera and drop camera for particular
applications.

(a) ROV Isis. Credit: Veerle Huvenne, National Oceanog-
raphy Centre, UK (b) Towed camera system. Credit: Rende et al. [78]

(c) Drop camera system. Credit: National Oceanic and Atmospheric Administration, US.

Figure 2.4: Example of tethered image systems.

The difference with ROVs and drop or towed camera systems is that ROVs have several degrees of
maneuverability, and can be actuated from an operator on board of the host ship, allowing a more
accurate control of the sampling [70]. Macreadie et al. [81] provides an extensive review of ROV data
collection practices, and Robert et al. [82] uses recorded images from a ROV to build photomosaics.

Autonomous underwater vehicles
The benthic data acquisition process can be automated by taking advantage of the latest developments in
autonomous underwater vehicles (AUVs). According to Wynn et al. [5] AUVs are unmanned, untethered
and self-propelled vehicles that can operate independently of the deploying ship. In contrast with ROVs,
AUV have an enhanced mobility that enables surveying larger areas at higher speeds. However, the
untethered condition means that AUVs have to be self-sufficient at least in terms of energy and navigation.
The first is obvious, since there is not a wired, connection the AUV has to be equipped with a power
source, thus energy efficiency becomes critical in order to increase mission endurance. The second is
related to the limited communication bandwidth (if exists), and the lack of GPS.

Underwater environments are particularly challenging due to the rapid attenuation of electromagnetic
waves. Acoustic signals are well suited for this medium, they are extensively used for wireless underwater
communication. However, acoustic communications suffer from small bandwidth, low data rate, high
latencies, multipath and variable speed that hinder remote operation. AUV localization usually relies on
acoustic positioning systems [83] as the unique source of absolute positioning. It is important to notice
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that for AUVs having an accurate localization is not important only for data geo-referencing but also for
the vehicle control.

Whilst AUVs are considered IS sampling platforms, they are increasingly used as an intermediate solution
between ship borne acoustic sampling and ROV inspection. Depending on the sensor payload, the variable
under study and the resolution required for the recorded data, they can be configured to sample at different
altitudes from the seabed. Thus, bridging the gap between RS and pre-existent IS methods.

BHM AUVs are usually equipped with stereo cameras or MBES for high-resolution data acquisition. For
instance, Johnson et al. [76] uses the small torpedo-class Iver2 AUV equipped with a Prosilica stereo
camera and achieve a very high resolution of 2mm/px , and Robert et al. [82] achieve a 0.5m/px resolution
using a MBES mounted on the Autosub 6000 AUV to map vertical walls. Other relevant works include
the use of the Sirius AUV for stereo images recording coregistered with multibeam data [84, 85], and
with hyperspectral imagery [86].

Figure 2.5 shows to examples of AUVs: the REMUS-600, that is a 3.6m long AUV able to reach a 600m

depth, and the Autosub 6000, a 5.5m long AUV rated to navigate at a 6000m depth.

(a) REMUS-600 AUV. Credit: Sheri White, Woods Hole
Oceanographic Institution, US

(b) Autosub 6000 AUV. Credit: National Oceanography
Centre, UK

Figure 2.5

2.2 Data-driven exploration with AUVs
This section introduces a taxonomy of the most relevant works about data-driven exploration with AUVs
regarding our particular application. The key idea behind data-driven systems is to use the data gathered
during mission time to guide the robot navigation and increase its autonomy. Therefore, the objective is
evolving from a framework in which the trajectory of the robot is preprogrammed and insensitive to the
environment, to a framework in which the decision of the locations to visit depends on the data recorded
so far.

Data-driven systems prove a great option in aiding robot navigation in order to maximize the information
gain during data gathering operations. For instance, active SLAM approaches [87, 88], which are a
remarkable application of data-driven systems, are used to determine when and where to look in order
to find image loop closures to improve vehicle localization using saliency maps.

Another remarkable application of data-driven systems is for environmental monitoring. Some approaches
propose the use of data-driven strategies to map environment variables, find trajectories to maximize
information gain [89, 90], and reduce uncertainty around a threshold value [91, 92]. This thesis focuses
on this application.
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2.2.1 Information Gathering
Environmental monitoring and many other applications in robotics share the common objective of explor-
ing an unknown environment for recording data to represent it. Information Gathering (IG) algorithms
involve a particular type of data-driven methods that use an information metric generated from recorded
data to guide the exploration. Such information metric used by IG algorithms represents the informa-
tiveness of the environment variable under study in particular locations. This metric is used to drive
the data recording process towards the more informative spots whilst minimizing a cost, such as the
number of measurements, the navigation distance or the mission time. IG algorithms have been used
for different types of exploration, for instance; (i) goal-based, where the objective is traveling from an
initial location to a goal location with a given cost budget [93, 94, 95], (ii) front-based, for traversing
a given threshold area [91, 96], (iii) frontier-based, usually for indoor environment mapping [97, 98, 99,
100], (iv) multimodal, using different data sources [101, 102], (v) multirobot, using multiple robots [103,
104, 105], (vi) hotspot-based, to find environmental variable hotspots [92, 89], and (vii) coverage-based,
for environmental variables dense estimation [106, 107], which is, in fact, the focus of this work.

The aforementioned methods are differentiated mainly by the method they use to perceive the physical
process under study, and to decide the sampling strategy depending on the perceived information. The
perception and the decision methods are key for the design of an IG strategy.

2.2.2 Perception
The perception method can be further divided in terms of the sensor used to measure the physical process
under study, and the method used for modelling its spatial distribution. The type of sensor used heavily
depends on the physical process under study. The most common in the literature is the use of punctual
measurement like salinity sensors [106], cyanobacteria [107] or plankton [90] that are geolocalized with the
estimated robot position. Furthermore, Jadidi et al. [100] use range sensors to model spatial occupation
and Popovic et al. [108] use cameras for terrain monitoring.

In general, the most used method for spatial distribution modelling is using a Gaussian Process (GP) fed
with the data collected by the robot [109]. GPs are a powerful nonparametric set of techniques that can
handle a large variety of problems, and have the ability to learn spatial correlation with stochastic noisy
measured data [110]. The key feature of GP for IG algorithms is their ability to handle both, data uncer-
tainty and data incompleteness, effectively, which allows performing dense estimation of environmental
variables for coverage-based exploration purposes. The problem of GPs is that they do not scale well,
having a complexity of O(n3). Some works overcome this issue by proposing the use of a sparse GP [106,
111] or local maps fusion using Bayesian Committee Machine (BCM) [100] to decrease complexity and to
enable the online execution. Figure 2.6 provide a representation of a bathymetric estimation performed
by Ma et al. [106].

2.2.3 Decision-making
The decision-making method used can be further differentiated according to (a) the information function,
(b) the Informative Path Planning (IPP) strategy, and (c) the adaptive strategy for replanning.

Information function
The information function is used to drive the robot navigation, it is related to the environmental variable
under study, and it is usually computed considering the modelling uncertainty. Hollinger et al. [112]
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Figure 2.6: Resulting bathymetry estimation via GP from Ma et al. [106]. The authors
use bathymetric data from an acoustic depth sensor to train a GP and predict the
environment bathymetry in a given target region. The color scale of the data points of

the figure represent the lake depth in meters. Credit: Ma et al. [106]

propose the use of an interpolated version of the GP model predicted variance, but most of the methods
use either Differential Entropy (DE) or Mutual Information (MI) as information function. Using DE
results in lower computation times and higher uncertainty reduction than using MI, when computed
from a GP prediction in a stationary setup [113]. Despite the submodularity property of MI [114], the
computational time of such information metric results prohibitive in many applications. Moreover, the
use of an Upper Confidence Bound (UCB) information function has provided good results in applications
that, in addition to exploration, require exploitation of the model [90].

IPP strategy
The IPP strategy has the objective of defining the most informative trajectories for IG, applying con-
straints such as the planning time or the travelling cost. The IPP strategies used for IG can be classified
in two exclusive groups; myopic and non-myopic.

Myopic strategies are short-sighted, they only plan one step forward, and usually work following greedy
heuristics [115, 116]. Thomson et al. [117] proposed a complete pipeline for autonomous planetary
exploration, introducing the concept of science on the fly to adapt the robots’ exploration to the collected
instrument data, using a GP for environmental modelling and a greedy method for IPP.

In contrast, non-myopic strategies look several steps ahead, providing paths that may result better on
the long run. Such strategies are usually graph-based, sampling-based or evolutionary-based. Whilst
graph-based solutions are usually time expensive, they have been used for small state-space scenarios
[93, 106] and in non-adaptive frameworks [102] where the mission path is processed offline. In contrast,
sampling and evolutionary-based strategies, have been used for adaptive frameworks, and have yield high
performance.

Most sampling-based methods [118, 89, 113, 119, 120] base their strategies in modified versions of standard
sampling-based strategies [121, 122], by adding the information gain. In particular, Hollinger et al. [89]
presented a rapidly-exploring IG tree (RIG-tree), that was the base of a further developed two-step
planning process presented by Viseras et al. [113]. They proposed a solution based on Rapidly-exploring
Random Trees (RRT) and RRT* [123], using a GP for environment modelling and a DE as information
function, all to find a goal position providing a high information path under a budget constraint. Figure
2.7 provides further detail the RIG-tree framework designed by Hollinger et al. [89].
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Figure 2.7: RIG-tree framework from Hollinger et al. [89]. The authors propose a series
of rapidly exploring information gathering algorithms able to plan information paths in
areas containing obstacles. The color map represents the map informativeness; the red

areas contain more information than the blue areas. Credit: Hollinger et al. [89]

Evolutionary-based strategies solve the IPP problem by parametrization and optimization of a path. Hitz
et al. [107] and Popovic et al. [108] propose the use of a GP to model the environmental variable and a
CMA-ES algorithm to optimize the path to be followed by the robot, with a fixed length and predefined
initial and ending locations.

Adaptive strategy
In terms of adaptive strategies for replanning the literature is very scarce. The usual is to provide a linear
execution pipeline where the vehicle is stopped for mapping and planning [113, 98]. Nonetheless, some
authors propose to perform the process of environmental modelling in parallel to the planning process in
order to stop only for replanning [124], and some others avoid stopping by proposing to use as the origin
of the new planning a location contained in the current mission path that the robot has not reached yet
[107]. In any case, most relevant strategies, either sampling-based [113] or evolutionary-based [107] do
not transfer planning knowledge between consecutive planning iterations.

Some of the key points that differentiate the framework that we propose in this Thesis from previous
works are (1) the method used to generate spatial data samples from stereo images, (2) the representation
of the benthic environment using a specific sparse GP configuration, and (3) the use of a computational
efficient method based on reinforcement learning for IPP. The adaptive replanning strategy proposed
in the next chapters will allow continuous navigation without stopping the robot neither for mapping
nor planning, will transfer planning knowledge between consecutive replanning iterations, and will be
computationally efficient in order to be deployed in a lightweight AUV.
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Chapter 3

Semantic habitat modelling

This chapter focuses the perception part of the IG strategy. Providing a framework to enable the con-
struction of a probabilistic model of the environment using the data provided by an AUV equipped with a
stereo camera. The semantic perception of the environment will be the basis of further adaptive planning
and exploration of the next chapters.

The objective of the proposed framework is to semantically model the spatial distribution of benthic
environments. The challenge here is threefold. First, the semantic modelling has to be computation
efficient and time bounded to enable online execution onboard of an AUV, we are assuming low band-
width communications with an untethered AUV that impede remote computing. Second, the semantic
model has to be probabilistic in order to capture data uncertainty, such uncertainty will be required for
exploration purposes. Finally, the last challenge is that the semantic model has to integrate data from a
stereo camera.

In order to handle that challenges, the proposed framework has been based on the use of an encoder-
decoder convolutional neural network (CNN) to segment the images recorded by the stereo camera and
a sparse Gaussian process (SGP) to model the spatial distribution uncertainty of the environment. The
configuration of such CNN and SGP models is determined using field-test data and extensively validated
during field experiments.

To the extent of the author’s knowledge, no similar approaches aimed at improving visual data-gathering
operations for seagrass have been published in the literature so far. The most relevant in situ optical
mapping techniques for seagrass do not generate an online data flow to assist in strategic decisions during
data-recording campaigns [75, 125, 23]. Where the goal of Bonin et al. [23] is to improve data post-
processing, and not to ease data gathering operations. None of them provide a measure of the uncertainty
bonded to the recorded data.

The proposed framework is based on two layers, one for sensing and another for spatial modelling,
described in Sections 3.1 and 3.2 respectively. Section 3.3 provides a description of various experiments
performed for model selection and Section 3.4 enumerates the results obtained. Finally, Section 3.5
outlines the main conclusions.
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3.1 Sensing
The sensing layer captures stereo image pairs (left and right images) and uses a pre-trained deep neural
network to produce an output flow of segmented point clouds, one per image pair, with a pre-defined
frequency. The following processes are involved:

– Image Gathering: The acquisition of stereo images, including the setting of the navigation altitude,
vehicle speed and maximum exposure time.

– Stereo Image Processing: This includes the rectification and decimation of the left and right images,
as well as the computation of the disparity image between frames to estimate the image depth.

– Image Segmentation: This inputs rectified and decimated left images into the CNN and outputs a
greyscale image that represents the probability of P. oceanica being present.

– Image Projection: This uses the disparity image to project a set of segmented image pixels into the
3D space (relative to the camera pose or keyframe). The resulting segmented point clouds are used
for spatial modelling.

Sections 3.1.1 to 3.1.3 provide a more in-depth description of the image gathering, image segmentation
and image projection processes.

3.1.1 Image gathering
Depending on the mission requirements and the lighting conditions, several navigation settings must be
configured beforehand in order to obtain high-quality images.

In terms of mission requirements, a configuration for fast sparse modelling requires, for instance, high
vehicle altitude to retrieve images with a large footprint and high speed; in contrast, high resolution
mapping requires lower altitudes and lower speeds in order to achieve small pixel size and low blurring.
Maximum vehicle speed and altitude play an important role and are determined as follows.

Vehicle altitude conditions image footprint fpw,h and pixel size psw,h (both in metric units), where w

and h express the width and height of the image. The image footprint is obtained using the camera field
of view FOVw,h and the aforementioned vehicle altitude a, such that

fpw,h = 2 · a · tan
(

FOVw,h

2

)
. (3.1)

Pixel size psw,h is obtained by using the image resolution rw,h, given in pixels, for both height or width,
such that

psw,h = fpw,h

rw,h
. (3.2)

Both the footprint and pixel size are proportional to the altitude.

Low lighting conditions may require a higher maximum exposure time Emax. Since,

Emax = psw,h · blurmax

s
, (3.3)

decreasing the speed s or increasing the navigation altitude (pixel size) results in an increased expo-
sure time margin. The maximum blurring admitted blurmax is usually taken as 1 pixel in order to be
insignificant.
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The frame rate fps conditions the image overlap between consecutive images. For non-holonomic motion
it is expressed as,

d = s

fps
(3.4)

overlapx = max
(

0,
fpx − d

fpx

)
, (3.5)

where d represents the Euclidean distance between consecutive keyframes, and fpx the footprint in the
advancing direction.

Our proposed method uses a lower frame rate and resolution for processing than for recording. Firstly,
since the method does not look for correspondences between successive images, image overlap is not
crucial. Secondly, although using higher resolution images would increase network performance in terms
of accuracy, the image segmentation and the stereo disparity computation loads would also increase.
Thus, the gathered images are downsampled to 480× 360 pixels resolution, which is the input size of the
CNN used, and the processing period is left as a resolution parameter: the image segmentation period.

Chapter 5 provides a further revision of the navigation settings, providing a set of expressions used to
assess the impact of the navigation conditions, such as altitude, light and vehicle speeds to the recorded
data accuracy.

3.1.2 Semantic segmentation
The semantic segmentation uses the encoder-decoder based CNN architecture VGG16-FCN8 [126] rep-
resented in Figure 3.1. It uses the model described in Martin et al. [127], pre-trained to discriminate
the P. oceanica from the background in underwater images. Martin et al. compares the performance of
VGG16-FCN8 with other state-of-the-art semantic segmentation architectures such as the U-Net [128]
and the SegNet [129], resulting in a superior performance of the VGG16-FCN8 in terms of accuracy,
precision, recall and fall out for the three tested datasets.

Use a pre-trained VGG16-FCN8
The architecture takes the images gathered by an AUV as input and outputs greyscale images where
the grey level represents the probability of P. oceanica presence. This architecture is fully convolu-
tional and can efficiently learn how to make dense predictions for per-pixel image tasks such as semantic
segmentation. The architecture can be divided into two main blocks: the encoder and the decoder.

The purpose of the encoder is to extract features and spatial information from the original images by
making use of a series of convolutional layers. This information is passed along the layers as feature
maps, starting from low-level to deeper high-level information as more convolutional layers are applied.
Furthermore, encoders implement a series of max pooling layers to reduce the size of feature maps, offering
better computational performance as the number of parameters is concentrated.

The selected architecture makes use of the VGG16 encoder [130], removing the last classification layer
and converting the last two fully connected layers into convolutional layers used to preserve the spatial
information in the decoder and obtain an initial low-resolution segmentation. In turn, dropout layers are
added to help reduce overfitting.

The purpose of the decoder is to take the low-resolution segmentation output of the encoder and up-
sample it to the input image size, obtaining high-resolution segmentation. The decoder makes use of
transposed convolutional layers that apply inverse convolution on the input, up-sampling it. The decoder
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Figure 3.1: Scheme of the encoder-decoder based CNN architecture VGG16-FCN8 used
for online image segmentation. Encoder: convolutional (blue), pooling (red) and dropout
(black) layers. Decoder: score (purple) and transposed convolutional (green) layers from
the decoder. The numbers under and above the layers indicate the number of feature
maps and their size, respectively. The orange arrows represent the featured output points

O1,O2 and O3.

also contains skip layers [131] used to combine high-level features from the encoder with the coarse
information of the transposed convolutional layers. Lastly, an activation layer is applied in order to
obtain the final semantic segmentation.

The architecture makes use of the FCN8 decoder structure [126] that contains three of the aforementioned
transposed convolutional layers and three interleaved skip layers. The network outputs a resolution grey
scale image depicting the P. oceanica presence probability.

Optimize the network performance
The CNN has been integrated in the ROS-based node using the open source library TensorFlow [132] to
enable online segmentation onboard of an AUV running a software architecture based on ROS. In order
to save resources, the network is fed with raw images at a predefined rate. Furthermore, the images fed
to the CNN are decimated to the input resolution of the CNN, which is 480× 360 pixels.

Moreover, in the same direction of reducing computing loads, three different models have been looked at
from the original decoder.

• M1 is obtained by applying the softmax layer at the end of the architecture, after the third trans-
posed convolution–i.e. 480 × 360 pixels resolution output, O1 in Figure 3.1–, offering a full-size
prediction containing high-level detailed information.

• M2 is obtained by changing the softmax layer position after the second transposed convolution–i.e.
60×45 resolution output, O2 in Figure 3.1–, where two skip layers have already incorporated some
high-level information.

• M3 is obtained by applying a softmax layer right after the first transposed convolutional layer,
obtaining a low-resolution prediction output–i.e. 30 × 23 pixels resolution output, O3 in Figure
3.1–containing solely coarse information.

The main idea is to set the output of the network before of some of the last transponded convolutional
layers, producing a lower resolution output. These models have been extracted from the original best
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performing model presented in [127], where it was trained and validated to detect P. oceanica areas.
Sections 3.3.4 and 3.4.1 provide a specific validation of the presented models in order to select one best
performing model to be used in the modelling framework.

3.1.3 Image projection
The process makes use of stereo image disparity in order to project a subset of pixels from the segmented
image into 3D coordinates. The resolution of this subset is set as a configuration parameter referred
to as segmented point cloud resolution. Every projected subset, the so-called segmented point cloud, is
obtained by resizing the disparity image and the segmented image linearly to the given segmented point
cloud resolution. Then, by using the disparity image and the intrinsic camera parameters, we are able
to perform the transformation from image coordinates (u,v) to 3D positions (x,y,z) referenced to the
camera keyframe. Figure 3.2 illustrates the projection process and Figure 3.3 represents eight examples
of resulting point clouds.

Figure 3.2: Online image processing to generate semantic point cloud data from stereo
images recorded by an AUV.

Figure 3.3: Example of 8 images gathered during field-tests together with the corre-
sponding segmented images and semantic point clouds.

The final step to transform such semantic point clouds to global coordinates is to obtain the pose (refer-
enced to the global reference frame) of the left camera. The localization of the AUV is used to compute
such pose. As successive point clouds are processed they are stored for spatial modelling.
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3.2 Spatial modelling
The spatial modelling layer is executed under query. It stores the segmented point clouds provided
by the image processing module and uses the estimated robot trajectory to produce a series of map
representations of a given target region: (i) the raw data density map represents the density of the
gathered data; (ii) the grid map represents the samples used for training the GP; and (iii) the coverage
and (iv) uncertainty maps represent the probabilistic spatial distribution of P. oceanica. The spatial
modelling layer is composed by the following processes:

– Transformation: This transforms the segmented point clouds to global coordinates using the esti-
mated robot trajectory. Such transformed data, raw data hereon in, comprise data points described
by their location (latitude, longitude, depth) and a label value. This label represents the probability
of P. oceanica being present in a determined location.

– Sampling: This performs a grid sampling of the raw data contained in the target region. The
resulting samples are referred to as grid samples.

– Training: This optimizes a GP using the grid samples as training samples to model the spatial
distribution of P. oceanica in the target region, generating a GP model.

– Prediction: Using the trained GP model, this process provides estimations of P. oceanica distribu-
tion in the target region; a coverage map represents its mean value and an uncertainty map provides
the associated variance.

The estimated robot trajectory used in the Transformation process can be obtained by using an extended
Kalman filtering approach [133]. However, it can also be obtained using an extended Kalman smoothing
approach [134], reducing the position error between successive image keyframes. Smoothing the estimated
trajectory is useful, for instance, when using acoustic beacon positioning systems. Such systems usually
provide low frequency measurements, which produce bounces in the estimated trajectory.

The grid filter used by the Sampling process uses the median cell value. By using a grid with a given
grid sampling resolution, each grid cell retains the data point with the median label value, considering
all the raw data contained in a threshold distance from each cell center. The distance threshold is set
to the same value as the grid sampling resolution. Only the label value is considered for the median
calculation and the grid cells that do not contain data are left empty. In this process, we also compute
a raw data density map, which is build by counting the number of raw data samples used to obtain the
median sample value in each cell.

Figure 3.4 shows a representation of the resulting grid samples projected in 3D, as well as the AUV model
and the EKF trajectory.

3.2.1 Training and prediction
The training stage has the objective of training an SGP using the grid filtered semantic point clouds.
The outcome of this process is an SGP model able to compute predictions about the type of habitat in a
particular location. Such predictions are composed of a mean and a variance value. The mean prediction
value is contained in the interval [0,1], the same interval as the labels of the data points used for training.

The next sections provide more detail regarding the spatial modelling using GPs and the implementation.
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Figure 3.4: Representation of the grid samples projected in the 3D space (cube mark-
ers), the AUV model and the EKF trajectory. White cubes represent grid samples with

low probability of having P. oceanica, dark cubes represent higher probabilities.

Background on Gaussian Process
Let us introduce the basis of the Gaussian processes used for model training. A GP is defined as a
collection of random variables which have a joint Gaussian distribution [135]. The random variables
represent the value of the non-observable function value f(x) at location x. Such function is specified by
its mean function m(x) and covariance function k(x,x′) values such that,

f(x) ∼ GP
(

m(x), k(x,x′)
)

(3.6)

Assuming a linear regression model, f(x) = ϕ(x)⊤w, where ϕ(x) represents a basis function vector, or
kernel, and the weights w follow a zero mean normal distribution w ∼ N (0,Σp). Since E[w] = 0, f(x)
results in a zero mean:

m(x) = E[f(x)] = ϕ(x)⊤E[w] = 0 (3.7)

In addition, the covariance of f(x) is derived from using the zero mean weights assumption such that:

k(x,x′) = E[(f(x)−m(x)) (f(x′)−m(x′))]

= E[f(x) f(x′)]

= ϕ(x)⊤E[ww⊤]ϕ(x′)

= ϕ(x)⊤Σpϕ(x′)

(3.8)

It results in that the GP covariance directly depends on the basis function vector, the query locations
and the variance in the weights.

Furthermore, since there is no direct access to the function values themselves–i.e. f(x)–, and only
noisy observations, we assume additive white noise ϵ with variance σ2

n on a latent variable modelled as
y = f(x) + ϵ. Then according to Seeger et al. [135] the joint distribution of the observations y and the
latent values f∗ according to the prior is defined as,[

y
f∗

]
∼ N

(
0,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
, (3.9)

being X = {xi | i = 1,...,n} the train locations, X∗ = {x∗
i | i = 1,...,n∗} the test locations and K(X,X∗)

the matrix of covariances evaluated at the referenced locations.
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Implementation details
The developed method for spatial modelling makes use of the open source library GPflow [136] for GP
training and prediction. This library provides several models, kernels, and likelihood functions to build
GPs.

Kernel functions

GP predictors are a probabilistic kernel machine. The learning process is based on the optimization of the
parameters for the covariance kernel K(X,X), which characterize the spatial correlation of the function
values.

These covariance kernels are usually based on smooth functions. This work focuses on using squared
exponential ϕSE and Matérn ϕMν

basis functions. These functions have shown to represent the latent
function spatial distribution with a good precision and using a minimum number of function parameters.
They are described as:

ϕSE(r) = exp

(
− r2

2l2

)
(3.10)

ϕMν
(r) = 21−ν

l

(
√

2ν
r

l

)ν

Kν

(
√

2ν
r

l

)
, (3.11)

where r represents a kernel distance metric and l the kernel length scale. The Matérn functions also have
the scaling factor ν, which is typically set to 1/2, 3/2, 5/2, and Kν , a modified Bessel function value for a
particular ν.

Models

This work proposes the use of SGP models. This kind of model approximates the training data by using
a small group of inducing points. These have been shown to provide good approximations of the studied
variable whilst improving the computational performance when using large datasets.

Three SGP models are looked on this work:

• Sparse Variational GP Regression (SGPR) [137].

• Sparse Variational GP using MCMC (SGPMC) [138].

• Sparse Variational GP (SVGP) [139].

The SGPR model introduces a variational formulation that jointly infers the inducing inputs and kernel
hyperparameters. Whereas the SGPMC and SVGP models allow for non-Gaussian approximations over
the function values, using non-Gaussian likelihood functions.

Likelihood functions

The likelihood function should represent the semantic label distribution of the data. Taking into account
that (a) the semantic data used for training the SGP is contained in the interval [0,1], and that (b) the
pixel labels are biased towards the extreme values (the CNN is confident about the predictions), we
propose the use of a beta function to model the likelihood distribution of the latent function for models
that allow non-Gaussian approximations (SVGP and SGPMC). The beta function is defined by a mean
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sample value, given by the mean label value of the training set, and a scaling factor. We set the scaling
factor to s = 1 in order to give higher probabilities to the extreme values [0,1].

3.3 Experiments
A total of three field-tests (FT1, FT2 and FT3) were performed using either the AUV Turbot or the
ASV Xiroi, near the Bay of Palma (Balearic Islands), providing data from partially covered P. oceanica
environments with different meadow spatial distributions.

This section introduces the robot configurations used for these experiments, the field-tests performed for
data collection and the criteria followed for model selection and validation of the method.

3.3.1 Robot configurations
The software architecture of both robots is based on ROS [140]. Table 3.1 briefly describes the main
specifications of the robots in terms of navigation payload, stereo camera and computer. All the processes
related to image processing and environment modelling have been executed on CPU.

Table 3.1: Specifications of the robots used for field-testing the semantic habitat mod-
elling.

AUV Turbot ASV Xiroi
Navigation
Payload

DVL, Pressure, IMU,
Compass, GPS, USBL

IMU, Compass,
GPS RTK

Stereo
Camera

Point Grey
CM3-U3-31S4
(2048x1536pixels)

Point Grey
BB2-08S2
(1032x776pixels)

Computer
Intel i7 2.5 GHz,
4 cores, 8 GB of RAM
and Ubuntu 16.04

Intel i3 2.33 GHz,
4 cores, 8 GB of RAM
and Ubuntu 16.04

The AUV Turbot, Figure 3.5a, is a torpedo-shaped AUV based on a Sparus II [141] unit with three
degrees of maneuverability: surge, heave and heading. The navigation payload consists of (a) a Doppler
Velocity Log (DVL) to obtain linear and angular speeds and altitude; (b) a pressure sensor to obtain high-
frequency depth measurements; (c) an Inertial Measurement Unit (IMU) to measure accelerations and
angular speeds; (d) a compass for heading; (e) a GPS to be geo-referenced during surface navigation, and
(f) an acoustic modem used in combination with an Ultra Short Baseline (USBL) for absolute localization.
An Extended Kalman Filter (EKF) [133] with a posterior smoothing stage [134] estimates the robot’s
trajectory by fusing multiple state estimation from the sensor equipment. The downward facing stereo
camera has an FOV in salt water of [0.54,0.40]rad. Moreover, in order to achieve fast data transfer, the
AUV is tethered to a buoy equipped with an Ubiquiti Bullet M2-HP antenna.

The ASV Xiroi [142], Figure 3.5b, is an ASV based on a catamaran shape with two degrees of maneuver-
ability: surge and heading. In this instance, it is important to mention that it uses an Emlid Reach Real
Time Kinematic (RTK) GPS which, according to producer specifications, provides position measurements
with an absolute error of less than 10cm. The ASV uses an EKF [133] filter plus smoothing to fuse the
IMU, compass and GPS measurements for trajectory estimation. Moreover, the ASV is equipped with
a wide angle stereo camera that has an FOV in salty water of [0.92,0.74]rad. Communication with the
control station (CS) is established using a long-range Ubiquiti Bullet BM2HP antenna installed on board.
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(a) AUV Turbot (b) ASV Xiroi

Figure 3.5: Robots used for the semantic modelling experiments.

The vehicles were only used for data acquisition, and the CS computer was used for image segmentation
and mapping. The CS computer is equipped with an Intel i7 CPU @ 3.40 GHz, 32 GB of RAM and
Ubuntu 16.04. All the data gathered by the robots from the three field-tests were stored for model
selection and validation.

3.3.2 Field-tests
Table 3.2 briefly describes the main specifications of the three field-tests performed. FT1 was conceived
to be a best-case scenario in terms of localization and image segmentation. We used the Xiroi ASV to
record highly precise localized data of a seagrass meadow with very sharp edges. Figure 3.6a shows an
aerial image of the target region; a sharp meadow bound can be clearly distinguished. Figure 3.6b shows
the raw data density map obtained from the surveyed area. This map represents the locations from which
data have been gathered. Very large areas from the target region were left unrecorded in order to see
how the GP estimation performed.

Table 3.2: Field-test specifications.

FT1 FT2 FT3
Robot ASV Xiroi AUV Turbot AUV Turbot

Location 39.5253N
2.5474E

39.5244N
2.5505E

39.5244N
2.5504E

Target region 32× 18m 25× 15m 15× 10m

Altitude 2.8m 3.0m 3.0m

Speed 1.0m/s 0.25m/s 0.25m/s

Seagrass
meadow
characteristics

Sharp edges
Many small
patches with
fuzzy edges

Few big
patches with
fuzzy edges

Following the reasoning of Section 3.1.1, the maximum exposure time to avoid blurring was found to be
2.72ms, sufficient for the lighting conditions at such depth. Figure 3.7a shows an example of the kind of
images recorded: the light conditions are good, and the meadow has sharp edges.

In the case of FT2 and FT3, in order to use the AUV Turbot with precise USBL positioning measurements,
the target region had to be deeper than 6m. However, such a target region also had to be as shallow
as possible to be able to partially distinguish seagrass meadow bounds from aerial images. Thus, we
surveyed two regions approximately 6.5m in depth following a lawn mower survey pattern.



Chapter 3. Semantic habitat modelling 30

(a)

0 46
Sample	density	[u/m2]

(b)

Figure 3.6: Cartographies from FT1 region: (a) Google Maps cartography, superim-
posed in (b) with raw data density map

(a) FT1

(b) FT2

(c) FT3

Figure 3.7: Sample images from FT1, FT2 and FT3. Seabed covered by sand, rocks
and P. oceanica.
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From the recorded images (Figure 3.7), the seabed in the target region in FT2 seems to have many small
patches of background typologies (sand, rock and dead matte). By contrast, the target region in FT3
had fewer and bigger background areas. Figure 3.8a shows the aerial image of both target regions along
with the inferred hand-labelled meadow bounds. This illustration also highlights small patches with fuzzy
edges in the case of FT2 and fewer and bigger patches in FT3.

Field	Experiment	Locations
Meadow	bounds	from	aerial	images

FT3

FT2

0.0

(a)

1 180
Sample	density	[u/m2]

FT3

FT2

(b)

Figure 3.8: Cartographies from FT2 and FT3 regions: (a) Google Maps cartography,
superimposed in (b) with raw data density map. The meadow bounds inferred from the

aerial image are also represented in white.

Moreover, Figure 3.8b represents the raw data density maps. The mission for FT2 was programmed to
have a small image overlap in order to leave several small regions unrecorded. By contrast, the mission
for FT3 was programmed to provide more overlap between the transects and produce a high density of
raw samples.

3.3.3 Resolution parameters
The processes described require several resolution parameters to be set beforehand: (a) the image seg-
mentation period, (b) the segmented point cloud resolution, (c) the grid samples resolution and, (d) the
inducing points density. They depend on the aims of the data-gathering campaign. Table 3.3 details
three alternative configurations to test in this work; low, medium and high resolution (LR, MR and HR).

Table 3.3: Configurations used for low, medium and high resolution mapping.

Image Processing LR MR HR
Image Segmentation period [s] 2.5 2.5 1.5
Segmented Point Cloud
Resolution [pu,pv] [4,3] [12,9] [12,9]

Mapping LR MR HR
Grid Sampling
Resolution [m] 0.5 0.3 0.25

Inducing Points
Density [units/m] 0.1 0.3 0.4

3.3.4 Model selection criteria
CNN model selection
The three encoder-decoder CNN models described in Section 3.1.2 (M1, M2 and M3) have been evaluated
in terms of class separability and execution time, using the original image test set proposed by Martin
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et al. [127]. The image set consists of 117 images representing different P. oceanica meadow conditions
such as meadow density, rhizome proportion, matte compactness and coloration, and different recording
conditions such as water illumination, depth and turbidity.

The area under the curve (AUC) of the receiver operating characteristic (ROC) curve is proposed as a
measure of class separability to evaluate the performance of each model. The ROC curve is computed
using the number of True Positives, False Positives, True Negatives and False Negatives obtained when
comparing the prediction output of the CNN with the hand-labelled groundtruth (GT) image pixel by
pixel; the predicted image is binarized by using several thresholds contained in the pixel value interval
[0,1]. The AUC of the dataset is computed as the mean AUC obtained from the ROC curve for each
image.

In addition, the average time that it takes a model to segment an image has also been used to evaluate the
performance of each model. The execution time of the dataset is computed as the mean execution time
for each image. The best model configuration is selected as the one offering the best trade-off between
both metrics: AUC and execution time.

SGP model and kernel selection
The SGP models and kernel functions described in Section 3.2.1 are evaluated in terms of class sep-
arability, uncertainty representation and execution time. A total of twelve SGP configurations (three
models and four kernel functions) have been evaluated experimentally using three field-tests, using the
SGPR, SGPMC and SVGP models and the ϕSE , ϕM12 , ϕM32 , ϕM52 kernel functions. Furthermore, each
configuration has been tested using the three resolution configurations in Table 3.3 of Section 3.3.3.

The GT used to obtain the evaluation metrics comprises a small set of raw data (transformation process
output) which, instead of being used for the sampling process to produce the grid samples used to train
the GP, is pulled out of the pipeline and kept for testing. We use a k-fold cross-validation (CV) scheme
and, for every test, the input dataset (raw data) is divided into k groups of samples uniformly distributed
along the dataset. We perform k iterations per test, using one group for testing and (k− 1) for sampling
and training. In this case, a value of k = 10 has been considered sufficiently high in order to lower the
impact of reducing the training set. In order to obtain the evaluation metrics, we compare the prediction
of each trained model with the set of raw data kept as GT. The resulting metrics for each test are obtained
as the mean metric values of the k = 10 CV iterations.

Class separability of the predicted samples is evaluated using the AUC of the ROC. The higher the AUC,
the more separable the predicted classes. The ROC is obtained comparing the prediction output of the
GP, sample by sample, with the GT set of raw data kept for testing. The SGP is queried for predictions
at the same locations where GT data has been kept, and such predictions are binarized using several
thresholds contained in the label value interval [0,1].

Uncertainty representation is studied as the correlation between regression error and resulting SGP
variance, with the regression error being the sum of the absolute differences between GT and predicted
values. In order to be useful, the resulting variance of the SGP has to be higher where the error in the
prediction given by the trained model is higher. Such correlation has been captured using the absolute
value of the Spearman correlation index (SP). An SP value near zero means no correlation between
regression error and SGP variance, whilst a value of one implies an exact monotonic relationship; the
higher the SP the better the uncertainty representation. Additionally, the execution time is measured as
the time that it takes a training process to be executed.
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3.3.5 Validation criteria
This section provides a detailed description of the criteria followed to validate the methodology proposed
in this chapter. The validation is based on two steps: one to validate all the processes until the raw
data is obtained, and one to validate spatial modelling. Both validation steps use data from the three
field-tests described in Section 3.3.2, and the three resolution configurations proposed in Table 3.3 of
Section 3.3.3.

In terms of raw data validation, we verify the quality of the segmented point clouds; in terms of spatial
modelling, we evaluate the GP regression performance and how well the GP is learning from the recorded
data.

Raw data validation
The first step in the validation process is planned to provide the source error of the raw data used by the
spatial modelling. Such data is obtained through a sequential process of image gathering, segmentation,
projection and transformation, and have two sources of error: one associated with misclassification and
one with localization noise. Whilst the former can be quantified using pixel discrimination error metrics,
the latter is more complex to assess.

Raw data misclassification is evaluated as follows: for each stereo pair of a data set (1) compute the
segmented point cloud, (2) get a GT image by hand-labelling the rectified left image, (3) project the GT
image in order to get a GT point cloud (using the same projection resolution as for the segmented point
cloud), and (4) calculate the AUC of the segmented point cloud using the GT point cloud. The resulting
AUC of the dataset is the mean AUC obtained from all the images contained in this dataset.

The localization error of the raw data can be associated with the image pixels projection to 3D and
the robot pose estimation. The former is related to the disparity image computation and the intrinsic
camera parameters; this validation assumes a precise stereo camera calibration and leaves this source
of localization error out of the discussion. In contrast, we deem that the robot pose estimation may
be prone to produce relevant localization errors on the absolute camera frame position and orientation
estimations.

Pose estimation errors depend on the sensor equipment installed on the robot, as well as on the localization
filter used. In the case of the robots used in the tests, as described in Section 3.3.1, we assume a position
error of < 0.1m for the ASV and < 1m for the AUV, given the RTK GPS of the former and the multi-
sensor payload of the latter [143]. In any event, the use of an EKS strategy is expected to produce
improved cohesion for the mapping process since it tightens successive absolute position corrections
together.

Whereas it has been impossible for the author to provide a map GT to validate the gathered data,
the localization consistency of the raw data has been verified by using a set of geo-referenced aerial
images obtained from Google Maps. Although such aerial images do not provide enough resolution to
distinguish which areas are covered with P. oceanica in order to act as a GT, they have been used to
check morphological coherence between both data sources. Therefore, these aerial images have been used
to compare the location of the most evident seagrass meadow bounds with the gathered data.



Chapter 3. Semantic habitat modelling 34

GP prediction validation
The resulting maps from the GP regression have been validated using the AUC of the ROC to measure
class separability, the Spearman (SP) correlation index to assess uncertainty estimation, and the execution
time.

In order to obtain statistical metrics, we propose the use of the same strategy used for model selection;
the same GT and CV analysis. However, in this instance we only test the selected GP configuration and
perform k = 40 CV iterations in order to decrease the impact of keeping part of the raw data for testing.
We analyze the performance of the selected model using the recorded raw data from each individual
field-test.

3.4 Results
This section shows the results obtained after running the model selection and validation tests in line with
the criteria proposed in sections 3.3.4 and 3.3.5. Section 3.4.1 reviews the model selection of the CNN
and Section 3.4.1 reviews the model and kernel selection of the SGP.

3.4.1 Model selection
CNN model selection
Table 3.4 shows the results obtained for the three image segmentation models proposed in Section 3.1.2
and Figure 3.9 show some examples of segmented images using the different models.

Table 3.4: Results obtained to select the most suitable CNN model selection.

CNN Model Metrics
Name Resolution Time [s] AUC
M1 480x360 0.133 0.994
M2 60x46 0.116 0.992
M3 30x23 0.115 0.963

The three models have AUC values over 0.96 which, following the criteria established by Powers et al.
[144], represent excellent classifiers. Whereas M2 has an AUC that is 0.2% smaller than M1, both models
have AUC values that are 3% higher than those of M3. The execution time drops a 13.5% and a 12.8%
for models M3 and M2 respectively in comparison to M1.

Moreover, considering that the image recording altitude was 3.5m, and considering the Equation 5.7
provided in Section 5.1, the pixel size for the three output images is 0.8cm, 6.5cm and 13.1cm, respectively
for M1, M2 and M3. Choosing a CNN model will depend on the required segmentation frequency and
computing capacity of the AUV.

SGP model and kernel selection
Table 3.5 details the results obtained for the different tested SGP configurations.

The first important result is that the SGPR model configurations result in a negative SP index. This
negative correlation indicates a low uncertainty representation: the regression error is not monotonically
correlated with the resulting SGP variance. Thus, this GP model will be discarded from the discussion.
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Raw image M1 M3M2

Figure 3.9: Resulting image segmentation for the three segmentation models considered.
From left to right: the raw image used as input for the models (1920x1440), and the
segmented output images from the models, M1 (480x360), M2 (60x45) and M3 (430x23).
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Table 3.5: Mean results of the 40-fold cross-validation tests for the SGP model selection;
execution time, the AUC and the Spearman (SP) correlation index. M stands for model

and K for kernel.

SGP Configuration Metrics
M K Time AUC SP

SGPMC

ϕM12 4.196 0.883 0.817
ϕM32 8.622 0.889 0.828
ϕM52 9.466 0.887 0.829
ϕSE 10.188 0.879 0.832

SGPR

ϕM12 4.060 0.881 - 0.171
ϕM32 3.019 0.877 - 0.167
ϕM52 3.466 0.876 - 0.165
ϕSE 4.740 0.873 - 0.229

SVGP

ϕM12 7.167 0.870 0.810
ϕM32 9.316 0.876 0.820
ϕM52 9.941 0.874 0.821
ϕSE 9.712 0.857 0.818

In contrast, the SVGP and SGPMC models present a very high SP index. Which means that the regions
with higher variance coincide with the higher regression error. Such an improved prediction of the
posterior variance in the SVGP and SGPMC model configurations is associated with the use of a more
suitable likelihood function. As described in Section 3.2.1, both models have been configured to use a
beta function with an s = 1 scalar factor. While the SGPR model assumes, by definition, a Gaussian
likelihood distribution.

The uncertainty representation of the SGP depends on the capacity of the likelihood function to adapt
to the input data distribution. The use of a beta function as a likelihood function of the SGP is key to
capture the distribution probability of our input data, even when the samples in a dataset are biased
towards one label value.

Taking into consideration SGP configurations that use a beta likelihood function, the SGPMC models
with ϕM12 or ϕM32 kernels stand out from the rest. They provide low execution times whilst maintaining
high AUC and SP metrics. Figure 3.10 provides more details about these two SGP configurations.
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Figure 3.10: Comparison of the SGPMC models with ϕM12 or ϕM32 kernels. Execution
time, AUC and SP results considering all three field experiments and distinguishing the

results obtained for each resolution configuration (LR, MR and HR).

The figure distinguishes between the resolution configurations used and shows of the results’ distribution.
Using a ϕM12 kernel results in faster execution times than using a ϕM32 for all resolution configurations
analyzed. The ϕM12 results in slightly lower AUC and SP values than the ϕM32 for the same resolution
configuration. However, for the same execution time budget, the SGP model with a ϕM12 kernel can
be computed with a higher resolution than ϕM32 , providing improved performance. For instance, the
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SGMPC ϕM12 configuration, trained in MR, results in lower execution times and higher AUC and SP
than the SGMPC ϕM32 configuration trained in LR.

Thus, the SGPMC model with likelihood function beta s = 1 and kernel ϕM12 is selected as the default
SGP configuration for the proposed methodology.

3.4.2 Validation
Raw data validation
Table 3.6 presents the results of the classification performance for each dataset and tested resolution
configuration.

Table 3.6: Resulting AUC values of the raw data obtained from field-tests FT1-3 and
resolution configurations LR, MR and HR

AUC FT1 FT2 FT3
LR 0.983 0.911 0.906

MR-HR 0.984 0.908 0.912

Bound	from	aerial	image
Bound	from	sampled	data
Displacement

P.	Oceanica	sample
Background	sample

Figure 3.11: Meadow bounds representation to validate the consistency of the raw data
obtained from FT1. The circular dots represent the data samples, the color indicates
the sample value. The white lines represent the meadow bounds inferred from the aerial
images and from the samples. The orange arrows represent the distance between both

inferred bounds.

From these results, no correlation has been found between the resolution configuration used and the AUC
obtained. In other words, a high resolution of the segmented point cloud does not condition the resulting
AUC. One explanation for this is that higher resolutions preserve more boundary information, whilst
lower ones take into account wider areas, weakening boundary errors.

With regard to localization consistency, we compare the location of the meadow bounds that can be
inferred from the raw data of a dataset and the bounds inferred from an aerial image. Figure 3.11 shows
the raw data obtained from FT1 overlaid on top of a geo-localized aerial image.

The meadow bounds inferred from the aerial images and from the collected data have an offset of ap-
proximately 2 meters. Considering that data was recorded using an ASV with a trajectory estimation
based on RTK GPS with an accuracy given by the manufacturer of < 0.1m, the localization mismatch
cannot be categorically linked to the trajectory estimation, but also to errors induced by the aerial image
projections to the WGS 84 global reference system.
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GP prediction validation
Figures 3.13, 3.14 and 3.15 show the grid maps and uncertainty maps obtained for the three datasets
using an MR resolution configuration. The grid samples shown in the grid map represent the probability
of P.oceanica presence in a determined location; the uncertainty map represents the variance obtained
from the GP regression after training the SGPMC ϕM12 model using the aforementioned grid samples.

The results obtained from CV analysis are represented in the box plots of Figure 3.12. They show
important differences depending on the test. In the case of execution time, this difference mostly comes
from the fact that the computation complexity of an SGPMC increases as the number of samples increases
since O

(
mn2) [138], where m represents the quantity of inducing points and n the quantity of training

samples; such quantities are proportional to the area of the extension covered, which are 262m2, 282m2

and 117m2 for FT1, FT2 and FT3, respectively. In terms of the AUC and SP metrics, the results for
each environment depend on the spatial distribution complexity of the seagrass, i.e. background patch
size and meadow edge sharpness.
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Figure 3.12: Results obtained for the validation of the SGPMC-beta model with kernel
m12 using an MR resolution configuration. Each plot represents the mean and dispersion
of a given metric (time, AUC and SP) after running 40-fold cross-validation iterations

for the field-tests FT1, FT2 and FT3.

As expected, FT1 presents a best-case scenario resulting in low execution times and high AUC and
SP. These results are due to good image segmentation performance (proven in Section 3.4.2), accurate
localization and a seagrass meadow containing sharp edges. The uncertainty map provides a proper
illustration of the high uncertainty areas, Figure 3.13. The GP is able to model uncertainty in information
rich areas, such as heterogeneous data regions which contain small paths and sharp bounds, as well as in
unrecorded spots close to the heterogeneous data areas. Notice that Figure 3.13b shows high GP variance
near the meadow bound, and in the nearby non-sampled areas. In turn, non-sampled areas surrounded
by the same sample labels result in low variance.

FT2 shows the worst performance due to (i) a low image segmentation performance caused by hard differ-
entiable background spots, (ii) small localization errors due to the low-frequency underwater positioning
system and (iii) low sampling redundancy. Figure 3.14 shows the resulting sample and uncertainty maps.
Even in such a worst-case scenario, the uncertainty map highlights information-rich areas of the surveyed
seabed.

FT3 contains the same localization inaccuracies as FT2. However, since background areas in the seagrass
meadow are bigger, and more overlapping data has been recorded, the GP predictions are more accurate.
The uncertainty map perfectly captures the information-rich areas of the target region.
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Figure 3.13: Resulting maps of FT1 experiment. The top image (a) shows the grid
map. It represents the samples used for training the GP; the sample color represents the
sample label–i.e. the probability of having P. oceanica–. The bottom image (b) shows
the uncertainty map; darker areas represent higher uncertainty. High uncertainty areas
correspond to heterogeneous data areas and unrecorded spots close to the heterogeneous

data.
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Figure 3.14: Resulting maps of FT2 experiment. The top image (a) shows the grid
map. It represents the samples used for training the GP; the sample color represents the
sample label–i.e. the probability of having P. oceanica–. The bottom image (b) shows
the uncertainty map; darker areas represent higher uncertainty. The uncertainty map

highlights information-rich areas containing heterogeneous samples.
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Figure 3.15: Resulting maps of FT3 experiment. The top image (a) shows the grid
map. It represents the samples used for training the GP; the sample color represents the
sample label–i.e. the probability of having P. oceanica–. The bottom image (b) shows
the uncertainty map; darker areas represent higher uncertainty. The uncertainty map

highlights information-rich areas far from the mean label value.
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In short, all the tests showed that high GP variance values are found in information-rich areas. Areas
containing similar sample values obtained low variance, and meadow bounds or patches resulted in high
variance. In this sense, critical spots from which more data are required are highlighted.

3.5 Discussion
This chapter provides a method to ease data-gathering campaigns for P. oceanica meadows by performing
(a) an online image segmentation using an encoder-decoder CNN, (b) a projection of such processed
data to world coordinates using stereo image processing and the estimated robot trajectory and (c) an
estimation of the collected data uncertainty using an SGP.

A series of field-tests were carried out in order to provide enough data to select the most suitable CNN
and SGP configuration, as well as to validate the method in diverse P. oceanica environments.

In these tests, the encoder-decoder CNN showed that removing the last transponded convolutional layers
of the VGG16-FCN8 network has a small impact on the segmented point cloud classification error and a
substantial reduction in the execution time. It resulted in an AUC reduction of 0.2% in favor of a lower
execution time of 12.8%.

With regard to the selection of a sparse SGP configuration, the experiments showed that the SGPMC
model with kernel ϕM12 provides the best overall performance. Such a model configuration provided
shorter training times and excellent uncertainty representation.

Furthermore, our application has shown that using a likelihood beta function with scaling factor s = 1
in the SGP model is fundamental in order to model the uncertainty of our prediction model. Validation
tests using such a likelihood function have shown that (1) the surveyed areas which are considered
to be more salient show higher SGP variance than areas containing similar sample values and (2) the
estimation shows good prediction properties in non-sampled areas too, inferring, for instance, meadow
bound continuations.

One of the main benefits of this new methodology is the possibility to ease, speed up and reinforce the
robustness and precision of geo-referenced data gathering processes. The method also permits easing and
increase the frequency of the data gathering campaigns in repeated and precisely geo-referenced sites,
which is key to inspect periodically the same ecosystem to observe changes and get temporal series of
geo-referenced biological data in marine sites of special ecological interests, something very costly in time
and resources using classical methods based on divers.

Producing spatial distribution predictions of seagrass whilst the AUV records images from a target
region provides an increased perception of the environment, which results in improved supervision during
data-gathering campaigns. This increased perception aids operational decision-making, for instance by
performing a quick exploration of a target region, identifying bad data quality or modifying the robot
trajectory in order to visit strategic spots. This methodology sets the basis for further research on
mission replanning; such enhanced perception about the environment is key to perform autonomous
decision-making and be able to develop robust data-driven exploration for environmental monitoring.
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Chapter 4

Decision-time adaptive replanning

This chapter tackles the decision-making capacity required to drive an AUV adaptively replanning mission
paths around a target area. The key idea behind the replanning method described in this chapter is the
use of a semantic model of the environment generated online to adapt the mission paths and enable
exploration.

This chapter describes a novel decision-time adaptive replanning (DAR) method for adaptive mission
replanning which has been designed to execute successive informative paths, without stopping, considering
the newest information obtained from an environment model.

Figure 4.1 provides an overview of the replanning method. It first builds a network of possible sampling
locations inside a target area (build node network), establishing connections between neighbor nodes.
Then, with a given fixed frequency it iteratively executes (1) an update node network process to query
the modelling method for the recorded data density and SGP predictions at the sampling locations
and update the network of sampling locations. Then, considering the actual mission status, (2) a get
next initial state provides the starting state for the next IPP execution. Finally, (3) a planning process
sequentially updates a search tree and retrieves the most informative path. Such path is stored to be
launched as the robot finishes the current section maneuver.

Environment model

Build Node 

Network

Area

Update Node 

Network

Node 
Network

Get Next

Init State

Planning 

(DF-MCTS)

Init

Search
Tree

Path

Figure 4.1: Decision-time adaptive replanning (DAR) method.

We solve the information path planning (IPP) problem by means of a novel depth-first (DF) version of the
Monte Carlo tree search (MCTS). The DF-MCTS method has been designed to explore the state-space
in a depth-first fashion, provide solution paths of a given length in an anytime and non-myopic manner,
and reward smooth paths for field realization with non-holonomic robots.

The DAR method joins the advantages of graph-based and sampling-based methods, devoting some time
at the initialization to produce a network of neighbor nodes (a graph) that is used for sampling paths
and grow a decision tree. The consecutive planning iterations update such decision tree and select a
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candidate path to execute in an anytime manner. Having a precomputed network of nodes boosts the
sampling computations. This point, together with the fact of maintaining a decision tree alive between
consecutive planning iterations are two key features to reduce the planning time and improve the overall
performance.

The remainder of the chapter is organized as follows: Section 4.1 introduces some background about
RL algorithms. Sections 4.2 and 4.3 describe the developed methods–i.e. DAR method and DF-MCTS
strategy, respectively–. Section 4.4 describes the tests performed in simulation and illustrate the results.
Finally, Section 4.5 summarizes the main conclusions and draws future research objectives.

4.1 Background on Reinforcement Learning (RL)
This section introduces the basis of the reinforcement learning formalization used to solve the IPP prob-
lem with the DF-MCTS strategy described in Section 4.3. The basic idea behind RL is to learn from
interaction. The learning is based on trial and error; in real or simulated environments. In this work we
will use RL in order to explore the space of possible paths to be executed by the AUV during its adaptive
mission by interacting with the environment model. The selection of the best path to follow is considered
a sequential decision process. Next sections provide the basis of the problem formalization in terms of a
Markov decision process and solutions for such problem.

4.1.1 Markov decision processes (MDP)
MDPs are a classical representation of sequential decision processes [145], and are characterized by the
Markov assumption: the decisions taken only depend on the current state. Moreover, such processes are
called Finite MDP (FMDP) when the states and actions are finite and Partially Observable Finite MDP
(POFMDP) when the state can not be completely observed.

MDPs are suited for RL problems, being useful to map situations to actions by maximizing a numerical
reward signal; an agent interacts with the environment and gets a reward signal and a change of state.
They are characterized by four main subelements; a policy, the reward signal, the value function and
optionally, a model of the environment:

• The policy determines the action to be taken from a particular state. It can be (1) stochastic,
where a probability is specified for each action following, for instance, a Gaussian or a uniform
distribution; (2) deterministic, for instance taking the action with the highest expected reward in
a greedy fashion; or even (3) ϵ−greedy, where a stochastic policy is used with a probability given
by ϵ ∈ [0,1] or greedy otherwise.

• The reward signal comprises the goal of the RL problem. The objective of the RL problem is to
maximize the total expected reward along an executed path.

• The state-value function estimates how good is for the agent being in a given state. It considers the
total amount of reward that the agent can expect to accumulate over the future. Whilst rewards are
given directly from the environment, values are obtained from trial experience. This value function
takes into account the future rewards of the states that are likely to follow the actual state.

• The model describes the behavior of the environment. It predicts the transitions between states
given an action, which is, the next state and reward from the current state and action. Whilst
model-free methods learn by trial and error, model-based methods are able to consider future possible
situations before they are experienced.
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4.1.2 Iterative policy evaluation
In this work the IPP strategy described in Section 4.3 is approached as a POFMDP, in which the set
of states, actions and rewards (S, A and R respectively) have a finite number of elements, and where
the state can not be fully observed. The POFMDP is solved using a value function method based on
iterative policy evaluation. In particular, we are using Monte-Carlo (MC) for the expansion and Temporal
difference (TD) for the value backpropagation, methods detailed below, in Equations 4.11 and 4.12. In
this case the Markov assumption can be translated into a probability of resulting a particular state s′

and reward r, at a particular time t, given a preceding state s and action a:

p(s′,r|s,a) .= Pr{St = s′, Rt = r|St−1 = s, At−1 = a}, (4.1)

for all s,s′ ∈ S and r ∈ R, a ∈ A(s). Such probability determines the dynamics of the MDP and is
characterized by S ×R× S ×A(s)→ [0,1], where∑

s′

∑
r

p(s′,r|s,a) = 1, for all s ∈ S, a ∈ A(s). (4.2)

The state-value function vπ(s) for an arbitrary policy function π(s) is defined as,

vπ(s) .= Eπ{Gt|St = S} (4.3)

This is the expected return on the long run (several time steps ahead). Where Gt is defined as the
discounted sum of expected rewards such as,

Gt
.= Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + ... (4.4)

= Rt+1 + γ
(
Rt+2 + γRt+3 + γ2Rt+4 + ...

)
(4.5)

= Rt+1 + γGt+1 (4.6)

where γ ∈ [0,1] is the discount rate. With a γ = 0 the agent would be myopic, considering only immediate
rewards. Whereas with a higher γ value the agent would have a stronger consideration on further rewards.
From the last expression we can start revealing the recurrent nature of RL problems.

The state-value function can be further expanded using (4.3) and (4.6), and it can be deduced that,

vπ(s) .= Eπ{Rt+1 + γGt+1|St = S} (4.7)

= Eπ{Rt+1 + γvπ(St+1)|St = S} (4.8)

=
∑

a

π(a|s)
∑
s′,r

p(s′,r|s,a)
[
r + γvπ(s′)

]
, (4.9)

where the policy π(a|s) provides the probability of choosing a particular action a from a state s. The
Bellman equation (4.10) provides an iterative expression to find an optimal solution v∗(s) .= maxπ (vπ(s))
to the RL problem as k →∞. Dynamic programming (DP), Monte-Carlo (MC) and Temporal difference
(TD) methods can be used to perform such iterative policy evaluation.

vk+1(s) .=
∑

a

π(a|s)
∑
s′,r

p(s′,r|s,a)
[
r + γvk(s′)

]
(4.10)
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DP can be used to incrementally compute optimal policies when a perfect model of the environment is
available. However, they require a fully observable environment, they can not be used to solve partially
observable MDP. The value update for MC and TD methods is performed as follows:

MC : vk+1(s) .= vk(s) + λ
(

Gt − vk(s)
)

(4.11)

TD : vk+1(s) .= vk(s) + λ
(

r + γvk(s′)− vk(s)
)

(4.12)

where the λ parameter defines the learning rate.

The basic difference between them is that whilst MC learns after trial, TD guesses from guesses, that
is MC uses the expected reward value Gt and TD uses the discounted value of the next step vk(s′), it
bootstraps. Using either MC or TD, the value of one state can be updated from the rewards obtained on
successive steps following a default policy.

4.1.3 Decision-time planning
Decision-time planning methods are used to plan a series of decisions from a root state [145]. These
methods use simulated experience from a model to improve a policy or a value function. Instead of
solving the whole MDP, they focus on solving a sub-MDP. They plan using the MDP model to look
ahead from the current state. Here, the approximate value function is obtained on leaf nodes of the
current state and then propagated backwards to the current state.

Rollout algorithms [145] are a type of decision-time planning methods, based on Monte Carlo control.
They sample multiple trajectories in a depth-first fashion from a root state. Each trajectory (or rollout)
consists in taking successive decisions according to a given default policy until a terminal state is reached.
They are used to obtaining near-optimal decisions by taking random samples in a decision space and
building a search tree according to the results. They are useful for artificial intelligence applications with
large states and actions spaces. Moreover, this kind of methods are a good fit for our applications since
they are anytime, always provide a solution, where more computing power leads to better performance.

Monte Carlo tree search (MCTS) is a particular rollout method improved to bias the growing of a decision
tree towards the highest valued regions. A tree is started from a root node, and grows iteratively following
the next iteration steps: (1) Selection of the highest valued non-exhausted and non-ending node according
to some tree policy. (2) Expansion of the tree. Randomly select a non-taken action to connect a new
node to the selected one. (3) Simulation of a playout. Propagate the new node by selecting sequential
actions according to a default policy until a given budget is exhausted, and compute the new node value.
(4) Backpropagation of the node value upwards through the tree. Once the search is interrupted an
action of the root node is selected according to some predefined criteria. For instance select the action
that conduces to the highest valued child, the most visited child, or a weighted function between value
and visits. The key parts of the MCTS algorithm are the tree policy, the default policy and the value
function; which can be shaped based on the nature of the problem domain.

The limitation of MCTS for our application lies in the fact that, whereas MCTS explores the environment
in a depth first manner, the decision tree tends to grow exhaustively, resulting in a shallow tree if a short
planning time is given or a high discount factor is used. For this reason we propose a novel variation, the
DF-MCTS, described in Section 4.3.
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4.2 Decision-time adaptive replanning (DAR)
This section describes the developed strategy for decision-time adaptive replanning (DAR). This DAR
method has been designed to be executed online while the AUV is moving; the planner iteratively
command new mission paths considering the newest data available as the robot navigates and the GP-
based environment model is updated. It consists in four key ideas:

• Building and updating a network of nodes N that results in a pre-initialization of part of the content
included in the states and actions considered during decision-time planning.

• Having the AUV in constant motion, while being flexible to execute updated missions. The robot
is neither stopped for planning nor forced to complete the commanded mission paths.

• Growing a search tree in a depth-first fashion, following a novel DF-MCTS strategy for decision-time
planning.

• Recycling part of the last search tree for successive planning executions.

The main structure of the method is illustrated in Algorithm 1. It inputs: a target area A and an obstacle
region O defined as polygon shapes in global coordinates, a model of the environmentM containing the
SGP model and the k-d tree used for computing the raw data density, an initial state s0 defined by
the initial AUV pose, the sampling nodes density ρ configured, and the nearest neighbor distances d1

and d2 set. The path to execute P and the remaining path Ps0 are initialized empty. The algorithm
starts generating a set of sampling nodes N , and then iteratively: (1) updates the nodes utility using the
newest environment modelM, (2) gets the next initial state s0 if a path P has been previously generated,
(3) gets a path Ps0,sn using the DF-MCTS strategy, and (4) saves the path.

Algorithm 1: DAR()
Input: A, O, M, s0, ρ, d1, d2
P ← ∅;Ps0 ← ∅;
N ← buildNodes(A,O, d, d1, d2)
while ¬stopCondition() do
N ← updateNodes(N ,M)
if P ̸= ∅ then

s0 ← getNextInitState(P)
end
Ps0,sn ← getPath(s0)
Ps0 ← getRemainingPath(P, s0)
P ← Ps0 + Ps0,sn

savePath(P)
end

4.2.1 Node network
The Algorithm 2 describes the generation of the node network N (of Algorithm 1). It randomly generates
a set of nodes N inside a given target area A and outside of given obstacle areas O. The number of
nodes n to build is determined by a desired node density ρ and the area of A. Then, a k-d tree is build
using the locations of the nodes contained in N for quick nearest-neighbor lookup. The node network
is build by querying the k-d tree for two sets of neighbors for each node; a first set of nodes N1 located
at a distance d < d1, and a second set of nodes N2 located at a distance d > d1 and d < d2. Being the
distance thresholds d1 < d2.
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Algorithm 2: buildNodes()
Input: A, O, M, ρ, d1, d2

// Get sampling locations:
a← Area(A)
n← a · ρ
while k < n do
p← getRandomLocation(A)
if (p /∈ O) then
N ← append(N ,p)
k ← k + 1

end
end
// Set neighbors:
kdt← KDTree(N )
for N ∈ N do
N1 ← getNearNodes(kdt, N, d1)
N2 ← getNearNodes(kdt, N, d2)−N1
setNodeNeighbors(N,N1,N2)
end

The Algorithm 3 describes the update of the node network N (of Algorithm 1). The objective is updating
the sampling utility at the N locations. The model M is queried to get the data density and SGP
prediction in the N locations. Then, the information gain I and the utility value U of the nodes in N
are computed, that will be used to guide the IPP.

Algorithm 3: updateNodes()
Input: N , M

D ← getDensity(M,N )
µ, σ2 ← getPrediction(M,N )
I ← computeInformation(µ, σ2)
U ← computeUtility(D, I)
N ← D, µ, σ2, I, U

4.2.2 Information gain and node utility
The information gain I is computed from the prediction obtained with the SGP model at the node
location. We have considered two options to compute such information, either using the differential
entropy (DE) IDE or the upper confidence bound (UCB) IUCB functions, Equations (4.13) and (4.14),
respectively.

IDE = 1
2 ln (2 · π · e · σ2) (4.13)

IUCB = µ + 1.96 ·
√

σ2 (4.14)

Whilst IDE uses the variance σ2 provided by the SGP in the query locations, IUCB also uses the mean
semantic label µ provided by the GP. IUCB provides higher values to higher mean label locations, which
increases exploitation (coverage) in such locations at the expenses of reducing exploration in lower mean
label locations. Moreover, instead of using the I directly for planning we build a utility value U to
leverage the I with the neighboring data density D such as:

U = I ′ · (1−D′)α (4.15)
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The objective of using such U is to attenuate the interest of visiting areas that do not present a reduction
on the predicted information I, even though they have been repeatedly recorded (high density). This
situation may happen in areas with heterogeneous data, such as meadow boundaries. Moreover, since
the resolution of the SGP model is bounded, recording more data on a high information location does
not imply improving the fitness of the SGP model. I ′ and D′ represent the normalized information and
density values for all the nodes to the range [0,1] using a min-max normalization. The α parameter works
as a weight on the density factor, the higher the α the bigger is the impact of the density D.

4.2.3 Replanning
In order to allow a continuous navigation and a flexible path execution, we take into account the time
expend in planning in order to set the initial state used for next planning iteration. The distance
between the actual position and the next initial state s0 has to be larger than a minimum distance
dmin = vmax · tplan, where vmax is the maximum speed of the robot and tplan is the planning time. The
next initial state s0 used for next planning is selected taking into account the distance covered by the
robot while the planning process is executed. As the robot finishes a section maneuver, it executes the
latest planned path.

4.3 Depth-first Monte Carlo tree search (DF-MCTS)
This section describes the IPP strategy developed to provide mission paths to the DAR method. Con-
sidering the high number of possible states and actions available in our field robotics application and
the necessity of an online realization, a decision-time planning method has been developed to solve the
IPP problem. DF-MCTS is different from MCTS in one key aspect: it keeps all the states traversed
during the rollout in the search tree. This provides a faster growth of the tree, and guarantees a solution
path of a given length. The limitation of MCTS for our application is that whereas MCTS explores the
environment in a depth first manner, the decision tree tends to grow exhaustively resulting in a shallow
tree if a short planning time is given or a high discount factor is used.

4.3.1 Problem formalization
We propose to solve the IPP problem using a RL-based algorithm using a finite number of non-fully
observable states. For that end, a POFMDP represents the sequential decision problem.

States
A state Sk is defined by an associated node N , a parent state Sk−1, a set of action candidates A(Sk), a
state value V , a distance cost c from the initial state, and an orientation θ; Sk ← {N, Sk−1,A(Sk), V, c, θ}.

Nodes
The nodes are used to provide a discrete representation of the possible sampling locations in the target
area. A node N is defined by a north-east position x, a raw data density value d, an information gain i,
a utility value u, and two sets of neighbor nodes NN

1 and NN
2 ; N ← {x, d, i, u,NN

1 ,NN
2 }. The nodes are

initialized at the initialization of the DAR method and updated before each IPP execution as described
in Section 4.2.1.
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Actions
The actions are directly associated to the transition to a given neighbor node. So, the selection of an
action directly means the selection of a neighbor node to be visited next. Taking a particular action from
a given state Sk will result on the transition to the neighbor node considered in such action, and in the
creation of a new state Sk+1. The set of action candidates A(Sk) of a given state Sk will be composed of
a subset of the neighbor nodes NN

2 of its associated node N such as A(Sk) ∈ NN
2

4.3.2 Method
The structure of the proposed method is represented in Figure 4.2 and includes 3 sequential steps:
selection, expansion and backpropagation. It starts building a tree T from a root state s0 (initial state
from DAR of Section 4.2). Then, it iteratively selects a high valued node, expands the tree with multiple
rollouts, and backpropagates the state-values; selection, expansion and backpropagation.

Selection Expansion Backpropagation

Figure 4.2: One iteration of the proposed DF-MCTS algorithm. The stared state
represents the selected state for expansion, the states with a triangle correspond to the
states used for update the tree values for the expansion and the backpropagation steps.

The darker circles represent the states whose values are updated.

Remark 1 (Keep search tree). For successive plannings, the tree structure that hangs from the next initial
state s0, from now on called T ′, is conserved. And prior to the next IPP execution T ′ is traversed to
update the distance cost, extend the leave states and update the state values to the newest map estimation.

Selection
Select a state from the tree Tne to expand, where Tne includes the non-exhausted states of T ′–i.e. state
containing non-tested actions–. The state selection follows a tree policy based on an ϵ− greedy method
(with a parametrizable epsilon), which consists in getting a random number r and evaluating if r is bigger
or lower than epsilon. If r > ϵ, the highest valued state s∗ from Tne is selected. Otherwise, get a random
state. Being,

s∗ = argmax
s∈T

v(s) (4.16)

Expansion
Expand the tree following a given default policy. This step is different from the expansion step in MCTS
algorithms in the following: DF-MCTS (a) performs multiple rollouts from the same selected state, and
(b) the states traversed are kept in the tree and are considered for further tree expansions.

An MC rollout is build by iteratively (1) searching for candidate actions A(s) to the current state s,
(2) selecting an action a ∈ A(s) according to a given default policy π(a|s), (3) performing action a and
(4) getting next state s′ and reward r until a distance budget B is exhausted.
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We define the default policy π(a|s) with a uniform distribution (4.17) and deterministic action-state
transitions (4.18). We assume that the execution of action a being in state s results in a new state s′

located on a neighboring node position pointed by action a.

π(a|s) = 1
∥A(s)∥ , for all a ∈ A(s) (4.17)

p(s′|s,a) = 1, for all s ∈ S, a ∈ A(s) (4.18)

The set of action candidates A(s) of a given state s is built when a state is visited for the first time.
These actions include the nodes that can be reached one step ahead. The set of actions of a given state
A(s) are build checking the node network built in the DAR initialization, see Section 4.2.1. In order
to get smoother rollout trajectories, two sets of action candidates are used: A1 and A2, represented in
Figure 4.3.

s0
s

p

N2

N1

A1

Np

d
d

A2

Figure 4.3: Two sets of action candidates for a given state s: A1 = N2 ∩ Np and
A2 = N2 − Np. Where Np includes the nodes located at a distance d from p and

s p = sparent s = d.

The set A1(s) includes the priority actions. The default policy π(a|s) will use the set A1(s) if it is not
empty, otherwise it will use the set A2(s). Besides, afterwards an action candidate a is used, it is removed
from its action candidate set. As a result from this, as the tree grows, some states get exhausted of action
candidates. Such states are considered exhausted and are removed from the Tne used for selection.

The values v(s) of the states traversed during rollout are updated using the state-value function (4.3).
That, considering (4.1) and (4.17), can be rewrote as:

v(s) = r(s) + γv(s′), (4.19)

where r(s) represents the reward generated in state s.

In order to generate smooth trajectories the relative turns between consecutive states are considered in
the reward function r(s). Defined as

r(s) = u(s) · cosω θr(s)
2 , (4.20)

where u(s) ∈ U is the utility value u of the node belonging to state s obtained from the update of the node
network using Equation 4.15, and θr(s) is the relative angle between the orientations of s and its parent
state. The second term has been designed to penalize sharp turns, rewarding small variations of θr(s),
and is contained in the interval [0,1]; the ω acts as a parameterizable weight. Since u ∈ [0,1] (Section
4.2.1) the reward will be unitary r ∈ [0,1]. Computing the value of the rollouts is a mater of sequentially
computing the discounted sum of rewards. Furthermore, as the adaptive replanning advances and more
data is recorded, the map estimation gets more accurate, which impacts in a more accurate utility value
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and reward signal. Hence, the more accurate the SGP regression becomes the more accurate the reward
signal becomes.

Backpropagation
Back-propagate the rollout values to the preceding states. We use for this a value function based on the
TD expression (4.12) presented in Section 4.1.2. However instead of updating the state value using only
a child state value, we use the mean value of all child states sc ∈ Sc(s) for this value update.

vk+1(s) = vk(s) + λ

[
r + γ

∥∥∥∥∥ ∑
sc∈Sc

vk(sc)
∥∥∥∥∥− vk(s)

]
(4.21)

Assuming that there will not be child outlier values is necessary and strongly supported in the fact that
the child’s state value accuracy is directly determined by the rewards signal accuracy, which directly
depends on informativeness accuracy computed from the SGP estimation, elements already discussed
previously. Although the SGP estimation might be very inaccurate at the beginning of the exploration
due to the limited data, as they progress, GPs with the configurations used have shown to provide very
smooth and valued predictions that inhibit the possibility of outliers in the child state values.

4.4 Experiments and Results
This section addresses the evaluation of the DF-MCTS strategy and the DAR method by executing
a series of tests in batch. Here, the image acquisition process is simulated by generating a series of
image keyframes on top of the execution paths. Then, a background groundtruth image representing the
simulation environment is used to clip the simulated images considering their keyframe positions, a given
field of view, orientation and localization noise.

For this evaluation, we consider two variations of the DF-MCTS strategy that differ in the planning
constraints applied. Table 4.1 enumerates the common parameters for both configurations. And Table
4.2 shows the specific parameters for both configurations, constrained (C1) and unconstrained (C2). The
constrained is more conservative with respect to real robot conditions: it (i) penalizes high density areas
in the utility function (non-zero alpha value), (ii) penalizes turns in the reward function (non-zero omega
value), and (iii) considers a larger minimum distance between successive states easing robot’s navigation
(larger neighbor distance d1).

Table 4.1: Default parameter configurations for the DF-MCTS experiment.

DF-MCTS Value
Planning time [s] 15
Information function DE
Discount factor 0.8
Learning rate 0.9
Rollouts number 32
Epsilon 0.01
Number of nodes 20000

In addition, Table 4.3 summarizes the configuration parameters of the SGP model used for spatial mod-
elling.

Section 4.4.1 starts introducing the metrics used for the assessment. Then, Section 4.4.2 describes the
tests and results obtained to evaluate the information richness of the DF-MCTS strategy. And Section
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Table 4.2: Specific parameter configurations for the DF-MCTS experiment.

Configuration Parameter C1 C2
Alpha (Utility) 2.0 0
Omega (Reward) 1.5 0
Minimum neighbor distance d1 2.0 1.0

Table 4.3: SGP configurations for the DAR experiment.

GP
Model SGPMC
Kernel Matérn 32
Kernel length scale [m] 30
Likelihood Beta
Likelihood scale 0.5
Optimizer Scipy
Iterations 2500
Number of SGP training samples 1600
Number of SGP inducing points 200

4.4.3 describes a set of tests performed to evaluate the DAR method and compares the use of (i) the
DAR method integrating a novel DF-MCTS strategy, (ii) the DAR method integrating a sampling-based
strategy, and (iii) the execution of preprogrammed mission paths.

4.4.1 Evaluation Metrics
The results are presented using the following evaluation metrics, which are obtained after each iteration
of the environment modelling layer.

• Mean of the Differential Entropy (MDE): Provides the mean map information, and is computed
using the variance value of the environment model prediction σ2 at n locations inside the target
area.

MDE = 1
n

n−1∑
i=1

DE(i) (4.22)

DE(i) = 1
2 ln

(
2 · π · e · σ2(i)

)
(4.23)

• Standard deviation of the Differential Entropy (SDE): Provides the standard deviation of the pixel-
wise map information, also computed using the variance value of the environment model prediction
σ2 at n locations inside the target area.

SDE =

√√√√ 1
n

n−1∑
i=1

[DE(i)−MDE]2 (4.24)

• Area Under the Curve of the Receiver Operating Characteristics (AUC ROC): This metric is used
only on the simulation tests, using the simulation groundtruth GT represented in Fig. 6.5a. Such
GT is a precise monochrome representation of the simulation environment since, in fact, is the
source for building the seabed textures distribution containing P. oceanica and sand. Given such
mono-chrome image GT and a mean prediction (obtained from the last SGP model) with the
same shape and resolution, the ROC diagram is obtained by plotting the pixel-wise true positive
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rate (TPR) with respect to the pixel-wise false positive rate (FPR) using a varying discretization
threshold for the mean SGP prediction. The AUC ROC provides the area under the ROC curve.

TPR = TP

TP + FN
(4.25)

FPR = FP

TN + FP
(4.26)

Where TP, FP, TN, FN represent the number of true positives, false positives, true negatives and
false negatives for a given threshold value in the interval [0,1].

• Coverage percent (CP): Provides a percentage measure of the recorded data extension. It is com-
puted as the recorded area Ar divided the total area At of the target region, where the recorded
area Ar is obtained as the total number of samples nc contained in the target region multiplied by
the squared sample resolution R.

CP = 100 · At

Ar
= 100 · At

nc ∗R2 (4.27)

4.4.2 DF-MCTS strategy for IPP
This section addresses the evaluation of the DF-MCTS strategy. The objective is to evaluate the infor-
mation richness of the mission path provided separately from the replanning. Every test executed here
is composed only by a tree search and a best path selection. For these tests, we use a pre-trained SGP
model of the environment. Figure 4.4 shows the prediction given by the pre-trained SGP model in the
target area. The yellow areas represent the higher uncertainty regions–i.e. a large variance on the SGP
prediction–, the gray areas represent lower uncertainty regions.

0.10

0

Variance

Figure 4.4: Prediction of the pre-trained SGP model used for testing the DF-MCTS
strategy; the variance of the SGP prediction is represented with a color map ranging
from yellow to gray for areas with high variance to areas with lower variance. The white

background shape inside the region represents an obstacle region.

The resulting paths quality is evaluated using the information richness of the paths. Such information
richness is obtained by computing the integral of the DE along each path, that is, (1) the resulting paths
are split into δλ = 0.01m steps, (2) the variance of the environment model is queried at each step, (3) the
DE is computed using equation (4.13).

Figure 4.5 shows the resulting tree search and best path selection for a particular execution using configu-
rations C1 and C2. Both configurations grow a search tree precisely over areas with high uncertainty–i.e.
high values of the SGP prediction variance–. However, they provide opposite features; whilst C1 shows a
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smoother tree search and selected path, the C2 grows a search tree higher fitting over the high uncertainty
area. The resulting DE for both paths is PIC1 = 0.35 and PIC2 = 0.32.

DF-MCTS (C1) DF-MCTS (C2)

Figure 4.5: Results obtained for the two DF-MCTS variations; C1 constrained and C2
unconstrained. (a) shows the search tree (red) and the selected path (blue) on top of the
predicted variance of the SGP model used (yellow for higher variance). C1 results in a

smoother path, and C2 in a higher information path; P IC1 = 0.35 and P IC2 = 0.32.

After performing 20 executions with the same conditions for each configuration we obtained the results
represented in Figure 4.6; each blue line represents the selected path of each iteration test. Using C1
clearly results in smoother paths than using C2 at expenses of a lower accuracy fitting to the high variance
areas.

DF-MCTS (C1) DF-MCTS (C2)

Figure 4.6: Paths obtained after performing 20 DF-MCTS executions for the same
environment model and initial position, using configurations C1 and C2.

Finally, Figure 4.7 shows a comparison of the DE obtained for the benchmarking sampling strategy
(green) and DF-MCTS using configurations C1 and C2 respectively (blue and orange). Each method has
been executed 20 times for the same environment model and 5 different initial positions, 100 tests per
method.

These results show a better performance of the DF-MCTS when compared with the sampling-based
strategy. The sampling-based strategy returns very short paths, while DF-MCTS results in longer paths
which are near to the configured path distance and are more informative.

The resulting difference between the use of the configuration C1 and C2 on DF-MCTS is that C1 tends
to result in longer paths while C2 tends to result in slightly higher information paths. In general, the
use of the DF-MCTS with configuration C2 provides smoother trajectories at expenses of a slightly lower
informativeness. The smoothness on the executed path is expected to impact the sampling speed as well as
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Sampling

Figure 4.7: Representation of the mean path information and path distance obtained
for 20 planning executions in 5 different initial positions for the same environment model

and the two DF-MCTS configurations C1 and C1 described in Table 4.2.

the resolution of the recorded data. Hence, a further analysis of the trade of between path informativeness
and path smoothness would be beneficial to generate a tailored setting of the DF-MCTS configuration.
This would depend on the recording footprint of data gathering sensor used and the specific navigation
settings. The reductions on the recorded data resolution caused by sharp turns is studied in Chapter 5.

Hence, in this section we have analyzed the capacity of the IPP strategy to provide a mission path in
terms of path information and smoothness. It has been shown that there exists a trade-off between such
values. The higher the path informativeness obtained the higher the exploitation of the knowledge about
the environment, but what about exploration? In this analysis we have considered one-step planning
with a fixed environment model, next section provide further analysis for sequential replanning.

4.4.3 DAR method for replanning
This section goes one step forward in the analysis. Instead of testing the IPP strategy with a fixed
environment model, now the test consists in the execution of successive replanned paths using the DAR
method. The main idea behind this simulation pipeline is to be able to execute replanning tests prior to
the integration on an AUV software architecture for field-testing, and compare the resulting performance
with the execution of a different sampling-based strategy and with the execution of predefined lawn
mower patterns.

Each test starts executing an initial path, followed by a sequential execution of the DAR methodology.
When a mission plan is enabled, the simulation process (1) gets the starting position and orientation,
(2) retrieves an image from the groundtruth map with added Gaussian noise N (0,0.45m) in the position,
(3) advances 1m the position along the trajectory, and iteratively repeats steps (2) and (3) until termi-
nation. The mission plans are not fully executed, only a proportion of the full path distance is executed.
Such partial execution simulates the distance that the AUV would navigate for a given replanning time,
until a new path is commanded.

Then, every iteration of the sequential replanning simulates the image recording of a part of the last
commanded path, models the environment by processing the simulated images, trains an SGP, computes
a mission path following an IPP strategy and commands the execution of the resulting path.

A total of four target areas of different shapes and sizes have been used for testing. Figure 4.8 show the
hand-labeled groundtruth image used for image clipping, which is based on the seagrass coverage that
can be inferred from aerial images, in white the presence of P. oceanica and in black the absence of such
seagrass. The four target areas used for testing have been drawn on top.
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Figure 4.8: Aerial image and groundtruth used for testing the DAR method. The four
target areas used for the simulation experiments are represented in different colors. The
aerial image used to generate the groundtruth has been obtained from the PNOA 2015
campaign of the Instituto Geodésico Nacional (39.534372288N,2.590594628E), located

in the south-west coast of Mallorca Island

Moreover, Table 4.4 provides the total area of each target area, and some specific configuration parameters
that depend on the target area scale such as the path budget, the maximum neighbor distance d2, the
grid-filter resolution and the induction point density. In order to generalize to different target areas for
these tests, the path budget B has been set to B = 1.2 ·

√
area, and the neighbor distance d2 to a fifth

of the path budget. The total number of training points for the SGP nSGP has been set to 1600 points,
which determines the grid-filter resolution of r =

√
area

nSGP
. And the total number of inducing points

nIP to 200 points, fixing an inducing point density dIP = nIP

area . Table 4.3 summarizes the configuration
parameters of the SGP model used for spatial modelling.

Table 4.4: Scale parameters used for the target areas A1-A4 of the 2D simulation
experiments.

Scale Parameter A1 A2 A3 A4
Area [m2] 472 17480 1655 4105
Path Budget [m] 26.0 158.7 48.8 76.9
Maximum neighbor distance d2 [m] 5.2 31.7 9.8 15.4
Grid-filter resolution [m] 0.54 3.31 1.02 1.60
Inducing points density [m2] 0.43 0.01 0.12 0.05

Figure 4.9 shows an overview of the results obtained after replanning in the area A1, using a partial
constraint configuration (α = 1.0, ω = 0.5, d1 = 1.0). For this simulation we define a path execution
distance of 8.0m; this means that when a path is proposed for execution, 8.0m of the total path is
simulated and the rest of the path is discarded. This parameter is used only to simulate the sequential
replanning process where paths are overwritten before their complete execution. Furthermore, for this
simulation in the area A1 we set a stop criterion for the simulation of 300m traveled.

The replanning process starts by executing a short initial path of ∼ 10m, from this execution we simulate
the acquisition of a series of images from the synthetic groundtruth, and produce a raw data set for grid-
filtering and spatial modelling using an SGP model and obtain a stochastic prediction of the seagrass
distribution (mean and variance) across the target area. It can be noticed that as the robot advances
and collects more data, the prediction improves; the prediction represents better the GT, and the high
variance areas are located on the meadow boundaries. The first part of the replanning process seems to
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Figure 4.9: Results obtained for an adaptive replanning in area A1 (472m2). From
left to right we represent: (1) the path planned (green), the executed path (blue) and
the raw data density shaded in blue/green, the simulation groundtruth (white represents
positive label), (2) the raw data samples recorded, where the colored dots represent P.
oceanica detection, green states for positive and purple for negative, (3) the mean value
of the SGP prediction, green for positive predictions and purple for negative, and (4) the

variance value of the SGP prediction, where the yellow area represents high values.
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be focused on exploring broadly the environment, whilst the last part focuses on visiting the meadow
boundaries, exploiting the prediction by collecting more data in high variance that are more susceptible
of mapping errors.

Next sections compare the performance of the two DF-MCTS versions previously defined C1 and C2.
First with a sampling based strategy proposed by Viseras et al. [113] in two target areas A1 and A2, and
secondly, with two types of predefined lawn mower paths in two target areas A3 and A4.

Comparison with a sampling-based strategy
In this section we compare the results obtained for the two configurations proposed of the DF-MCTS
algorithm with the sampling-based algorithm proposed by Viseras et al. [113]. This sampling-based
algorithm is based on two steps; (1) a Search Station step to localize the highest reachable information
spot nearby growing an RRT, and (2) an Informative Path Planner step to propose near-optimal path
to reach the station spot growing an RRT*, by means of maximizing the path information. Table 4.5
shows the parameters used for these experiments, which are a scale of the original ones, adapted to our
application scale.

Table 4.5: Configuration parameters for the RRT and RRT* algorithms of the sampling-
based strategy used for comparison; given for target areas A1 and A2.

Sampling-based Configuration A1 A2
Expand distance [m] 0.5 3.0
Near distance [m] 0.5 3.0
Budget [m] 20 120

Figure 4.10 shows the resulting path and the recorded data density, after performing an adaptive replan-
ning in simulation, in the target areas A1 and A2, for the DF-MCTS strategy using configurations C1
and C2, and for the sampling based strategy.

Moreover, Figure 4.11 shows of the resulting MDE, SDE, AUC ROC and CP obtained during the assess-
ment as the mean value of 12 tests.

Let us analyze the obtained results:

• The constrained configuration C1 of the DF-MCTS results in smoother paths and the highest
coverage rate for the two areas under study. And results in a high exploration of the large target
area A2, providing the highest MDE reduction.

• In contrast, since the unconstrained configuration C2 of the DF-MCTS do not penalize turns, it is
able to focus the navigation in recording high information heterogeneous regions (meadow bounds).
This configuration provides the highest DE reduction in A1.

• The sampling-based strategy provides good coverage on boundary regions at expenses of providing
non-smooth paths and the lowest MDE reduction.

Comparison with predefined lawn mower pattern
Missions programmed using predefined lawn mower (LM) patterns are widely used to record data from
the seabed in a homogeneous way. As stated before, the main limitation of such technique, is that the
process is passive in the sense that the gathered data is not used to drive the robot.

Here we compare the use of two types of predefined LM patterns, LM1 and LM2, with the two config-
urations C1 and C2 of the DF-MCTS strategy. The predefined path type LM1 consists in a sparse LM
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DF-MCTS (C1)

DF-MCTS (C2)

Sampling-based

(a) Target area A1

DF-MCTS (C1)

DF-MCTS (C2)

Sampling-based

(b) Target area A2

Figure 4.10: Executed path (blue) and resulting data density (green) after executing
an adaptive replanning 2D simulation over the target area A1 and A2; using DF-MCTS

with configurations C1 and C2, and a sampling-based method.
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DF-MCTS (C1)
DF-MCTS (C2)
Sampling-based

A1 A2

Figure 4.11: Results obtained in 2D simulation for the DF-MCTS with configurations
C1 and C2 compared with a sampling based strategy in the target areas A1 and A2.
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pattern with a lateral distance between transects of 6m, and LM2 consists in a LM pattern with a lateral
distance between transects of 2m. LM1 is usually used to get a fast representation of the environment,
and LM2 is used to get high data coverage.

Figures 4.12 and 4.13 show the executed paths and the recorded data density obtained in the target areas
A3 and A4 respectively. The DF-MCTS algorithm focuses the data recording in the meadow bounds, in
locations that present high entropy during the mission execution whilst the data acquisition using LM1
and LM2 is homogeneous.

DF-MCTS (C1) DF-MCTS (C2)

LM1 LM2

Figure 4.12: Executed path (blue) and resulting data density (green) after executing a
2D simulation on target area A3; using DF-MCTS with configurations C1 and C2, and

two different preprogrammed LM types; LM1 and LM2.

The mean resulting metrics obtained along the path for 12 tests using the same strategies and configu-
rations are represented in Figure 4.14:

• The highest reduction rate of the MDE is provided by the DF-MCTS tests, and the largest peak
on the SDE results in the LM tests, which means that the DF-MCTS methods target precisely the
regions to visit in order to quickly reduce the map uncertainty.

• In terms of AUC ROC, the predefined path LM1 provides a slightly faster increase, but converges
to a value smaller than the value of LM2 and C1, on both target areas.

• Regarding the coverage, LM2 has a constant growth due to the fixed image overlap that only varies
due to the added localization noise. LM1 shows two constant patterns, the first has the highest
slope due to that it keeps recording new visited areas, and the second has the lowest slope because
it performs the cross track transects of the trajectory, recording data in previously visited spots. In
the case of the DF-MCTS strategy, the coverage increases fast at the beginning, while the algorithm
focuses on exploring non-visited areas, and reduces the slope slowly depending on the configuration
used; C1 results in a high coverage while C2 focuses on recording the heterogeneous data areas.
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DF-MCTS (C2)DF-MCTS (C1)

LM1 LM2

Figure 4.13: Executed path (blue) and resulting data density (green) after executing a
2D simulation on target area A4; using DF-MCTS with configurations C1 and C2, and

two different preprogrammed LM types; LM1 and LM2.

4.5 Conclusions
This chapter presents a novel design of a decision-time adaptive replanning (DAR) method. Such DAR
behavior is coupled with a DF-MCTS strategy for IPP, and joins two advantages of graph-based and
sampling-based methods: (a) initializes a node network to set neighbor relations between sampling loca-
tions (which reduces computation during online execution), and (b) samples paths in the node network
through tree search following a decision-time strategy (that provides near-optimal solutions in an anytime
manner).

The proposed methods have been tested and compared with the very relevant strategy proposed by
Viseras et al. [113] and with a predefined lawn mower pattern mission. The results show that the
variable distance between sampling nodes and the penalization of sharp turns in the reward function
provide smooth paths that are secure to be followed by the LOSCTE controller. And that the DAR
method with DF-MCTS provided the fastest MDE reduction.

The adaptive planning of informative paths has two major contributions to the field of in situ data
gathering with AUVs. First, due to the intrinsic mechanism of in situ mapping, there are many sources
of uncertainty that can not be easily reduced and affect particular image samples. Having a system that
is able to model the uncertainty, to enable resampling of such regions reduces the overall data uncertainty.
Second, a big limitation of in situ visual data gathering with AUVs is that the small coverage obtained
per image recorded sets a hard bound on the extension that an AUV is able to record for a given time
budget. Hence, for large regions that can not be fully covered it is particularly useful to let the robot
architecture drive the navigation, targeting the most interesting/informative spots.

This kind of methods have many implications that have not fully covered in this work, but will be
considered for further developments. For instance, the DAR method could integrate the execution of
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DF-MCTS (C1)
DF-MCTS (C2)
LM1
LM2

A3 A4

Figure 4.14: Results obtained in 2D simulation for the DF-MCTS planner using config-
urations C1 and C2 compared with two predefined lawn mower patterns LM1 and LM2

in the target areas A3 and A4.
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template paths in high uncertainty regions, such as long sections or small lawn mower surveys. The
different physical processes and applications will condition the type of sampling required.
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Chapter 5

Autonomous navigation

The evolution from an inspection framework to the data-driven exploration framework proposed in this
Thesis involves some important challenges in terms of autonomous navigation. Remember that two of the
main objectives regarding the exploration framework, enumerated in Chapter 1, are to maximize (i) the
time devoted to data gathering, and (ii) the quality of the recorded data. In terms of navigation, these
objectives conduce to the following challenges:

• Long-lasting navigation: A first challenge with regard to the maximization of the time devoted
to data gathering is maintaining an accurate localization of the AUV. As data gathering take
longer time without surfacing, the localization drift induced by odometric sensors increase. In the
particular case of sampling benthic environments, the action of surfacing to receive GPS corrections
becomes expensive, since it prevents the AUV of gathering benthic data. Hence, in order to increase
the recording time without reducing the quality of the recorded data, the localization payload of
the AUV has to integrate a source of absolute position when navigates underwater.

• Absolute positioning during mission time: A second challenge arising from the novel exploration
framework is that the absolute position measurements can not be only stored for posterior data
geo-localization, in this case the absolute measurements have to be used by the robot architecture to
estimate its position during mission time; for data localization and for control. The main motivation
behind this specification is that (a) the environment modelling process requires accurate geolocation
of the data processed to generate a proper representation, and that (b) the adaptive replanning
process requires accurate control to visit certain coordinates.

Given the aforementioned challenges, this chapter focuses on the in situ sampling process, introducing
the main sources of data uncertainty and describing and assessing an autonomous navigation framework
based on the use of an ultra short baseline (USBL) system to enable absolute localization during mission
time.

Section 5.1 introduce the main sources of uncertainty caused by the robot navigation during the process
of gathering in situ images and provides a series of equations that will be used for the assessment of the
recorded data. Then, Section 5.2 describes a set of novel features integrated in an autonomous navigation
framework based on the use of an USBL system to enable absolute localization of the AUV and attain the
requirements imposed by the environment modelling and the adaptive replanning processes. Moreover,
Sections 5.3 and 5.4 showcase a set of experiments to assess the quality of the generated data recorded
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with the AUV Turbot and Section 5.5 concludes the chapter, providing the main conclusions and the
future work directions.

5.1 Data uncertainty
This section introduces the main sources of uncertainty caused by the robot navigation that condition
the quality of the in situ recorded images. Here we consider the use of down-facing cameras for recording
geo-localized images of the seabed, where each geo-localized image is composed by an array of pixels (the
image) and its localization (or pose). The main sources of uncertainty can be independently associated
with both the accuracy of the image pose and the quality of the recorded images themselves.

The focus of this section is to derive a set of equations to enable the propagation of the robot pose
uncertainties into geo-localized image pose uncertainties and robot movement into image pixel blurring.
These two elements will define the quality of the recorded data.

Pose and scale
The pose of an image refers to a tuple composed by position coordinates and orientation and the scale
refers to the image footprint or extension. Figure 5.1 represents an example of geo-localized image;
defined by its horizontal position (x,y) of the top-left corner, footprint (fpu,fpv) and orientation ϕ; with
respect to a given coordinate reference frame crs. The inaccuracies related to the pixel locations will
be originated by uncertainties in the geo-localized image definition, inexactness on the scale and on the
position and the orientation.

(x, y)
ϕ

Image

u

v
crs

N

E

fpu

fpv

Figure 5.1: Geo-localized image, given by its footprint in the u and v directions, its
position (x,y) and orientation ϕ with respect a coordinate reference frame crs.

We will consider that the localization uncertainty ϵ of a given image pixel (u,v) is the result of the
superposition of the inaccuracies related to the absolute position ϵP = [ϵP

u ,ϵP
v ], scale ϵS = [ϵS

u ,ϵS
v ], and

orientation ϵO = [ϵO
u ,ϵO

v ] as expressed by following equations:

ϵ =
∥∥[ϵu, ϵv]

∥∥ (5.1)

ϵu = ϵP
u + ϵS

u + ϵO
u (5.2)

ϵv = ϵP
v + ϵS

v + ϵO
v (5.3)

The absolute position uncertainty ϵP can be directly derived from the absolute localization error, and
will be constant for all the pixels in the image.
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Conversely, scale and orientation uncertainties will vary with pixel location, with pixels further away from
the center of the image suffering greater uncertainty. In particular, the scale uncertainty ϵS depends on
the altitude uncertainty ϵaltitude with the relation given by the following expressions:

ϵS
u = d · cos(α) · ϵaltitude

a
· fpu

2 (5.4)

ϵS
v = d · sin(α) · ϵaltitude

a
· fpv

2 (5.5)

Where ϵS
u and ϵS

v are the perpendicular components of the image plane, d and alpha indicate the polar
coordinates of a pixel (u,v) in the image, a represent the navigation altitude, fpu and fpv represent
respectively the image footprint in the horizontal and vertical components. The image footprint fp =
[fpu, fpv] is obtained from the navigation altitude a and the camera field of view fov = [fovu, fovv] as:

fp = 2 · a · tan(1
2 · fov) (5.6)

And the polar coordinates d and alpha of each image pixel are computed as follows;

d(u,v) = ||u− w/2, v − h/2|| · ps

α(u,v) = arctan v − h/2
u− w/2

∀(u,v) ∈ [w,h]

, where r = [w,h] are the horizontal and vertical components of the image resolution and ps = [fpu,fpv]
is the pixel size, given by Equation 5.7.

ps = fp

r
(5.7)

Finally, orientation uncertainty ϵO depends on the independent imprecision resulting from each orientation
component ϵroll, ϵpitch and ϵyaw. We will assume that each orientation component contributes to each
horizontal component of the orientation uncertainty as follows:

ϵO
u = ϵOroll

u + �
���*

0
ϵ

Opitch
u + ϵOyaw

u = a · ϵroll + d · cos(ϵyaw) (5.8)

ϵO
v = ���*0

ϵOroll
v + ϵ

Opitch
v + ϵOyaw

v = a · ϵpitch + d · sin(ϵyaw) (5.9)

where the contribution of the roll and pitch are zero respectively for the vertical y and horizontal x

uncertainty components.

Hence, the uncertainties related to the pixel-wise locations rely on the accuracies related to the localiza-
tion, altitude and orientation estimations of the AUV. The sensor payload and the filtering techniques
applied will determine the localization performance of the recorded data.

In general, AUVs that use absolute positioning systems based on acoustic transponders such as USBL or
long baseline (LBL) set a bound on the positioning error [143]. However, the low rate and low precision
of such systems introduce positioning inaccuracies. In contrast, systems that relay their positioning to
dead-reckoning may accumulate a large drifting error over time that deteriorates the accuracy of the
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recorded data. In terms of orientation, magnetometer measurements are prone to suffer biases on the
heading estimation depending on the position of the device with respect to the moving robot, and to
the environment. The uncertainty on the orientation depends on the quality of the compass used for
navigation and in the calibration procedure followed.

Spatial resolution
Let us now discuss the relation between robot movement to image blurring. Such blurring depends on the
lighting conditions and the recording speed, and can be expressed with the proportional relation given
by the following equation.

B = s · E (5.10)

Generating small blurring distance B is a matter of enabling low exposure times E and controlling
smoothly the robot motion at low sampling speeds s. This work focuses the analysis on the robot
motion, thus the exposure times required for recording are left out from the analysis and considered as
a fixed constraint given by the environment and the robot characteristics.

The blurring refers to the displacement of the features recorded in the image during the exposure time
required to record it. The next equations have been derived to provide the resulting blurring in the
horizontal bu and vertical bv directions for each pixel caused by the linear (vx, vy) and angular (ωx, ωy,
ωz) speeds caused by the robot motion in the camera’s reference frame. The pixels are given using their
polar coordinates d and α.

bu = (ωy · a + vx + ωz · d · sin
(
α
)
) · E (5.11)

bv = (ωx · a + vy + ωz · d · cos
(
α
)
) · E (5.12)

The resulting spatial resolution components sr = [sru, srv] of an image will be the pixel-wise maximum
between the blurring components [bu, bv] and the pixel size ps = [psu, psv]. Then, we propose to obtain
the spatial resolution as pixel-wise maximum between the spatial resolution components.

Let us define the spatial resolution of an image as the maximum value between the ps, the maximum
value in bu and the maximum value in bv. This will provide an upper bound for the spatial resolution
specification.

The equations derived in this section are used for the data assessment of Section 5.3.

5.2 Navigation framework
Reducing the aforementioned sources of uncertainty require some advanced features in terms of navigation.
The AUV has to be able to produce a precise localization estimate, navigate close to the seabed, and to
navigate steadily at low speeds.

Hovering AUVs have the common characteristic of being able to maintain low advancing speeds while
controlling the altitude using vertical thrusters and producing adequate localization estimates. This
feature enables getting very close to the seabed even in rough terrains. Figure 5.2 provide some examples
of hovering robots adequate for in situ benthic sampling using the methods exposed in this work.
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(a) Girona 500 AUV, image from GEOMAR. (b) Sirius AUV, image from Schmidt Ocean Institute.

Figure 5.2: Hovering AUVs.

In particular, the methods presented in this chapter have been integrated in the AUV Turbot, a lightweight
hovering AUV equipped with a stereo camera rig and a localization payload that includes the generation
of USBL measurements. The next sections provide a description about the robot (regarding the operation
modes, acoustic communications and positioning using an USBL system) and about the localization filters
used for pose estimation and USBL outlier filtering.

5.2.1 AUV Turbot
The AUV Turbot is a lightweight torpedo-shaped AUV with hovering capabilities and low draught suited
for very shallow waters. The robot is based on a Sparus II [141] unit, equipped with three degrees of
maneuverability: surge, heave and heading.

The Turbot’s navigation and communication payload consists of: a (i) DVL to obtain linear and angu-
lar speeds and altitude, an (ii) echo sounder (ES) to generate altitude measurements, a (iii) compass
for heading, an (iv) IMU to measure accelerations and angular speeds, a (v) pressure sensor to ob-
tain high-frequency depth measurements, a (vi) GPS to be geo-referenced during surface navigation, an
(vii) acoustic modem with USBL for communication and absolute localization, and a (viii) stereo camera
rig with a 16cm baseline for image recording. Table 5.1 specifies the device model and output of the
sensing and communication devices installed on the AUV.

Table 5.1: AUV Turbot payload

Device Model Output
DVL Teledyne ExplorerDVL Linear/angular speeds and altitude
ES Imagenex 852 Altitude
IMU/Compass ADIS16488 Orientation, linear accelerations and angular speeds
Vacuum gauge Honeywell 19 Pressure
GPS G-top FGPMMOPA6H Absolute position
Cameras Allied Vision Manta G-283 BayerRG8 images
Modem Evologics S2CR 18/34 Acoustic communications and positioning from USBL
RF antenna Ubiquity Bullet M2 Surface communications

The AUV Turbot is equipped with two onboard computers. The main computer is a PC/104, used for
serial connection with sensors and to execute the processes related to localization, control and safety.
The secondary computer, is an Intel NUC i7 that integrates a dedicated interface to connect to the stereo
vision system and executes the high-level processes that are non-essential for autonomous navigation.

Figure 5.3 shows a diagram that represents the two computers and the connection with the navigation
and communication devices. The figure shows in blue the elements connected via RS232, in red the
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elements connected to the main Ethernet LAN, and in green the secondary Ethernet network dedicated
to the stereo camera. When the robot navigates on surface the main LAN can be accessed from the CS
computer through the 2.4GHz antenna.

PC/104 Intel NUC

Stereo CameraEchosounder 

Acoustic
Modem

Ethernet Switch 

GPSRadio 
antenna

Wired 
connection 

DVL
IMU

Compass
Pressure

PC/104

Figure 5.3: Navigation and communication payload of the AUV Turbot with two com-
puters onboard. In blue the RS232 connections, in red the Ethernet connections over the
primary LAN, and in green a secondary Ethernet LAN for dedicated interface with the

stereo cameras.

The stereo camera rig is build using a pair of Allied Vision Manta G-283 cameras. The cameras are
synchronized and configured with the higher native resolution, which is 1936× 1458 pixels, and provide
raw images in BayerRG8 format.

A series of processes are executed to generate a visual altitude from the stereo image pairs. (i) Decimation
of the raw image pairs to 242×182 pixels, an eighth of the raw images resolution, (ii) rectify both images
using the calibration parameters obtained through a process of a previous stereo camera calibration,
(iii) compute the stereo pair disparity, (iv) project the image pixels to three-dimensional coordinates,
(v) compute the mean image depth.

Finally, for the navigation framework proposed using the AUV Turbot, the supporting control station
is equipped with (i) a computer, (ii) a 2.4GHz radio antenna Ubiquity Bullet M2, (iii) two GPS Emlid
Reach RS (a moving module that integrates RTK corrections on top of the USBL mounting support, and
a static one located on ground that provides the RTK corrections), and (iv) an USBL Evologics S2CR
18/34 transceiver with integrated compass. All the devices on the control station are communicated via
Ethernet TCP/IP.

Operation modes
Figure 5.4 represents the two operation modes considered: surface and underwater. Both modes allow
communication with a supporting vessel, which should be equipped with a control station (CS) computer,
a radio frequency antenna compatible with the AUV, a GPS and an USBL. Furthermore, both modes
are used automatically depending on the state of the robot, and can switch during mission time without
issues.

The CS launches the packages related to the guidance, teleoperation, USBL communications and posi-
tioning, which are based on ROS [146]. Both, the AUV and the CS have an active core in order to share
ROS-based communications in each particular LAN. While the robot is on surface a radio connection is
established to join both LANs. The multimaster FKIE package [147] is used to share part of the ROS
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Figure 5.4: Operation modes; surface mode with radio interface for communication and
GPS positioning, and underwater mode with acoustic interface for communication and

absolute positioning.

Table 5.2: Communication and absolute position depending on the operation mode

Operation mode Communication Abs. Position
Surface Radio frequency GPS
Underwater Acoustic USBL

environment between cores. This includes accessing to the images feed and the navigation status from
the robot, and executing services and guidance commands from the CS.

While the AUV is underwater the TCP/IP connection between robot and CS lays off. Then an acoustic
interface allows a low bandwidth transmission of key information using an Evologics S2CR 18 − 34kHz

Modem/USBL. Such transmission includes: (a) sending the AUV navigation status to the CS for mon-
itoring, (b) calling several query services to enable or disable different AUV functionalities and safety
actions, and (c) sending the AUV position estimated by the USBL at the CS back to the AUV to use it
for pose estimation [143].

In brief, in surface mode the communication is based on RF and the absolute positioning is based on GPS.
In contrast, in underwater mode the communication is based on acoustics and the absolute positioning
on USBL, as shown in Table 5.2.

Acoustic communications and positioning
This section provides further details on the implemented USBL system for acoustic communication and
positioning. Figure 5.5 illustrates the processes related to the USBL system. The figure shows in purple
the processes contained in the software architecture based on ROS [146] and in blue the low level processes
contained in the physical layer of the acoustic modem and USBL head. Notice that the processes on the
left side are executed on the CS and the processes on the right are executed on the AUV. During
underwater navigation the acoustic interface (in blue exchanges data between both systems).
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Figure 5.5: USBL system for acoustic communication and positioning.

Physical layers

The modem and the USBL physical layers communicate acoustically between them using a S2C (Sweep
Spread Carrier) protocol. This protocol is provided by the manufacturer, and permits the transmission
of different types of messages between devices. The three type of messages that have been used for
enabling acoustic communication between devices are: the instantaneous message (IM), the acknowledg-
ment (ACK) and the piggyback message (PBM). Both are defined on the S2C (Sweep Spread Carrier)
protocol implemented on the physical layer of both devices provided by the manufacturer.

• IM message. These messages are used to send short data sentences (max 64bytes) and are trans-
mitted as soon as possible when the transmission command is received by the acoustic device. They
can be configured to return a delivery acknowledgment.

• ACK message. These messages are sent automatically by the physical layer of the device when an
IM is received with request for acknowledgment.

• PBM message. These messages can carry short data sentences as the IM. However, they are
transmitted only at the reception of an IM message, they are attached to the IM acknowledgment.
A buffer is used to store outgoing PBM messages, the most recent message on the buffer is sent
when an IM with request for acknowledgment is received.

Both USBL and modem drivers use a RS232 and TCP/IP protocol respectively to command the trans-
mission of IM messages and to update the PBM buffer. The key idea is that the IMs are used to ping
the modem and when the modem acknowledges the reception of the ping by returning an ACK message
the USBL is able to compute the position of the modem.

The ping that is sent by the USBL might be empty or may contain a data transmission. Such transmission,
from USBL to modem, can be either (a) a query service or (b) an USBL position, and always requests
for an acknowledgment. Furthermore, depending on the frequency set to transmit the navigation status,
from modem to USBL, the ACK can be sent alone or followed by a PBM.
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Acoustic driver

The Algorithms 4 and 5 describe the iterative execution of the protocol in both devices. Such algorithms
are implemented in the USBL and modem drivers, which are respectively executed in the CS and AUV
cores as represented in Figure 5.5. The USBL iteratively (1) sends an IM to the modem. This message can
contain a position measurement and an acoustic service from the CS, (2) waits for an acknowledgment,
(3) and publishes the AUV status if received. The modem iteratively (1) reads the serial port for incoming
communications, (2) calls the queried services, (3) publishes the received positions, and (4) updates the
AUV status on the PBM buffer.

Algorithm 4: USBL()
send_im()
ack ← wait_ack()
if status ∈ ack then
publish_status()
end

Algorithm 5: Modem()
im← read_im()
for srv ∈ im do
call_service()
end
if position ∈ im then
publish_position()
end
update_status()

The implemented driver is accessible in an online repository [148] and is based on the previous work of
De Carolis [149].

Acoustic positioning

The acoustic positioning measure is generated in the USBL Physical layer, it generates (a) a relative
orientation measured by trilateration of the incoming acoustic signal using the five transponders contained
in the USBL head, and (b) a distance measured between devices using the round trip transmission time
from USBL to modem and back to the USBL. The result is a measurement of the modem position
relative to the USBL reference frame in North East Down (NED) coordinates. Such relative measure is
then transformed to global coordinates in the USBL transform process using the GPS position of the
USBL.

5.2.2 Localization filters
The goal of the localization filters is to centralize state observations and generate a navigation status
information containing a 6-DOF pose and altitude estimations. The first goal is attained by gathering the
different state observations coming from sensor drivers, acoustic drivers and image processing outputs such
the visual altitude. The second goal is attained by feeding such state observations to a set of localization
filters to generate diverse pose and altitude estimations. The processes involved are summarized in Figure
5.6. We use three instances of a third party EKF implementation of Moore et al. [150]. One instance
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to estimate absolute localization for control, a second instance to estimate motion (odometry) used for
USBL outlier detection, and a third instance to estimate altitude.
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Figure 5.6: Localization layer.

• Sensor aggregator. Centralizes and monitors the state observations. It subscribes to the different
sensor measurements that provide altitude or pose measurements, such as GPS, ES, DVL, IMU,
compass, pressure sensor, USBL measurements, etc. Applies message type transformations and sets
the measurement covariances and monitors the performance of the different measurements. This
process initializes the EKF Odometry and the EKF Localization estimations only when absolute
position measurements from GPS or USBL are available. The filters are initialized using the mean
position of the last ten position measurements.

• EKF Odometry. Provides an accurate measure of the robot motion used to filter and update
the USBL correction received acoustically from the remote USBL head. This filter inputs all the
odometric measurements and the absolute measurements that provide nearly continuous values that
prevent the output from jumping. Here we consider all the navigation payload measurements with
exception to the GPS and USBL, which are low-frequency and noisy. Thus, the filter includes:
(i) the linear speeds provided by the DVL, (ii) the angular speeds provided by the gyro included
in the IMU, (iii) the orientations provided by the IMU and compass, and (iv) the depth position
calculated from the pressure sensor measurements.

• EKF Localization. This filter provides a pose estimation that includes the filtering of all the
measurements available on the 6-DOF. This includes the measurements used by the EKF Odometry
process and the absolute position measurements provided by the GPS and the USBL when the
vehicle is on surface or underwater respectively.

• EKF Altitude. The goal of this filter is to provide a continuous altitude estimation by fusing all
the altitude measurements in an EKF. The filter includes the use of: (i) the altitude measurement
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and the vertical speed provided by a DVL, (ii) the altitudes provided by an echosounder, and
(iii) the visual altitude provided by stereo processing. The main reason of using such filter is to
integrate sensor redundancy on the altitude estimation and overcome the issues related to low
altitude navigation in challenging terrains such as soft seagrass meadows or rough rocky terrains
that may complicate bottom tracking.

• USBL filter. This process pursues two important goals: (i) updating the USBL measurements
received from the USBL head on the AUV, and (ii) removing outliers. Both goals are carried
out using the odometric pose estimation provided by the EKF Odometry process. The update is
performed by composing the USBL measurement with the odometric estimated motion between the
time that the USBL measurement was generated and the actual time, and is important in order to
correct the distance navigated by the robot during the time interval in between the generation of
the USBL measurement in the CS and the integration on the localization filter of the AUV. The
outlier removal is performed using a simple distance filter that depends on the distance traveled by
the AUV during the time elapsed between the time the last USBL measurement was obtained t−1

and the time of the current USBL measurement t−0. The expression used is the following:

usblt1
t0

< α + β · odomt1
t0

(5.13)

, where usblt1
t0

represents the distance between the USBL measurements taken at t0 and t1, odomt1
t0

represents the distance between the odometric estimations provided by the EKF Odometry filter at
t0 and t1, α represents a value near the actual USBL position covariance, and β represents a value
near the possible odometry drift.

Table 5.3 summarizes the input measures of the EKF Localization filter used by the AUV Turbot. The
EKF Odometry filter use the same inputs except of the GPS and USBL measurements.

Table 5.3: Measurements used for the EKF Localization filter.

Position Orientation Linear velocity Angular velocity Acceleration

Device X Y Z α β γ Ẋ Ẏ Ż α̇ β̇ γ̇ Ẍ Ÿ Z̈
DVL ✓ ✓
IMU ✓ ✓ ✓ ✓ ✓
Compass ✓
Depth ✓
GPS ✓ ✓
USBL ✓ ✓

The initialization of both EKFs is set by the sensor aggregator and can be initialized using either raw
GPS or delayed USBL corrections.

5.3 Experiments
The principal objective of the experiments performed was to assess the in situ data gathering capabilities
using the proposed navigation framework on a particular hovering vehicle, the AUV Turbot. Four data
gathering missions have been executed in Andratx (39.544055, 2.378246). This section describes the set
of experiments performed as well as the process for generating an absolute positioning groundtruth.
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5.3.1 Missions
All the experiments were carried out in underwater mode with acoustic positioning and communications
in a very shallow area of 12m depth maximum. A tethered connection with a bridge buoy was used in
order to provide full access to the robot in case of deficient acoustic connection due to the shallowness of
the region. The maximum exposure time for the stereo image recording was set to E = 0.01s.

Figure 5.7 provides an overview of the four datasets recorded. The figure shows, for each experiment, the
localization of the USBL head, the output of the EKF localization filter, and the USBL measurements
in absolute coordinates integrated in the filter. Notice that for the four experiments the USBL head was
not kept on a static location but it was moved around attached to the supporting boat.
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Figure 5.7: In situ image recording experiments.

Three datasets (DS1,DS2,DS3) where recorded while the AUV was performing three different types of
pre-defined lawn mower trajectories. For each of them the AUV was set with a maximum surge speed
for the section maneuvers of s = 0.3m/s. The target altitude was set to 3m for datasets DS1 and DS2,
and 3.5m for DS3.

The dataset SDS was generated by keeping the AUV hovering in a constant depth and position setting
while the USBL head was moved around to generate absolute position measurements. This experiment
was designed to be able to generate an absolute localization groundtruth (GT) to be used for evaluation.
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5.3.2 Absolute localization groundtruth
The GT for the static dataset SDS has been obtained by trilateration, using the acoustic range distance
provided by the USBL and its location for several sampling positions.

Figure 5.8 represents the trilateration of the landmark L (the AUV location) using a series of range
distances di and ranging positions Pi with i ∈ [1,n]. The mean square error (MSE) mseopt given in
Equation 5.14 is used as cost function for an optimization process; where di represents the distance
between the USBL head and the AUV and Pi represents the USBL position provided by a GPS as the
ranging positions P , given at the same time instants than d.

d1 d2

dn

P1
P2

Pn

L

Figure 5.8: Trilateration example of the landmark L using a series of range distances
di and ranging positions Pi with i ∈ [1,n].

mseopt =
∑

[di − dist(L,Pi)]2
N

(5.14)

The optimization process is executed in three dimensions (x,y,z), where L = {lN ,lE ,LD} and P =
{pN ,pE ,0}. Instead of using the full set of measurements generated during the test, we used the subset
that was closer to the estimated AUV location with a distance threshold dth = 30m. This subset contained
87 measurements, and resulted in the AUV location L = (−30.32, 50.85) with an MSE of 0.14m.

Figure 5.9 represents (1) the recorded path followed with the USBL head during the static experiment,
(2) the USBL measurements generated, and (3) the trilaterated AUV position. Figure 5.10 shows the
ranging locations and distances used for the trilateration, represented with blue dots and blue circles
respectively.
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Figure 5.9: Path followed with the USBL head to generate USBL measurements while
the AUV is maintained static, and triangulated AUV position to be used as localization
groundtruth. On the left a large scale view, on the right a small scale view focused on

the USBL measurements area.
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Figure 5.10: Ranging locations and distances used for the trilateration, represented
with blue dots and blue circles. On the left a large scale view, on the right a small scale

view focused on the USBL measurements area.

5.4 Results
This section presents the results obtained from the experiments described in Section 5.3, and provides
an evaluation of the navigation stack onboard of the AUV Turbot and a quality assessment of the geo-
localized images gathered during experiments.

5.4.1 General navigation
The analysis of the AUV navigation performance starts with the evaluation of the surge and sway speeds,
Figure 5.11 shows the speeds estimated by the EKF odometry filter.
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Figure 5.11: Surge and sway speeds.

For the SDS the speeds are near zero, and follow a normal distribution centered in zero with a standard
deviation of 0.002m/s for both the surge and sway components. Considering that the DVL is the only
sensor contributing to the estimation of the linear speeds one may assume that such standard deviation
is composed by errors on the DVL measurements and errors on the static position control. By visual
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Table 5.4: Mean value and standard deviation of the sway speed estimation for each
dataset.

Dataset Mean [m/s] Std [m/s]
DS1 -0.0022 0.0132
DS2 0.0042 0.0170
DS3 0.0055 0.0083

inspection of the initial and final images recorded in the SDS dataset, the displacement results, in fact,
very small.

(a) (b)

Figure 5.12: First and last images of the static dataset SDS.

In the case of datasets DS1-3 the surge speed is maintained in the interval between the target surge speed
smax = 0.3m/s and a minimum surge speed smin = 0.05m/s at the extreme of the transects. The sway
speed does not present correlation with the surge speed. Table 5.4 provides the resulting mean value and
standard deviation of the sway speed estimation for datasets DS1-3. The three datasets present a small
bias that is different between them and may be result from extrinsic factors such as currents. Moreover,
they present a standard deviation 4x − 8x times bigger than for dataset SDS, probably caused also by
currents and by higher noise on the DVL measurements due to more challenging conditions.

With regard to the angular speeds, Figure 5.13 represents the absolute value of the angular speeds for
datasets DS1-3. DS1 presents a steady navigation, in which the roll takes maximum values around
0.025rad/s and the maximum yaw speed is around 0.08rad/s, which does not seem to affect the roll
component. In contrast, DS2-3 present several peaks on the roll speed around 0.05rad/s that seem to be
correlated with the yaw speed.

Figure 5.14 represents the relation between altitude and depth of each dataset. During the SDS the AUV
maintained its position at approximately 8m depth and 1.7m altitude. In the case of the datasets DS1-3
the AUV navigated different bathymetric profiles that resulted in a variation of the AUV recording depth
while controlling a target altitude; 3m and 3.5m altitude for datasets DS1-2 and DS3 respectively.

The difference between the target and the resulting altitudes might be caused by several factors related
to altitude measurements and to the altitude control. First, depending on the benthic environment the
different sensors used for altitude estimation could provide erratic behavior s. Figure 5.15 shows the range
distances provided by the DVL, the echosounder and the visual altimeter together with the estimated
altitude fusing the aforementioned ranges in an EKF filter.

The reason of fusing such set of measurements in an EKF is due to prior issues with the DVL stopping
providing measurements when navigating close to rough rocky environments or to very dense seagrass
meadows. The experiments shown here do not include any of these extreme environments and, as a
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Figure 5.13: Angular speeds.
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Figure 5.15: Altitude measurements from the DVL, echosounder, visual altimeter and
filtered EKF altitude estimation. From top to bottom SDS, DS1, DS2 and DS3.

Table 5.5: Altitude error distribution of the EKF altitude estimation, the visual al-
timeter ranges and echosounder measurements considering the DVL measurements a

groundtruth.

Dataset EKF Visual altitude Echosounder
SDS Nekf = (0.01, 0.0021) Nvisual = (0.16, 0.0076) -
DS1 Nekf = (0.0, 0.0103) Nvisual = (−0.03, 0.0736) -
DS2 Nekf = (0.0, 0.0059) Nvisual = (−0.23, 0.0755) Necho = (−0.05, 0.0567)
DS3 Nekf = (0.01, 0.0091) Nvisual = (−0.2, 0.0622) Necho = (0.04, 0.0669)

consequence, the DVL provides very smooth altitude measurements that might be even considered an
altitude groundtruth.

Dataset SDS shows a clear bias of the visual altimeter, that might be due to an imprecise stereo calibration
considering that the static transforms between sensors are correctly configured. In contrast, DS1 shows
low bias on the error and a bigger standard deviation. DS2 and DS3 result in the highest altitude noise
metrics.

Table 5.5 provides the error distribution of the EKF altitude estimation, the visual altimeter ranges and
echosounder readings considering the DVL measurements a groundtruth. The EKF altitude estimation
results in a maximum bias of 0.01m and standard deviation of 0.01m. The echosounder provides range
measurements with a maximum bias of 0.05m and standard deviation of 0.06m. And the visual altimeter
ranges result in a maximum bias of 0.23m and standard deviation of 0.08m. From these results we can
assume a bound on the altitude estimation error, given by the visual altitude, of mse = bias2 + var =
0.059m2.

Regarding the altitude control, the tracking error of the altitude reference might be due to a bias on
the vehicle pitch. Figure 5.16 represents the roll and pitch of the AUV. The roll seems to be biased by
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almost −2.0◦ for all the datasets, and the pitch seems to behave differently depending on the dataset.
The pitch on the SDS dataset results in a positive bias of 3.0◦ and very low variance caused, probably,
by an unbalanced buoyancy. In contrast, datasets DS1-3 result in a negative pitch bias with very high
variance. The negative pitch bias may be induced by the tethered buoy used for supervision during the
validation experiments. Since the buoy is attached to the stern of the vehicle, it pulls up from the stern
resulting in a change of the pitch. The impact of this issue increases as the navigation depth augments
since the pulling force results in a larger vertical component.
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Figure 5.16: Roll and pitch.

The bias on the AUV pitch impacts the altitude control. The negative pitch induces a vertical force
component caused by the surge thrusts that is not fully compensated with the heave thruster and results
in a stationary altitude bias that depends on the pitch sign and magnitude.

During the four experiments the USBL system described in Section 5.2.1 was used. Such system provided
absolute localization and acoustic communications to monitor the AUV. Figure 5.17 shows the frequency
of the absolute position measurements generated by the USBL and the frequency of the monitoring
communications used to transmit the robot status from AUV to CS. The figure shows the results obtained
for the datasets SDS, DS1 and DS3. DS2 is not showed because the recorded data to compute the
frequencies from such dataset was corrupted.

The absolute position measures achieved maximum frequencies of 0.8Hz, 0.83Hz and 0.67Hz and mean
frequencies of 0.66Hz, 0.67Hz and 0.48Hz respectively for the SDS, DS1 and DS3.

5.4.2 Absolute localization
The absolute localization accuracy is computed using the groundtruth location L of the AUV derived in
Section 5.3, for dataset SDS. Figure 5.18 shows of the absolute error of localization estimated by the EKF
Localization and EKF Odometry filters, and the absolute error of the USBL north-east measurements.

The resulting bias, variance and mse of the USBL measurements and EKF altitude estimation is showed
in Table 5.6, where the bias and the variance are computed as follows,

bias = E[X⃗]− L (5.15)

var = E[(L− X⃗)2] (5.16)
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Figure 5.17: Acoustic channel frequencies. From top to bottom SDS, DS1 and DS3.
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Table 5.6: Pose estimation results

Bias [m] Variance [m2] MSE [m2]
USBL measurements 0.60 1.58 1.94
EKF localization 0.61 1.21 1.58
EKF odometry 2.33 0.0029 5.43

where L is the AUV static location groundtruth obtained by trilateration, and X⃗ represents a vector
containing either the updated USBL measurements or the EKF localization estimation.

For this experiment we consider the same initialization for both EKF filters, using the first USBL mea-
surement. The results show that (1) the EKF localization is biased by the USBL measurements, they
have similar error bias, and results in lower bias than the odometric estimation, (2) the integration of
the USBL measurements increases significantly the variance of the EKF, and (3) the integration of the
USBL measurements in the EKF provides lower MSE than the odometric filter estimation and that the
USBL measurements itself.

Nevertheless, these results are valid for measuring distances between the USBL and modem devices closer
than 70m. The results represented in Figure 5.19, suggest that there is a linear correlation between the
measuring error and the distance. The slope of such regression is m = 0.01391, which means that the
localization error would increase a 1.4% of the incremented measuring distance.
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Figure 5.19: USBL measurements error with respect to the relative distance between
USBL and modem. The blue dots represent the USBL error, the red line represents the

linear regression 0.01391x + 0.919.

5.4.3 Data quality assessment
The quality analysis of the data recorded by the AUV is carried out considering the sources of uncertainty
enumerated in Section 5.1, here we aim to quantify the localization uncertainty of a given pixel, as well
as the resulting spatial resolution of the images.

Pose and scale
Here we provide the results after performing a propagation of the navigation uncertainties resulting from
Section 5.4.1, and summarized in Table 5.7.
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Table 5.7: Uncertainty results from navigation analysis.

Bias [m] Variance [m2] MSE [m2]
Position ϵekf 0.61 1.21 1.58
Altitude ϵaltitude 0.23 0.006 0.059
Roll ϵroll 2.0 2.25 6.25
Pitch ϵpitch 3.0 2.25 11.25
Yaw ϵyaw 1.0 4.0 5.00

Figure 5.20 shows the pixel-wise localization uncertainty in terms of MSE. Notice that the pixel uncer-
tainty caused by the position is constant for all the pixels, and equal to the error resulting from the
EKF localization filter mseekf = 1.58m2, and that the uncertainty caused by the scale is very small due
to the accuracy of the altitude estimation, in despite of considering the highest error margin caused by
the visual altitude estimation with a bias of 0.23m. Moreover, the uncertainty caused by the orientation
results also in a very low contribution, reaching a maximum uncertainty value in terms of MSE of 0.35m2.
Finally, the resulting pixel uncertainty reaches a maximum MSE of 2.57m2, which is 1.6m in RMSE. This
means that the localization error of a feature contained in an in situ sampled image will have a mean
localization error bounded on 1.6m, considering the use the navigation framework described in Section
5.2 with USBL corrections in a distance range closer than 70m.

Figure 5.20: Pixel MSE distribution considering uncertainty from the position, scale,
and orientation.

Image blurring
Figure 5.21 shows a representation of the resulting image blurring that would be obtained from recording
an image from an altitude of 3.5m, a surge speed of 0.35m/s and a yaw angular speed of 0.05rad/s.
This image blurring has been simulated using the equations introduced in Section 5.1, and the results are
provided following a NED reference frame convention. Notice how the blur caused by the angular speed
increases the left side blurring. In contrast, the right side blurring is smaller due to the superposition
with the blur caused by the surge component.
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Figure 5.21: Blur distance example for an image recorded with an altitude of 3.5m, a
surge speed of 0.35m/s and a yaw angular speed of 0.05rad/s.

Moreover, Figure 5.22 shows three examples of images (IMG1-3) recorded by the AUV with different
navigation conditions and same maximum exposure time set to 0.01ms. The first row shows the original
image, and next rows represent successive zooms of the regions represented with red rectangles. Since the
navigation conditions of such image examples are known, their blurring distances at each pixel location
can be computed using the equations described in Section 5.1. Figure 5.23 shows the estimated blurring
for images IMG1-3 respectively. The first and second images represent the horizontal and vertical blurring
components, and the third represent the module.

IMG1 was recorded with very slow surge and angular rotation, and resulted in very low blurring distance.
The horizontal component, caused by sway and roll rotation is near zero, and the most of the image
blurring is caused by the surge or the pitch rotation. Reaching a maximum value of 1.54mm. Considering
that such blur distance is smaller than the pixel size resulting from the navigation altitude psIMG1 =
1.7mm, the image blurring caused by the robot motion shouldn’t be noticed. However, inspecting the
last image amplification of IMG1 from Figure 5.22 and assuming a sharp edge of the recorded cavity, we
can notice a blurring distance of 7px = 12mm.

IMG2 was recorded with almost the reference surge speed of 0.3m/s and residual yaw rotation, the AUV
was traveling along a mission transect. The burring distance behavior is similar to the one obtained for
IMG1, in this case with a larger blurring module of 2.98mm due to a larger vertical component caused
by the surge speed. By visual inspection of the third zoom of IMG2 on Figure 5.22 and assuming sharp
edges of the long seagrass leaves, an approximate distance blurring of 3px = 5.7mm and 6px = 11.4mm

can be inferred respectively for the horizontal and vertical blurring components.

IMG3 shows a different blurring distance distribution. In this case the rotation yaw and the sway speed
reach higher values, which superpose with the surge component and causes the larger blurring distance
in the bottom right corner of the image. The estimated maximum blurring distance in such corner is
6.5mm, which results in an image blurring that is difficult to quantify by visual inspection using an
environmental feature such as a sharp seagrass leave.

The difference between the blurring distance computed from the navigation parameters, and the actual
blurring resulting in the images, might be due to numerous sources that have not been covered in this
work. Such blurring might be caused, for instance, by the water column turbidity, unclean lenses, or even
due to imprecision on the camera focus. Such conditions should be further studied and considered using
specific tests and instrumentation.
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Figure 5.22: Images recorded during the field-tests. The columns represent a different
image (IMG1-3) and the rows represent sequential zoom of the red rectangles
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Figure 5.23: Estimated blurring distances for the example images IMG1-3. From left
to right the horizontal and vertical components and the module.
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Figure 5.24: Resulting pixel size for the example images IMG1-3. From left to right
the horizontal and vertical components and the pixel-wise maximum.

The spatial resolution of the images recorded can be considered as the maximum between the computed
blurring distance caused by the robot navigation and the pixel size determined by the camera specifications
and the recording altitude. Figure 5.24 shows the resulting pixel size for the images IMG1-3, in terms
of horizontal and vertical components (two initial columns) and pixel-wise maximum. The pixel-wise
maximum metric has been used to describe the pixel resolution in order to provide the higher bound of
the square pixel resolution.

Another interesting aspect of this analysis is to evaluate the correlation between the navigation settings
and the estimated pixel resolution. Figure 5.25 shows such correlation, where the blurring is described
using the mean, std, min and max metrics for each image, and the navigation is described using: the
surge and sway speeds (vx and vy); the rotation in roll, pitch and yaw (ωx, ωy and ωz); and the altitude
a. From such navigation descriptors, the surge speed provide the larger correlation with the mean, std,
and max pixel size. And the altitude provides the largest correlation with respect to the min pixel size.

The problem of this analysis is that, as shown in Figure 5.26, the navigation descriptors considered are
not independent. First notice that the surge vx and the rotation in yaw ωz are negatively correlated.
This shows two contrasting image recording manners; low vx and high ωz at the beginning and end of
the transects, and high vx and low ωz during the central part of the transects. Secondly, notice that the
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sway vy and the rotation in roll ωx and pitch ωy are positively correlated with the rotation in yaw ωz.
When the vehicle is set to turn the vy, ωx and ωy increase.
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Figure 5.27: Correlation between surge vx, yaw rotation ωz, altitude a and the mean
pixel size P S.

Only vx, ωz and a can be controlled and configured as navigation settings, and the rest of the descriptors
are an undesired product of the underactuated robot navigation. Figure 5.27 provides more detail on the
correlations between surge vx, yaw rotation ωz, altitude a, the maximum pixel size PS and the mean pixel
size PS. The correlation of the maximum and mean PS with the surge vx can be clearly distinguished.

Following the definition for obtaining the spatial resolution of an image provided in Section 5.1, as the
maximum value between the pixel size, the maximum blurring value in caused by the horizontal recording
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displacements, and the maximum blurring value in caused by the vertical recording displacements. The
maximum value of the spatial resolution obtained for all the images recorded during the experiments
results in 12.71mm. These results provide the upper bound of the spatial resolution that can be obtained
with the proposed navigation framework executed onboard of the AUV Turbot and with a maximum
exposure time of E = 0.01s.

5.5 Discussion
In situ image recording is a very challenging activity that relays on having accurate and smooth navi-
gation. Minimizing the different sources of uncertainty that condition the quality of the recorded data
is a matter of controlling the recording speed depending on the light conditions, and recording close to
the seabed. Hovering AUVs are a very suited tool for this task. This chapter has introduced the novel
software architecture developed to allow benthic exploration. Introducing the main sources of data un-
certainty caused by the robot navigation; pointing out the pre-existent modules that have been used and
the novel developed modules such as the navigation, modelling and replanning modules; and providing
a detailed description and testing of the navigation module. Defining a surface and an underwater nav-
igation modes, with different absolute localization measurement sources and communication interfaces,
an USBL system executed during the underwater navigation mode to provide acoustic localization and
communications, and a set of localization filters used provide absolute pose and altitude estimations as
well as to remove outliers on the USBL measurements.

In terms of navigation, a key result is that using the proposed navigation module, the uncertainty on
the absolute localization provided by the EKF localization filter is correlated with the range distance
between USBL and modem, as the distance increases the bias and variance of the measures also increase,
resulting in an unbounded absolute localization error. In order to bound such error the range distance
between USBL and modem has to be limited. In case of limiting the USBL measuring range to 70m, the
localization error has resulted in an MSE of 1.58m2.

Then, in terms of data quality, using the uncertainty propagation equations derived in Section 5.1 and
the experimental data with the USBL measuring range to limited to 70m, the results show that the
localization error of the recorded images was bounded to 2.56m2 MSE. And that the pixel resolution of
the proposed in situ sampling system has a maximum spatial resolution of 12.71mm. That means that,
using the navigation settings proposed, in the worst case considered, the non-blurred pixel size of an
image will be inferior to 12.71mm and will have a localization accuracy with RMSE of 2

√
2.56 = 1.6m.

Future work related to the topics studied in this chapter should mostly involve further field-testing,
including the following aspects. First, factors that have a direct impact on the image quality and not
covered in this study, like light attenuation, scatter and absorption of the water column, should be
assessed. Second, as the acoustic communications and positioning have been validated, new field-testing
should be extended to cover deeper regions without the tethered buoy to prevent this monitoring system
to hamper the robot navigation. Finally, close range navigation on top of different seabed morphologies,
with more challenging conditions for the altitude measurement sensors would be desirable.

This chapter has shown that the spatial resolution achieved by means of recording in situ visual data
is very fine. It is a few orders of magnitude better than other methods used for BHM described in
Chapter 2, and could be easily improved by means of using more steady platforms and improved strobe
systems. However, the main concern that we face for improving the quality of the recorded data is that
the localization uncertainty is far from being that accurate and can not be easily improved.
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The integration of a visual simultaneous localization and mapping (VSLAM) algorithm in the navigation
module is a possible way to decrease the localization uncertainty. However, the visual odometry and
loop closing detection on benthic environments covered by PO seagrass has shown to be very challenging
due to the movement of the leaves and to the lack of distinctive features. Another methodology that
could be further researched to reduce the localization uncertainty would be the active position of the
USBL to reduce its intrinsic inaccuracies related to the bearing estimation. This issue could be tackled
by developing a cooperative navigation framework with an ASV carrying the USBL head.
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Chapter 6

Data-driven exploration

Autonomous exploration is being an important research area for the last decades. The main purpose of
robotic exploration is to gather data in areas that humans can not reach, such as, in deep waters, in the
space, or in missions that involve unsafe or hazardous environments or actions. Such exploration could be
performed by means of an operator controlling remotely a robot system. However, this relies on having a
proper bidirectional communication between the operator and the robot, for instance to transmit robot
images and operator commands. The problem is that in many scenarios such communication is not
possible, or is very limited, and the robot has to be equipped with some degrees of autonomy.

AUVs have shown a big improvement of their autonomous capabilities during last years. The localization
problem has been tackled in many areas [83], different strategies of sensor fusion [143] and simultaneous
localization and mapping (SLAM) have shown to provide very good performance [151, 152]. Additionally,
CNNs (Convolutional neural networks) have shown to be very effective for online image segmentation
[153], which provides robots with a semantic understanding of the environment. And the computing
capabilities, energy efficiency and control of autonomous robots are also improving. However, data
gathering missions with autonomous robots are normally limited to the use of preprogrammed paths and
their performance is supported only on a reliable localization and control.

This chapter describes the last step towards the development of an autonomous exploration architecture
pursued in this Thesis, based on the semantic modelling, replanning and autonomous navigation methods
described in last chapters. Figure 6.1 represents the proposed scheme.

Navigation ModellingReplanning

Environment model

DataPathArea

Figure 6.1: Data-driven exploration scheme. The modelling and replanning threads
close a feedback loop on top of the autonomous navigation framework that enable the
adaptive exploration of a target area given a probabilistic environment model of the

environment that is trained during mission time.

Data generated during the robot navigation is processed to build a model of the environment, which is
used by the replanning thread to generate informative paths to be followed by the robot. This iterative
loop would continue until a given threshold based on an uncertainty metric, budget time or distance are
reached.
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The structure of the chapter is as follows. First, Section 6.1 describes the proposed architecture providing
a brief description about the requirements and the building blocks used for the implementation. Second,
Section 6.2 describes a set of simulation experiments performed to validate the performance of the AVIG
architecture prior field deployment and compares the execution of the architecture using a DAR planner,
a SBSRE* planner and a predefined lawn mower pattern path. Third, Section 6.3 presents two sets of
field experiments which are key to evaluate the full architecture executed on board of the AUV Turbot,
on different scenarios and conditions. Finally, Section 6.4 concludes the chapter.

6.1 Adaptive visual information gathering (AVIG)
This section introduces a novel adaptive visual information gathering (AVIG) architecture for data-driven
exploration of benthic environments using AUVs. The objective of the AVIG architecture is to adapt
dynamically the robot navigation using the visual information gathered online.

The principal goal of this architecture is to evolve from a classic in situ data gathering framework in
which an AUV is deployed to perform a predefined mission path, to an adaptive framework in which the
AUV is able to replan the mission path reliant on the semantic understanding of the environment. In
such a way we enable the exploration of unknown regions (1) decreasing the reliance on an operator for
mission planning, (2) maximizing the data recording time, and (3) maximizing the informativeness of the
recorded data.

Remember from Chapter 1 that, due to the underwater communication limitations, the logistics to enable
a remote operator to adapt the mission plans to the most recent recorded data would require moving
the robot to surface and even recovery for data transmission. In order to speed up exploration the robot
should be able to model the environment online and decide the best path to execute to accomplish the
data acquisition objective.

6.1.1 Requirements
The execution of the proposed architecture aims to maximize quality and extension of the recorded data.
Targeting long-lasting unsupervised navigation, with communication limitations and no (or uncertain)
prior environmental knowledge. The following requirements are set:

• Navigation at low altitudes with absolute positioning. The AUV should be able to navigate safely
close to the seabed, using absolute position measurements for localization and being able to perform
untethered with acoustic supervision in order to provide a high maneuverability.

• Bounded computation times to allow online execution. In terms of semantic habitat modelling, the
computations should be efficient, with bounded computation times and should capture accurately
the uncertainty of the process under study.

• Smooth navigation and continuous exploration. In terms of replanning, the AUV should move
smoothly without stopping, exploring the environment and targeting dense image recording in high
information areas.

Moreover, a general design requirement for the architecture is to be modular in order to enable the
adaptation of the different modules to changing target applications or environment conditions. Hence,
whereas the methods described in this work target the collection of spatial distribution data of P. oceanica
seagrass for seabed coverage estimation, they could be adapted or substituted for methods that pursue
other goals.
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For instance, the models involved in the modelling module would vary depending on the process under
study. First, the image processing pipeline should be adapted to the type of physical process, by retraining
the network or even changing the network model. Second, the SGP contained in the spatial modelling
process should be configured accordingly to the type of semantic data used and the properties of the
process in terms of spatial distribution.

Moreover, depending on the target application, the planning could require a different balance between
exploration and exploitation. Different sampling requirements could be integrated in the planner. For
instance, instead of generating smooth informative paths, a given application could require the sequential
execution of straight paths or even small and dense lawn mower patterns, located in informative spots.

6.1.2 Methods
The AVIG architecture integrates some of the environment modelling, replanning and autonomous navi-
gation methods described in the Chapters 3, 4 and 5. In particular, it executes the six methods illustrated
in Figure 6.2 in six parallel threads.

Localization

Control

Image 
Gathering

Image
Processing

Spatial
Modelling

Replanning

Pose

Stereo images

Semantic Point Clouds

Environment Model

Path

Figure 6.2: Relation between threads of the adaptive visual information gathering
(AVIG) architecture.

The localization thread involves the execution of the processes related to the localization filters included
in the navigation framework discussed in Chapter 5. It inputs all the sensor measurements to estimate
the robot pose with a frequency of 25Hz. The image gathering and image processing threads do not
include any variation with respect to the methods described in Chapter 3. They involve the execution
of the stereo camera drivers with a sufficient frame rate to enable the recording of successive overlapping
images and the setting of the maximum exposure time depending on the reference surge speed and the
image segmentation using a modified version of the VGG16-FCN8 network as well as the projection to
three-dimensional coordinates using the stereo disparity.

The next paragraphs provide specific detail about the control, spatial modelling and replanning threads.
These threads contain methods that have not been described previously or that have been updated for
the integration.

Control
The control thread is inherited from the COLA2 architecture [154]. It governs the thrusters power in
order to follow a desired mission path, and it is composed by three main processes: (i) a captain parses
the incoming mission paths to low level maneuvers that are sent to (ii) a pilot that provides pose and
velocity reference commands to a controller using the estimated AUV pose and low level maneuver to
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be followed, and (iii) a controller transforms the reference commands to thruster setpoints by following
a double PID implementation. The paths commanded to the control thread are described in terms of
section maneuvers. Such maneuvers are defined by (a) an initial position, (b) a final position, (c) speed,
and (d) tolerance. The pilot adjust the velocity commands using a Line of Sight with Cross Tracking
Error (LOSCTE) strategy [155], which is a well suited strategy for tracking mission paths, considering
a reference setting of maximum and minimum surge speed values. This thread is also set to be executed
with a frequency of 25Hz.

Spatial modelling
The spatial modelling thread has the objective of filtering the semantic point cloud data and use it for
training a probabilistic regression. Such regression, based on an SGP, will be used on to compute the
recorded data uncertainty and get an information metric for further exploration.

The processes included in this thread are based on the methods described in Section 3.2 of Chapter 3
but upgraded to improve the online performance. In particular, they have been integrated in the AVIG
architecture with a set of novel updates to optimize the data filtering stage. Such data filtering stage has
the objective of reducing the size of the dataset used for GP training and allow online execution with a
bounded training time. For that purpose, it performs three main tasks: (i) efficiently collect the processed
data in a raw data dataset, (ii) generate a downsampled dataset when queried, and (iii) compute the
density of the raw data dataset when queried. The first objective is attained by the image processing
thread that continuously filters each segmented point cloud using a voxel filter with a default resolution
of 0.1m. The second is attained by downsampling the raw data dataset using a grid filter with a given cell
size (by configuration); such downsampled dataset is used to train the SGP model. The third is attained
by building a k-d tree [156] using the raw data dataset and a minimum leaf size of 1.0m to compute the
density of the collected raw data. Such raw data density quantifies the data recorded in a particular
location and is used by the replanner to compute the utility metric of sampling that particular spot.

In regard to the grid filter, it is important to pay attention to two aspects: (a) the cell size, and (b) the
type of filter. The cell size will condition the spatial resolution of the spatial model, and the type of filter
will determine the type of content and distribution of semantic labels, for instance:

• Mean grid filtering: Consists in returning, for each particular cell, a new data point located at the
center of the cell with a semantic label equal to the mean value of all the data points contained in
such cell.

• Median grid filtering: Each grid cell retains the data point with the median label value.

Whilst the use of a median filter keeps an actual data point it is more computation expensive than using
a mean value.

The predictions generated by the SGP will have a different meaning depending on the type of grid filtering
performed. In case of using a mean filter, it represents the mean seagrass coverage in an area equal to the
grid filtering cell size. In contrast, in case of using a median filter, the labels used for training represent
the probability of seagrass presence in such punctual location.

Replanning
In terms of adaptive replanning the AVIG architecture includes the exact methods described in Chapter
4, that have been adapted to work in a ROS-based software architecture. This includes the execution of
the novel DAR method for decision-time adaptive replanning to generate successive informative paths,
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without stopping, considering the newest information obtained from the environment model and the
DF-MCTS method to solve the IPP problem. The DF-MCTS method has been designed to explore the
state-space in a depth-first fashion, provide solution paths of a given length in an anytime manner, and
reward smooth paths for field realization with non-holonomic robots.

6.2 Simulation experiments
This section describes a set of simulation experiments that have been executed in order to validate the
performance of the proposed architecture and compare with other standard and state-of-the-art methods.
The objective of these tests is to assess the image processing, spatial modelling and replanning threads
before field deployment. As well as comparing the execution of the proposed architecture using different
planning methods. The next subsections provide specific details regarding the simulation environment,
the comparison methods and the configurations.

6.2.1 Environment
The simulations have been performed in the ROS-based simulator StoneFish [157] using the AUV Turbot
dynamics and software architecture. Figure 6.3 shows the simulated AUV Turbot surveying a synthetic
P. oceanica environment.

Figure 6.3: Screenshot containing a AUV Sparus II in the StoneFish environment

Such environment is a recreation of the environment found in Illetes, a beach spot located in Palma Bay
represented in Figure 6.4. Besides, Figure 6.5a shows the hand-labeled ground truth GT image, it is a
black/white image built from an original aerial picture of an area in Palma Bay. The simulated seabed
shown in Figure 6.5b is formed by adding texture (P. oceanica and sand) on this aforementioned original
GT image, which means that there is no error between the black/white GT and the texture image that
occupies the simulated seabed.

6.2.2 Configurations
Comparison methods
The main objective of these tests is to validate the execution of the AVIG architecture including the DAR
method and compare the performance if we use a sampling based strategy (SBSRE*) or a predefined
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Figure 6.4: Target area of the Illetes region used for the simulation experiments on
top of an aerial image of the region from the Instituto Geodésico Nacional (PNOA 2018

campaign).

(a) Seabed hand-labeled groundtruth used to build the
synthetic simulation environment.

(b) Synthetic seabed image containing P. oceanica and
sand used for simulation.

Figure 6.5: Synthetic simulation environment.
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lawn mower (LM) pattern path instead of using the DAR method on the planning thread. Let us define
the configuration of the different planning methods used for simulation.

DAR method

The configuration used for the DAR method is based on the those tested on Chapter 4. Table 6.1
enumerates such parameters.

Table 6.1: Configuration of the DAR method in simulation.

Parameter Value
Planning time 10s
Information function DE
Alpha (Utility) 1.0
Omega (Reward) 1.0
Discount factor 0.8
Learning rate 0.9
Rollouts number 32
Epsilon 0.01
Number of nodes 20,000
Neighbor distance d1 1.5m
Neighbor distance d2 8.5
Budget B 33.8m

In this case we chose to reduce the planning time from 15s to 10s in order to increase adaptability; since
the decision tree is maintained between consecutive planning iterations this time reduction should not
have direct impact in the quality of the replanning paths. Moreover, the alpha, omega and neighbor
distance d1 parameters which control respectively the weight of the recorded data density on the utility
function and the weight smoothness of the planned paths have been set to an intermediate value from
the configurations tested that is expected to provide a proper balance.

Additionally, in order to generalize to different target areas, in this case we propose to set by default the
distance budget B for the rollouts to the quarter of the target area perimeter and the neighbor distance
d2 to a quarter of B.

Sampling-based strategy (SBSRE*)

In order to compare the proposed planning method with a state-of-the-art strategy we propose to use a
modified version of the SBSRE sampling strategy proposed by Viseras et al. [113]. The original strategy
executes sequentially (1) an update of the SGP model hyperparameters using the recorded data, (2) a
search station (SS) process based on an RRT algorithm where a path is proposed to reach the highest
utility location (station) within a given distance budget, (3) an IPP process based in an RRT* algorithm
which tries to get an optimized path to the previously selected station location, and (4) execution of the
highest utility path (SS or IPP). In order to introduce the SBSRE* method into the AVIG architecture
we take the SGP model update–i.e. step (1)–out of the loop. This process will now be executed on the
environment modelling thread in order to provide a more fluent behavior and only stop the robot at the
end of the execution of a path for SS and IPP.

Moreover, we used the same planning time (5s for SS and 10s for IPP) and information function (DE)
proposed originally and scaled the distance budget, expand distance and path resolution proportionally
to the square root of the target region area. The modified parameters are detailed in Table 6.2.
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Table 6.2: SBSRE* scaled parameters for the simulation experiment.

Original Modified
Area [m2] 18 1,114
Budget [m] 2.0 15.7
Path resolution [m] 0.1 0.8
Expand distance [m] 0.1 0.8

Predefined lawn mower path (LM)

We programmed a lawn mower path (LM) to cover the target area with a distance of 6 meters between
transects. Such type of pattern is extensively used to get a partial representation within a fixed time
budget. The main difference of this type of predefined paths is that they require very low speeds at the
end and beginning of the transects, and uniform sampling speeds along the transects in order to sample
homogeneously the seabed.

The next section provides more detail on the configuration of the navigation speeds to be set for the
different strategies.

Sampling speeds
Due to the different sampling typologies, the three comparison methods were configured to track the
mission paths with different speed configurations. Such speed configurations are used by the LOSCTE
controller to set the velocity requests to the AUV controller. The speed configurations used are given in
Table 6.3.

Table 6.3: Configuration of the LOSCTE controller used for navigation

LOSCTE configuration DAR SBSRE* LM
Minimum speed [m/s] 0.2 0.2 0.05
Maximum speed [m/s] 0.5 0.3 0.2
Lookahead distance [m] 2.0 2.0 5.0
Speed transition distance [m] 3.0 3.0 3.0
Velocity ratio 0.1 0.1 0.1

The criteria followed to configure such reference speeds is based on the conclusions of Chapter 5. In
particular, that chapter showed that the major impact on the resulting pixel size of the recorded images
was the surge speed. In order to be able to compare between methods we establish a desired sampling
speed of 0.2m/s. The provided LOSCTE speed configurations take into account such desired sampling
speed as well as the path tracking constraints of the three methods.

The main difference between the LM with respect to the DAR and SBSRE* strategies is that with the
former the AUV is conditioned to have a homogeneous sampling along the sections, while with the latter
two methods the sampling is focused on the section edges. Such section edges represent the sampling
points considered by both planners while computing the path’s utilities. Hence, for the LM the sampling
speed has to be maintained along the sections and is configured as the maximum speed. In contrast, for
the two adaptive strategies the desired sampling speed has been set at the edges and is configured as the
minimum speed. In this case the AUV is allowed to reach higher speeds along the sections.

Moreover, LM and SBSRE* have some other restrictions in order to allow a proper path following. First,
the minimum speed of the LM is set to a low value of 0.05m/s to ensure a proper tracking at the extreme
of the transects. Second, the maximum speed of the SBSRE* is set to 0.3m/s, a value lower to the
maximum speed of the DAR which is set to 0.5m/s for two reasons: (1) the DAR method provides



Chapter 6. Data-driven exploration 100

paths smoother than SBSRE*, which are less prone to sharp turns, and (2) considering that the SBSRE*
provides paths with distance between sample locations of 0.8m (expand distance parameter), and that
the speed transition distance is fixed to 3.0m, when going through a section in normal conditions (low
cross track error) the SBSRE* wouldn’t have enough distance to reach the maximum speed, in contrast
the DAR provides sufficient distance between sampling points to benefit from such maximum speed.

A key difference in the LOSCTE configuration when using DAR or a LM pattern is that, the LM requires
very low acceleration module in order to be able to follow precisely the 90◦ turns at the extreme of the
sections. DAR paths are already optimized to produce soft (smooth) turns and maintaining the vehicle
speed is prioritized with respect to the path following precision when performing sharp edges. The path
following precision becomes less important since the adaptive behavior will induce revisiting such spot in
case of high interest/information, and the vehicle acceleration becomes more important since the section
maneuvers tend to be shorter than in the LM case.

Environment perception
Since the objective of the simulation experiments was to validate the execution of the AVIG architecture
and compare the performance with other planning methods, the different simulation experiments have
been executed using the same configurations for the image processing and modelling threads. The next
paragraphs describe such configurations.

First, regarding the image processing it is important to mention that the CNN was not retrained using
images gathered from the simulated environment. Instead, we directly used the high resolution output
of the network–i.e. M1 of Chapter 3–which provided sufficiently accurate results with some degree of
uncertainty that was well suited to build a model and guide the replanning.

Second, the configuration used for the environment modeling is shown in Table 6.4. In addition to the
configuration parameters used in Chapter 3 for these experiments we propose to fix the kernel length
scale, as well as computing the sampling resolution and the induction points density from the target
area extension, considering a maximum number of samples NS and induction points NIP as described in
Remark 1. This resulted in a sampling resolution of 0.75m and an induction points density of 0.18m−2.

Table 6.4: Modelling thread configuration.

Model SGPMC
Kernel Matérn 32
Kernel length scale [m] 30
Likelihood Beta
Likelihood scale 0.5
Optimizer Scipy
Iterations 4,000
NS 2,000
NIP 200

6.2.3 Results
This section provides the results obtained from the simulation experiments performed. Analyzing (a) the
quality of the generated semantic data used for modelling, (b) the resulting surge speeds and replanning
paths for the three tested methods, and (c) the performance of the DAR strategy.
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Semantic data generation
In terms Figure 6.6 shows an example of the images gathered during simulation and the resulting seg-
mentation using the high resolution output of the CNN. The segmentation results are very good on the
boundaries and sand regions.

Figure 6.6: Sample images recorded in simulation and their corresponding high resolu-
tion segmentation image.

However, even when using the high resolution output of the CNN, some artifacts appear in some areas
covered with synthetic P. oceanica. In any case, the intrinsic characteristics of an SGP for environment
learning from semantic data points makes it a good fit for modelling a physical process under noisy input
data conditions; heterogeneous data regions will produce high variance values on the SGP prediction.

Moreover, using DAR we aim to visit, or revisit, high variance (uncertainty) regions, leveraging explo-
ration vs. exploitation. With exploration, we refer to navigate on high variance non-visited regions; with
exploitation, we refer to navigate on high variance visited regions. Hence, corrupted data is handled
effectively by means of the same mathematical and stochastic background that forms the system, firstly
by the SGP regression and secondly by the planner. As a consequence, the process was continued without
retraining the CNN.

Furthermore, in these simulations the pipeline for producing the samples’ depth was modified to use a
simulated depth camera instead of the disparity of the AUV stereo images. We generated the segmented
point clouds, combining the point cloud obtained from the depth camera and the segmented image.
Figure 6.7 shows a representation of the raw data generated in simulation; the semantic point clouds are
published at a 0.290Hz frequency, and are completely flat due to the flat environment used and the null
noise in the simulated depth image.

Figure 6.7: Sequential spatial data generated in simulation; white pixels represent areas
covered with P. oceanica, whereas black pixels represent background areas.
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Environment modelling
Figure 6.8 shows the resulting modelling times obtained from an execution of the AVIG framework using
the DAR planning strategy. Such modelling time include the sampling time and the learning of the SGP
hyperparameters. Considering that the latter is the higher contributor and that it is proportional to the
number of training samples and inducing points, the modelling time is proportional to the data coverage
and not to the gathered data. Hence, the modelling time will converge as the data coverage converges,
using the maximum number of samples and number of inducing points.

Figure 6.8: Resulting modelling time and coverage percent (CP) obtained during the
AVIG execution in simulation using DAR.

In this case, the modelling time seems to converge around 55s. The fact that, at the beginning of
the exploration the modelling frequency is higher, allowing fast adaptation of the IPP planner to the
changing environment model, is a good consequence of the behavior described above. Since at the last
part of the exploration the map is partially known, and the high information areas are already located, a
low frequency of the modelling thread can be tolerated. However, even at the end of the exploration we
require a bound on the modelling time in order to integrate newer data into the belief within a reachable
time.

Benchmark
Figure 6.9 shows the resulting speeds for the three tests during an intermediate interval of 7min of the
simulation tests. While the DAR oscillates between 0.1m/s and 0.5m/s, SBSRE* reaches 0.2m/s when
a mission is enabled and stops when the mission is disabled and LM reaches sequentially 0.2m/s while
going through a transect and lowers to 0.05m/s at the end of the transects.

DAR SBSRE* LM

Figure 6.9: Resulting AUV speed in the forward direction for the tree strategies tested
in a 7min time interval.

The mean AUV speed in the advancing direction obtained for the entire mission tests is 0.23m/s, 0.11m/s

and 0.16m/s for the DAR, SBSRE* and LM, respectively.
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Moreover, the Figure 6.10 and 6.11, 6.12 represent the results obtained for the simulation tests with
regard to the exploration performance. First, Figure 6.10 represents the executed paths for the three
tests (DAR, SBSRE* and LM); the green shade represents the raw data density, which is normalized for
each test. Since the frequency of the data gathering is equal for the three tests, the quantity of data
gathered during the same time interval is also equal. However, the distribution of such data differs.

DAR SBSRE* LM

Figure 6.10: Paths followed and raw data density obtained during the execution of the
simulation tests; from left to right, following DAR, SBSRE and LM strategies. The color
in the path represents time, starts in yellow and ends in dark blue. The raw data density
is represented with the green shade. The background represents the groundtruth, the

white area contains P.oceanica

The differences regarding the raw data density distribution are the following: (i) the DAR method
provides the highest data density in the meadow boundaries and that the lowest density regions belong
to homogeneous data regions, (ii) the SBSRE* raw data density distribution is irregular, whilst it shows
high density values in some boundary regions, it does not visit some others, and over records some
regions due to being stopped while planning the next path, (iii) the predefined LM pattern results in
evenly distributed data on the transects, and higher density spots on the section limits

Furthermore, the high density region located on the left part of the region of the DAR test corresponds
to an area where noisy data was acquired due to inaccuracies on the segmentation process. This is the
behavior that we expected to appear, revisiting regions where the recorded data is uncertain. In contrast,
the SBSRE* does not target revisiting such are until the end of the test.

Whilst the LM tests provide more data density in the extreme of the section maneuvers due to a slow
vehicle speed required for precise path following, the DAR and SBSRE* tests provide higher data density
in high uncertainty areas, such as meadow bounds or heterogeneous data regions, being the DAR faster
and more fluid visiting high uncertainty areas. In contrast with the smooth paths provided by the DAR
method, the SBSRE* results in complex paths that are difficult to be followed by the AUV. This difference
arises from the fact that the DAR method penalizes path turns in the DF-MCTS planner, whilst SBSRE*
does not apply any restriction to path turns.

Figure 6.11 presents the results obtained during the three tests in terms of the MDE, SDE, AUC ROC
and CP metrics described at the beginning of the section.
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DAR

SBSRE*

LM

Figure 6.11: Results of the DAR, SBSRE* and LM in simulation.

• The DAR method presents the fastest reduction of the MDE metric and a low SDE, which means
that the AUV efficiently retrieves data from high uncertainty regions and reduces the entropy of
the predicted seagrass distribution.

• The SBSRE* provides a fast reduction of the MDE at the beginning of the mission. At the beginning
it reduces the entropy by targeting the regions with the highest predicted variance values (the SDE
maintains low values). However, approximately after the minute 10, the MDE reduction rate gets
slower.

• The LM results in a final value of the MDE lower than the SBSRE*. However, during the mission
execution, it achieves the highest MDE and SDE values, which means that generated predictions
provide high uncertainty.

• In terms of CP, the DAR method provides the best results. Thanks to the smoothness of the
informative paths computed, the robot is able to achieve higher speeds that result in an increased
CP.

At the beginning of the exploration the AUC ROC metric is very unstable due to that the modelling
process has very limited data for training. In particular, at the instant 4’25min of DAR test the AUC
ROC of the estimated map shows a large negative peak. As more data is recorded the AUC ROC improves
and stabilizes at minutes 20′, 22′, and 33′ for the DAR, LM and SBSRE*, respectively. Which means
that, from those points the modelling thread has sufficient data to learn a proper model.

Finally, Figure 6.12 represents the acquired data and the online estimated maps at four different time
instants from the DAR execution. As the AUV navigates the target area, the environment model gets
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1′49′′ 10′10′′ 30′34′′ 54′37′′

Figure 6.12: Representation of four different instants during the execution of the DAR
method in simulation. In the top row, the square markers represent the samples (black
squares for background, white squares for P. oceanica detection) with resolution R used
to train the GP; and the color-map represent the predicted variance map, blue for low
variance regions and yellow for high variance regions. In the bottom row the black line
represents the contour of the seagrass meadow generated from the groundtruth image,
and the color-map represent the predicted map; purple for P. oceanica and orange for

background.
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more accurate, starting by a naive prediction at the time instant 1′49′′ to a more confident prediction at
45′37′′, where only the boundary regions present high uncertainty value (yellow on the top row), and the
P. oceanica distribution (purple on the bottom row) is predicted with high precision, given the spatial
resolution used.

Notice how the right part of the map presents noisy samples (false negative samples) that increase the
uncertainty value and attracts the robot navigation to gather more data, path in Figure 6.10.

6.3 Field experiments
This section describes a set of three field experiments performed to evaluate the proposed exploration
framework. The main objective of the experiments was to explore some predefined locations to obtain a
fast representation of the seagrass distribution. The experiments have been carried out in the Mallorca
Island, using the AUV Turbot with the payload configuration described in Chapter 5.

• The first field-test (CSJ) was executed at the south of Mallorca in the Colonia de Sant Jordi
(39.326284, 2.986278). The target area had an extension of 10,212m2 and was located in a shallow
water region which depth ranged between 3.5 and 5.5 meters. Covering a seagrass meadow that
was visible form aerial images in order to be able to assess the modelling performance by comparing
the online estimated maps with the existing aerial images of the area. For this experiment we set
a maximum exploration time of 90min, and due to the low altitude the AUV was commanded to
navigate on surface.

• The second field-test (PA1) was executed at the south-west of the island in the Port d’Andratx
(39.543330, 2.377940). Due to the limitations imposed by maritime traffic in this case the target
area was smaller, with an extension of 4,156m2 and a depth ranged between 10 and 18 meters. In
this case the seabed distribution could not be inferred from existing aerial images, it was unknown
at the time of planning the target area for exploration. For this experiment we set a maximum
exploration time of 50min and a recording altitude of 3.0m.

• The third field-test (PA2) was executed on the same target area as PA1, using the same configura-
tions. The unique difference with respect to PA1 was that in this case the localization filter of the
AUV used the absolute positioning measurements provided by the USBL framework.

The Tables 6.5a and 6.5b provide the common parameter configurations, respectively for replanning and
the modelling threads, for both experiment campaigns CSJ and PA.

Table 6.5: Common parameter configurations for the CSJ and PA experiments.

(a)

Replanning Parameters CSJ/PA
Planning time 15s
Information function DE
Alpha (Utility) 1.0
Omega (Reward) 1.0
Discount factor 0.8
Learning rate 0.9
Rollouts number 32
Epsilon 0.01
Number of nodes 20,000

(b)

Modelling Parameters CSJ/PA
Model SGPMC
Kernel Matérn 32
Kernel scale 30
Likelihood Beta
Likelihood Scale 0.5
Optimizer Scipy
Iterations 4,000
Induction points NIP 200
Point cloud resolution [24,18]px



Chapter 6. Data-driven exploration 107

The configuration used for the DAR method was based on the configurations tested on Chapter 4. The
distance budget B and the maximum neighbor distance d2 were automatically set using the perimeter of
its corresponding target area.

6.3.1 Colonia de Sant Jordi (CSJ)
Figure 6.13 provides a representation of the CSJ region as well as the target area used for exploration,
such area (in pink) has an extension of 10,212m2 and a perimeter of 370.8m.

;)

Figure 6.13: Target area for the Colonia de Sant Jordi (CSJ) region,
39.326284, 2.986278, on top an aerial image of the region from the Instituto Geodésico

Nacional (PNOA 2018 campaign)

Table 6.6 details the navigation configuration used for the LOSCTE in this location. Please notice that
in this case we used a configuration with higher speeds than in the simulation tests in order to provide a
faster exploration performance at expenses of reducing data quality. Here we (i) doubled the minimum
speed and lookahead distance, allowing higher path tracking errors, and (ii) increased a 20% the maximum
speed, allowing higher image blurring.

Table 6.6: Navigation configuration for the CSJ region

Navigation Parameters CSJ
Minimum speed 0.1m/s
Maximum speed 0.6m/s
Lookahead distance 4.0m
Speed transition distance 3.0m
Velocity ratio 0.1
Altitude -
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The objective of this test is the validation of the AVIG architecture in field. The test was executed with
the vehicle on surface in order to abstract of the underwater navigation localization errors and to explore
a seagrass meadow that could be easily inferred from aerial images to serve as a groundtruth.

Regarding the specific configuration parameters of the replanning thread, the neighbor distance d1 was
conserved the same as the used in the simulation experiments and neighbor distance d2 and the budget
B were computed from the perimeter of target area. Table 6.7a provides such set of specific parameters.

Table 6.7: Specific replanning and modelling configurations for the CSJ experiment.

(a)

Replanning Parameters CSJ
Neighbor distance d1 1.5m
Neighbor distance d2 23.2
Budget B 92.7m

(b)

Modelling Parameters CSJ
Training samples NS 2000
Sample resolution R 2.26m
Induction points density IPD 0.02m−2

Moreover, regarding the configuration of the environment modelling thread, the maximum number of
training samples was set to 2000. The resulting sample resolution and the induction points density is
provided in Table 6.7b. The next sections review in detail the results obtained in terms of data processing,
modelling and replanning.

Data processing
The data processing results include the image recording, the image segmentation and image projection.
Figure 6.14 shows an example of the kind of images acquired together with their segmentation output.

Figure 6.14: Image examples form the CSJ experiment and their corresponding low
resolution segmentation output.

From visual inspection and without the generation of groundtruth for assessing the accuracy they show a
rather good segmentation performance using the low resolution output of the CNN, resulting in a mean
segmentation frequency of 0.461Hz that sufficient overlap between successive semantic point clouds.

Figure 6.15 provides a representation of the semantic point clouds generated during mission time. The
black points represent areas with low probability of P. oceanica presence, whereas white points represent
higher probabilities.

In addition, Figure 6.15 provides a deeper insight on the level of detail obtained with the semantic point
cloud data. In this case the positive detections (P. oceanica) are represented with orange points, while
negative detections (not P. oceanica) are represented with purple.
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Figure 6.15: Semantic point clouds from the CSJ experiment projected to global coor-
dinates; white points represent areas covered with P. oceanica, and black points represent

background areas.

Figure 6.16: Semantic point cloud data map from the CSJ experiment; the orange and
purple points represent positive and negative detections respectively.
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The white points represent intermediate probabilities. Please notice (i) the contrasting measurements in
the same spots caused by the measurement noise and (ii) the accuracy of the meadow bounds inferred
from the point cloud data with respect to the bounds inferred from the aerial image.

The processed data is considered to be consistent with what is inferred from the aerial image and valid
for environment modelling.

Modelling
The analysis of the results yielded by the environment modelling thread have assessed considering an
environment model optimized during the experiment, after 53.7min of the exploration. Figure 6.17
provides a representation of (a) the samples used for training, (b) the density of the semantic point cloud
data, (c) the mean prediction value and (d) the variance of the prediction.

(a) Training samples. (b) Data density.

(c) Prediction mean. (d) Prediction variance

Figure 6.17: Four representation of the gathered data used for training and the envi-
ronment model prediction over the target area generated using the environment model

optimized at the 53.7min of the CSJ experiment.
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From this figure take a closer look to the training samples distribution of Figure 6.17a. From visual
inspection it can be noticed that the sample distribution is biased towards negative values–i.e. black
squares on the figure–. Figure 6.18 illustrates the histogram of the samples used for training the last
iteration of the mapping thread of this experiment. Besides, the red plot represents the probability
density function (PDF) of the beta function used for the SGP likelihood. Using a scale parameter of
the beta distribution of s = 0.5 the SGP likelihood matches the samples’ distribution, providing higher
probabilities to the extreme values with particular intensity to the negative extreme due to the biased
training samples distribution.

Figure 6.18: Histogram of the training samples used for environment modelling for the
CSJ experiment and probability density function of the beta function used as likelihood

function of the SGP.

The likelihood function used for SGP modelling takes the credit of such high variance in heterogeneous
data regions. The beta function provides higher beliefs for extreme data samples; either P. oceanica
or background. However, since the resolution size used for sampling is too large to capture the data
complexity in heterogeneous data regions, such regions produce intermediate sample values that result
in high uncertainty. This is a key result that enables keeping high entropy values in meadow boundaries
and patchy regions to reinforce the data gathering in such areas.

Moreover, notice that each of the representations on Figure 6.17 shows a black contours that pictures the
meadow bounds inferred from the aerial image. The values of the samples used for training correspond
with the value inferred, the samples inside the contours show higher probabilities of positive detections
that contrast with the values of the samples that are found outside. Figures 6.17c and 6.17d show the
prediction provided by the environment model trained with the aforementioned training samples. The
predictions of the SGP model coincide with the inferred bounds, providing higher prediction variance to
heterogeneous data regions such a meadow bounds and patchy regions.

The likelihood function used for SGP modelling takes the credit of such high variance in heterogeneous
data regions. The beta function used for the likelihood representation provides higher beliefs for extreme
data samples; either P. oceanica or background. However, since the resolution size used for sampling is
too large to capture the data complexity in heterogeneous data regions, such regions produce intermediate
sample values that result in high uncertainty. This is a key result that enables keeping high entropy values
in meadow boundaries and patchy regions to reinforce the data gathering in such areas.

Finally, Figure 6.19 illustrates the resulting modelling time and the coverage percent as the exploration
mission goes forward. The figure shows a correlation between coverage and modelling time, resulting in
40s of modelling time after 90min of mission, with a CP around 60%.
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Figure 6.19: Resulting modelling time and coverage percent obtained during field-
testing the AVIG framework.

Replanning
Figure 6.20 represents the path traversed during the exploration, given by the absolute localization filter
of the AUV. The color in the path represents time, starts in yellow and ends in dark blue. The figure
also represents the raw data density at the end of the mission with a green shade and the hand-labeled
contours of the seagrass meadow interpreted from an aerial image. Observe that the more repeatedly
recorded areas, providing the highest data density, correspond to the areas covered by seagrass. The
AUV has the desired behavior of revisiting uncertain spots that contain heterogeneous data regions.

Figure 6.20: Path followed and raw data density obtained in field-test following DAR
method. The color in the path represents time, starts in yellow and ends in dark blue.

The raw data density is represented with the green shade.

Figure 6.21 shows five representations of the gathered data and the estimated map of different time
instants of the mission in order to represent the evolution of the exploration.

The top row of the figure shows the samples used to train the SGP as square markers and the predicted
variance map with a color-map, dark blue for low variance regions and yellow for high variance regions.
The bottom row represents the predicted seagrass distribution with a color-map where purple indicates
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2′16′′ 22′30′′ 53′38′′ 90′00′′

Figure 6.21: Representation of five different instants during the execution of the DAR
method in field-test. In the top row, the square markers represent the samples (black
squares for background, white squares for P. oceanica detection) used to train the SGP
and the color-map represent the predicted variance map; blue for low variance regions
and yellow for high variance regions. In the bottom row the black line represents the
contour of the seagrass meadow obtained from the groundtruth image, and the color-map
represent the online predicted map; purple for P. oceanica and orange for background.

presence of P. oceanica and orange indicates background. The third step corresponds to the model studied
in the modelling section. As the exploration mission advances and more training samples are stored, the
environment model predictions improve, providing results that are closer to the bounds estimated from
aerial images. Notice that during the first two represented steps the robot tends to cover the area, the
higher uncertainty is located on unrecorded spots, while during the last two represented steps, the robot
tends to exploit the environment knowledge by prioritizing the recording of heterogeneous data regions.

Finally, Figure 6.22 represents the MDE and SDE computed from the successive estimated maps during
the exploration mission. Both metrics show a fast convergence during the initial 30min, that corresponds
to the results illustrated in Figure 6.21; the AUV performs a fast exploration of the target area up to
that time increasing the map informativeness. Then, the exploration framework exploits the environment
knowledge by gathering data mostly in heterogeneous data regions. Whilst the AUV gathers more data in
such regions, the use of a fixed resolution size of the samples used for training bound the MDE reduction.

6.3.2 Port d’Andratx (PA)
Figure 6.23 provides a representation of the PA region as well as the target area used for exploration,
such area (in orange) has an extension of 4,156m2 and a perimeter of 262.0m.

Table 6.8 details the navigation configuration used for the LOSCTE in this location. Please notice that
the configuration used for the PA tests is very conservative when compared with the CSJ configuration.
Whereas a fast navigation configuration has shown to provide good results during the CSJ experiments, in
this case we decided to use a more prudent navigation configuration in order to provide a first validation
of the AVIG architecture working in underwater mode. Here we used a homogeneous low speed sampling
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Figure 6.22: Results obtained in field-test.

Figure 6.23: Target area for the Port d’Andratx (PA) region, 39.543330, 2.377940, on
top an aerial image of the region from the Instituto Geodésico Nacional (PNOA 2018

campaign)
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navigation configuration typically used to follow preprogrammed lawn mower patterns. This configuration
provided higher resolution data (low image blurring) at expenses of a smaller coverage for the given
exploration time.

Table 6.8: Navigation configuration for the PA region.

Navigation Parameters PA
Minimum speed 0.05m/s
Maximum speed 0.35m/s
Lookahead distance 4.5m
Speed transition distance 3.0m
Velocity ratio 0.05
Altitude 3.0m

Table 6.9a provides the specific replanning parameters used for these tests. In this case the neighbor
distance d1 was increased to 5.0m to reduce the size of the graph and the neighbor distance d2 and
budget B calculated from the target area resulted in 16.4m and 65.7m respectively. Finally, regarding
the configuration of the modelling thread, for these experiments we tested a higher maximum number of
samples in order to model the environment with a smaller spatial resolution, the specific configuration is
provided in Table 6.9b.

Table 6.9: Specific replanning and modelling configurations for the PA experiment.

(a)

Replanning Parameters PA
Neighbor distance d1 5.0m
Neighbor distance d2 16.4m
Budget B 65.7m

(b)

Modelling Parameters PA
Training samples NS 5000
Sample resolution R 0.92m
Induction points density IPD 0.12m−2

Summarizing, the key differences between the PA and the CSJ experiments is that in this case (a) the
navigation speed is slower, (b) the vehicle navigates underwater maintaining a constant altitude, (c) the
neighbor distance d1 is set to a larger value in order to reduce the number of neighbor candidates for
each node, and (d) the environment modelling use the highest number of samples.

The next sections review in detail the results obtained in terms of navigation, data processing, modelling
and replanning.

Navigation
These field-tests were more challenging for the altitude estimation than other of the presented field-test
on this Thesis, in this scenario the DVL provided many failed measurements. In any case, the altitude
estimation was robust enough to generate a proper altitude value for navigation. Figure 6.24 shows the
altitude estimated by the filter presented in Chapter 5, together with the vehicle depth.

Figure 6.25 provides the histogram of the altitude measurements of each of the individual inputs of the
estimation filter–i.e. DVL, echosounder and visual–. Notice that the negative measurements indicate
that the measurement is invalid, the DVL has the largest amount of invalid measurements followed by
the visual altimeter.



Chapter 6. Data-driven exploration 116

28 12:10 28 12:20 28 12:30 28 12:40 28 12:50 28 13:00 28 13:10 28 13:20 28 13:30 28 13:40
UTC time

0
1
2
3
4
5
6
7
8
9

10
11
12

Ra
ng

e 
[m

]
PA1

depth
altitude

29 11:50 29 12:00 29 12:10 29 12:20 29 12:30 29 12:40 29 12:50
UTC time

0
1
2
3
4
5
6
7
8
9

10
11
12

Ra
ng

e 
[m

]

PA2

depth
altitude

Figure 6.24: Altitude and depth during the PA field-tests
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Figure 6.25: Altitude measurement histograms during the PA field-tests



Chapter 6. Data-driven exploration 117

Data processing
Figure 6.26 shows an example of a set of images acquired in PA together with their segmentation output.
From visual inspection the segmentation seems accurate enough to guide the exploration. For these
experiments the segmentation of the images was executed at 0.2Hz average frequency.

Figure 6.26: Field-test image examples form PA and their corresponding low resolution
segmentation output.

Modelling
Figure 6.27 provides a representation of the environment prediction at the last modelling iteration,
respectively for the (a) PA1 and (b) PA2 field experiments.

First notice that the two environment models provide contrasting predictions, that are the result of the
use of different samples for training. The lack of correspondence between the training samples of both
models is attributed to errors on the robot localization. The key difference between both tests is that the
first test did not use USBL measurements for navigation, while the second did. Hence, in the absence of
a groundtruth the data generated during PA2 test is believed to be more accurate. The data recorded
during the PA1 test was prone to localization drift.

In terms of environment modeling, the resulting mean and variance maps for environment model predic-
tions are well corresponded with the samples used for training for both tests. In both cases the positive
detection regions (probable seagrass meadows) provide higher variances. Figures 6.28 and 6.29 provide
the histograms generated from the training samples of PA1 and PA2 respectively. Each figure provide
(a) the complete histogram and two partial histograms representing the samples contained in the interval
(b) [0.0,0.1] and (c) [0.9,1.0].

Firstly, from the complete histogram figures notice that the corresponding beta PDF matches the distri-
bution of the training samples. These results support the decision of using a beta function to represent
the likelihood function.

Secondly, from the partial histogram figures notice that there is a clear difference on the resulting dis-
tribution at the extreme values. The negative detection samples seem to be more biased towards the
extreme of the label interval than the positive detections. This certainty on the negative detection sam-
ples seems to be the cause of the reduced predicted variance of the environment model on the regions that
are covered by such samples. The cause of that uneven distribution at the extremes should be further
addressed.
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(a) PA1 (b) PA2

Figure 6.27: Environment prediction at last modelling iteration for the (a) PA1 and
(b) PA2 field experiments. From top to bottom: (1) the model variance, (2) the model
mean and (3) thresholded model mean. The model variance is represented with dark
blue for low variance regions and yellow for high variance regions. The model mean
is represented with orange for negative predictions and purple for positive predictions.
The three representations include a superposition of the samples used for training the
environment model in form of square markers, the fill color from black to white represent

the probability of being positive [0,1].
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(a) Complete histogram, interval [0.0,1.0] with 15 bins.
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(b) Partial, interval [0.0,0.1] with 50 bins
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(c) Partial, interval [0.9,1.0] with 50 bins.

Figure 6.28: Training samples histogram for PA1 experiment.
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(a) Complete histogram, interval [0.0,1.0] with 15 bins.
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(b) Partial, interval [0,0.1] with 50 bins.
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(c) Partial, interval [0.9,1.0] with 50 bins.

Figure 6.29: Training samples histogram for PA2 experiment.
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Replanning
In this section we reach the last step of the analysis, the replanning. Figures 6.30 and 6.31 provide a
representation of three replanning steps (left to right), respectively for the field experiments (a) PA1 at
the minutes 0.8, 16 and 54 and (b) PA2 at the minutes 0.4, 14 and 48. From top to bottom, these figures
show (1) raw data density, the more yellow, the higher; (2) model variance, the more yellow, the higher;
(3) model mean, purple for positives and orange for negatives; and (4) node utility, dark blue for the
highest.

Figure 6.30: Representation of three replanning steps (left to right) for the PA1 field
experiment at the minutes 0.8, 16 and 54. From top to bottom, these figures show (1)
raw data density, the more yellow, the higher; (2) model variance, the more yellow, the
higher; (3) model mean, purple for positives and orange for negatives; and (4) node

utility, dark blue for the highest.

At the first step of both experiments the scarcity of training samples results in a very uncertain environ-
ment model that provides a large predicted variance. In the same step, these areas of high variance result
in high utilities of the nodes used to build the decision tree for replanning. Since the farther regions from
the recorded area provide the higher uncertainties, the nodes of the DFMC used for planning provide
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the highest utility values around such areas and condition the navigation to explore the farther regions
of the target area.

Notice that at the second step shown of both experiments the robot has already traveled a distance
enough to record sufficient benthic data to provide a fairly good environment estimation. At this step the
exploration agent has already visited the higher variance areas and the higher utility values of the DFMC
node network are located on regions that have not been recorded or that the recorded data is predicted to
be heterogeneous. Figure 6.32 illustrates the results obtained from both experiments using the validation
metrics described in the experiments’ section of Chapter 4. Notice that the MDE is reduced around a
50% for the time the mission reaches the aforementioned second step. That happens at the minute 14
and 16 respectively for PA1 and PA2.

At the third illustrated step, minutes 54 and 48 respectively for PA1 and PA2, the results show a further
reduction of the predicted variance due to the large amount of recorded data. At that point the MDE
has been reduced a 65% and seems to have converged to a value conditioned by the sampling resolution
and trajectory smoothness. The number of samples used for training the SGP in these experiments has
shown to result on a very accurate modelling. However, it comes at the expenses of higher modelling
times than the resulted in the CSJ experiments. Figure 6.32 shows that the initial mapping iterations
took around 20s to complete which is a very good time considering that the planning is launched every
15s. Nonetheless, the last iterations took around 10 min. The resulting modelling time depends on
the sampling resolution, the induction points density, the computational load of the computer and the
number of samples used for training.

6.4 Discussion
The AVIG framework has been successfully integrated in a ROS-based software architecture and tested
in simulation and in field. The results show that using this framework the vehicle is driven to cover the
region with higher uncertainty given by the GP model whilst producing smooth paths easy to follow.
Regions with increased GP variance imply that the gathered information is highly uncertain or incomplete
thus it needs to be revisited.

The experiments performed showed that the configurations used can be further tuned for generalization
offering a proper trade off between image segmentation, environment modelling and replanning. A param-
eter configuration in between of the configurations used for the CSJ and PA experiments could offer such
trade off. First, the navigation configuration will depend on the desired pixel size and position accuracy
for the recorded data as described in Chapter 5. Second, the modelling configuration will depend only on
the capacity of the computer on board of the AUV by defining the maximum number of training samples
to be used. This would apply for the studied application of seagrass modelling. The set-up of other
applications would require a review of other configuration parameters such as the kernel and likelihood
functions to be used. Third, the replanning configuration has been mostly reliant on the robot navigation
constraints, only considering the commanded path roughness that could be allowed. However, the ex-
periments have shown that such configuration should also rely on the environment model to be learned.
More detailed models should require less restricted trajectory paths in order to be able to execute more
complex trajectories to target, for instance, more complex seagrass meadows or small patchy regions.
Hence, the neighbor distance (d1) of the planning configuration could be defined proportionally to the
sampling resolution used by the environment modelling thread, which is in turn reliant of the maximum
number of samples. Using such proposed parameterization, the exploration of a new target area would
exclusively depend on the target area shape and the computer capacity of the exploring agent.
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Moreover, the resulting convergence of the MDE metric from all the simulation and field experiments has
shown to provide very good quality to be used, in conjunction with the time budget, as a stop condition
for the exploration. The slope of MDE could be used as a threshold to either stop the exploration or
refine the configuration (increasing the maximum number of samples) in order to be able to target further
key spots that will improve the performance of the exploration.
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Figure 6.31: Representation of three replanning steps (left to right) for the PA2 field
experiment (a) PA2 at the minutes 0.4, 14 and 48. From top to bottom, these figures
show (1) raw data density, the more yellow, the higher; (2) model variance, the more
yellow, the higher; (3) model mean, purple for positives and orange for negatives; and

(4) node utility, dark blue for the highest.
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Figure 6.32: Results obtained during the PA field-tests.
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Chapter 7

Conclusions

The main goal of robotic exploration is to collect data in areas that humans cannot reach, such as in deep
water, in space, or in missions involving hazardous environments. Such exploration can be performed
by means of an operator controlling remotely a robot system. However this relies on having a proper
bidirectional communication between the operator and the robot, for instance to transmit robot images
and operator commands. The main issue is that in many scenarios such communication is not possible,
or is very limited, and the robot has to be equipped with some degrees of autonomy.

Having a reliable autonomous navigation and an online processing of the data recorded by the robot
and an online environment modelling have supposed a great advantage during benthic habitat mapping
campaigns. Enabling a higher degree of autonomy for adaptive mission replanning when the robot can not
be tethered and a proper bidirectional communication can not be established. Furthermore, such online
data processing method has proved to be useful also to provide a deeper insight about the benthic habitat
distribution to AUV operators, easing the targeting of high-informative areas and planning sampling
missions when the AUV can be tethered.

All in all, this Thesis has enlarged the applications and methods of autonomous robotic exploration
by proposing different methods to improve online environment perception and proposing a software
architecture that includes an adaptive visual information gathering method to maximize information
gain when sampling seabed images for benthic habitat mapping.

This Chapter concludes the Thesis, presenting the summary of the completed work in Section 7.1, the
main contributions in Section 7.2 and future work suggestions in Section 7.3.

7.1 Summary
Chapter 3 describes and field validates a method to ease data-gathering campaigns for P. oceanica mead-
ows by performing (a) an online image segmentation using an encoder-decoder CNN, (b) a projection of
such processed data to world coordinates using stereo image processing and the estimated robot trajectory
and (c) an estimation of the collected data uncertainty using an SGP. A series of field-tests were carried
out in order to provide enough data to select the most suitable CNN and SGP configuration. This chapter
validated the use of a modified VGG16-FCN8 network, reducing the computation time in a 12.8%. With
regard to the selection of an SGP configuration, the SGPMC model with kernel ϕM12 provided the best
overall performance. Providing the shorter training times and best uncertainty representation from the
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models considered. Furthermore, field-testing shown that using a likelihood beta function with scaling
factor s = 1 in the SGP model is fundamental in order to model uncertainty associated to seagrass
meadow bounds. Validation tests using such a likelihood function have shown that (1) the surveyed areas
which are considered to be more salient show higher SGP variance than areas containing similar sample
values and (2) the estimation shows good prediction properties in non-sampled areas too, inferring, for
instance, meadow bound continuations.

Chapter 4 describes and validates a novel design of a novel method for decision-time adaptive replanning
(DAR). Such DAR method is coupled with a DF-MCTS strategy for IPP, and joins two advantages of
graph-based and sampling-based methods: (a) initializes a node network to set neighbor relations between
sampling locations (which reduces computation during online execution), and (b) samples paths in the
node network through tree search following a decision-time strategy (that provides near-optimal solutions
in an anytime manner). The results showed that the DAR method with DF-MCTS provided the fastest
MDE reduction when compared with the very relevant strategy proposed by Viseras et al. [113] and
with a predefined lawn mower pattern mission. The results showed that the variable distance between
sampling nodes and the penalization of sharp turns in the reward function provide smooth paths that
are secure to be followed by the LOSCTE controller.

Chapter 5 enumerates the different sources of uncertainty when using AUVs for recording geo-localized
images of benthic environments, and derives the equations to model the localization uncertainty propaga-
tion from camera to image pixel, and to model the pixel-wise image blurring cased by the robot motion.
Then, it introduces the proposed software architecture, and describes the build in navigation module that
include several features to reduce data uncertainties and for monitoring. Such features include (a) the
integration of an USBL framework to enable acoustic communications and positioning and allow unteth-
ered supervision off the AUV, (b) the integration of a set of localization filters implemented to reduce
the uncertainty on the altitude and pose estimations. Then, the results obtained from a series of field
experiments provide the accuracy of the localization of the robot, and the quality of the recorded data
in terms of localization error and spatial resolution.

Chapter 6 describes and validates a novel architecture for autonomous exploration. Such architecture
joins an upgraded version of the methods described in previous chapters for modelling, replanning and
navigation in a framework that can be executed online on-board of the AUV. Moreover, the chapter eval-
uates the performance of the architecture on a series of simulation and field experiments when performing
autonomous exploration of a target region. The results showed that using the proposed architecture the
vehicle is driven to cover the region with higher uncertainty given by the SGP model, whilst producing
smooth paths easy to follow. Regions with increased SGP variance imply that the gathered information
is highly uncertain or incomplete thus it need to be revisited.

7.2 Contributions
This Thesis has contributed to the field of autonomous robotics by providing a field validated data-driven
architecture for stereo image recording using AUVs. More precisely, this Thesis has contributed in terms
of underwater navigation, online environment perception and adaptive mission replanning. Providing
several high-level features to build an AUV software architecture based on ROS.

First, in terms of underwater navigation, this Thesis has contributed to the field by developing different
methods to enable close range navigation to the seabed in shallow water environments covered by dense
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seagrass meadows. In particular this Thesis has contributed to tackle the challenging conditions of this
type of navigation in terms of pose and altitude estimation. This includes:

• The integration of an USBL framework to provide acoustic positioning and communications with the
AUV. Enabling the generation of absolute positioning measurements to bound the localization error
of the recorded data and an untethered navigation to improve the AUV autonomy and endurance.

• The integration of a localization layer to include the integration of the USBL measurements on the
pose estimation, and the integration of different altitude measurements on a new altitude filter to
provide continuous altitude estimation.

• The experimental assessment of the developed methods and modelling of the recorded data quality
in terms of localization accuracy and spatial resolution.

Second, in terms of online environment perception, has contributed by developing and introducing a set
of features that provide a semantic understanding of the environment that it is being recorded by the
robot, during mission time. This includes:

• Running a semantic image segmentation CNN encoder-decoder architecture trained to differentiate
P. oceanica from background, and modifying such CNN to improve online performance by reducing
computation times.

• Generating a data-base containing the three-dimensional projection of the semantic images. Where
the projection to global coordinates is performed using the robot pose and stereo disparity.

• Building a probabilistic environment model based on a sparse Gaussian process using the recorded
data.

Third, in terms of adaptive mission replanning, this Thesis has contributed by developing novel strategies
to provide adaptive mission paths that maximize data informativeness. This includes:

• Growing a tree by sampling mission paths following a novel depth-first Monte Carlo tree search
(DF-MCTS) strategy based on Reinforcement Learning.

• Successively selecting the best path to follow according to an utility metric using a novel decision-
time adaptive replanning (DAR) method.

• Coordinating the decision-making with the environment perception and the mission control using
a novel adaptive visual information gathering (AVIG) architecture.

Furthermore, this Thesis provides an extensive validation of the features proposed in simulation and
field-test. As well as complete model selection assessments to optimize the configurations proposed. The
proposed methods have been integrated to be executed onboard of the AUV Turbot, and have shown very
good performance to generate high-resolution data of benthic environments colonized by P. oceanica, an
endemic seagrass of the Mediterranean in regression.

7.3 Future Work
This Thesis provides a proof of concept and opens the door of using AUVs for adaptive visual information
gathering of benthic environments, and there are many lines of research to explore in the future.

The semantic understanding of the benthic environment could be improved by means of:
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• Testing different supervised learning methods to allow multiclass segmentation of images, and point-
cloud segmentation.

• Introducing the use of unsupervised learning methods for exploration of environments colonized by
previously unknown habitats.

Improvements on the online modelling of the benthic environment will target the following: Such im-
provements will require also the use of a new environment model able to be trained with multiclass
data:

• Using a multiclass kernel for the SGP.

• Testing of a Bayesian Neural Network.

• Defining and using heteroscedastic models to make use of the sampling uncertainty (localization
and imaging conditions) for environmental modelling.

Moreover, it could be very interesting to be able to use prior existing IS and RS data:

• Fuse prior existing IS data to the environment modelling following a Bayesian Commite Maching
algorithm.

• Integrate prior knowledge from different RS sources following a multimodal learning method.

In terms of adaptive planning, the most important future research lines are the following:

• Multirobot exploration, sharing low resolution maps for exploration in a collaborative manner.

• Include variable altitude and speeds for automatic determination of the image footprint and reso-
lution trade-off.
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