
Quality Assurance for Fault-
Operational Cyber-Physical

Systems
Franz Wotawa

Technische Universität Graz
Institute for Software Technology

CD Lab for Quality Assurance Methodologies for Cyber-Physical Systems
wotawa@ist.tugraz.at

Early work (focusing on MBR)

Automated compensation of HW faults
• Joint work with Michael Hofbaur, Johannes Köb, Gerald

Steinbauer, Jörg Weber
• Publications:

• M. Hofbaur, J. Köb, G. Steinbauer, and F. Wotawa. Improving
Robustness of mobile Robots using Model-based Reasoning. Journal
of Intelligent and Robotic Systems , Springer, Vol. 48(1), Jan, 2007.

• G. Steinbauer, F. Wotawa. Robust Plan Execution Using Model-Based
Reasoning. Advanced Robotics , 23 (10), pp. 1315 - 1326, 2009.

• J. Weber and F. Wotawa. Diagnosis and repair of dependent failures in
the control system of a mobile autonomous robot. Applied intelligence .
36 (4), pp. 511–528, 2012.

�

System architecture

Modeling

• Hybrid systems
• Continuous behaviors that are

interleaved with discrete
changes

• Physical entities of a system:
discretely and continuously
valued variables

• Hybrid estimation
• Hybrid automaton model for the

system
® Probabilistic hybrid automata
(PHA)

Example PHA: differential drive

• Nominal mode:

Kinematics
equations for every
state

Hybrid Estimation - Example

Model-based control

• After identifying the current
(discrete) mode, the control
model has to be adapted.

• Control converts motion
commands from path planner to
control signals for motors

• Use model of motors and
combine them to form a model
of the whole drive

What happens in case of a HW
fault?

30.01.18 9

Fault localization in SW
• Joint work with Markus Stumptner, Wolfgang Mayer, Dominik Wieland, Rui Abreu,

Eric Wong, Birgit Hofer, Iulia Nica, Mihai Nica, Bernhard Peischl, Daniel Köb,

Patrick Koch, Dietmar Jannach, Ingo Pill, Konstantin Schekotihin,…

• Publications:

• Birgit Hofer and Andrea H¨ofler and Franz Wotawa. Combining Models for Improved Fault

Localization in Spreadsheets. IEEE Transactions on Reliability, Vol. 66(1), pp. 38–53,

DOI: 10.1109/TR.2016.2632151 , March, 2017.

• W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa A Survey on Software

Fault Localization. IEEE Transactions on Software Engineering, 2016. doi:

10.1109/TSE.2016.2521368

• R. Abreu, B. Hofer, A. Perez, and F. Wotawa. On the empirical evaluation of similarity

coefficients for spreadsheet fault localization. Automated Software Engineering, Vol.

22(1):47–74, 2015

• R. Abreu, B. Hofer, A. Perez, and F. Wotawa. Using Constraints to Diagnose Faulty

Spreadsheets. Software Quality Journal, pp. 126, 2014.

• D. Jannach, T. Schmitz, B. Hofer, and F. Wotawa. Avoiding, Finding and Fixing

Spreadsheet Errors – A Survey of Automated Approaches for Spreadsheet QA. Journal of

of Systems and Software, Elsevier, 2014.

�

Debugging – A (very) short intro

1.begin
2. i = 2 * x;
3. j = 2 * y;
4. o1 = i + j;
5. o2 = i * i;
6.end; x = 1, y = 2, o1 = 8, o2 = 4

Debugger

Diagnoses?
30.01.18 11

Debugging using constraints

1.begin
2. i = 2 * x;
3. j = 2 * y;
4. o1 = i + j;
5. o2 = i * i;
6.end;

Ab(2) Ú i = 2 * x;
Ab(3) Ú j = 2 * y;
Ab(4) Ú o1 = i + j;
Ab(5) Ú o2 = i * i;

x = 1, y = 2, o1 = 8, o2 = 4

x = 1
y = 2
o1 = 8
o2 = 4

Programm execution
Constraint solving /
equation solving30.01.18 12

Finding bugs using constraints

Ab(2) Ú i = 2 * x;
Ab(3) Ú j = 2 * y;
Ab(4) Ú o1 = i + j;
Ab(5) Ú o2 = i * i;

x = 1
y = 2
o1 = 8
o2 = 4

¬Ab(2) Ù Ab(3) Ù ¬Ab(4) Ù ¬Ab(5)

i = 2 * 1 = 2
o1 = 8 = 2 + j ® j = 6
o2 = 4 = i * i = 2 * 2

Ab(2) Ù ¬Ab(3) Ù ¬Ab(4) Ù ¬Ab(5)

j = 2 * 2 = 4
o1 = i + j = 8 = i + 4 ® i = 4
o2 = 4 = i * i = 4 * 4 ® FAIL!!!!

And so on ... finally leading to 2
possible diagnoses statement 3 and
statement 4

30.01.18 13

Automated conversion of programs
into constraints
• Assignments are mapped to equations

(= constraints)
• Loops are unrolled (= nested if-then-else statements) like in

bounded model-checking
• Use the static single assignment (SSA) form to prevent from

multiple definitions of variables
• If-then-else statements can be mapped to implications (ako “phi

functions” in SSA forms)

30.01.18 14

Testing
• Bunch of work on testing

• Security testing (AI planning for test suite generation)
• Combinatorial testing (e.g. for model extraction from simulation models)
• Model-based testing (LTS, finite automata & model-checking, STS)
• White-box testing
• Test oracles (using LTL and metamorphic testing)
• Conformance testing of protocols (TLS handshake, VoIP using Lotos

and LNT)

�

16

Challenges of V&V
• AI software!
• Autonomous vehicles
• Autonomous robots
• ...

• How to ensure that the software works as intended?
• Is the software correct? Does it fulfill the requirements and the spec?
• Is there no unwanted behavior included? (Trojans,…)

Current project

QAMCAS – Objectives, Goals,
Methods
„The vision of QAMCAS is to develop rigorous and evidence-
driven methodologies to master definition, assessment and
prediction of the quality of CPSs.“

Challenges / Vision

INTERACTS

PERCEIVES

Photograph taken by Jared C. Benedict on 16
October 2005.Background made transparent
by Mikael Häggström - Own work

Environment

System development
Requirements
Specification
Implementation
Testing / V&V

Production (System)

Take care of faults, environmental
changes, etc. during development

Deployment
Feedback
data from
real runs

Methods used

Combinatorial Testing (CT)

Model-based Reasoning
(MBR)

Machine Learning (ML)

• Indicator for test suite quality
• Behavioral similarity
• Find appropriate learning methodology
• Test suite improvement

• Algorithm improvement
(variable strength)

• Introducing time
• Oracle problem
• Reliability measure

• Anytime algorithms
• Use models from engineering
• Consequences of model faults
• V&V for self-* systems

What is important?
• Quality assurance

• During development / design
• During operation

• E.g. we have to guarantee that a test suite is good enough!
• Source code coverage
• Mutation score
• Combinatorial strength
• Formal verification
• Learning-based measures (very recent)

What is important?
• Self-* capabilities
• Fail-operational (and still fail-safe)

• E.g. how to guarantee fail-safe behavior
for the MAPE-K (Monitor, Analyse, Plan,
Execute, Knowledge) architecture?

What are we interested in?
• Dependable Systems:

• Increased reliability (design faults vs. faults caused from aging)
• Correctness via testing and other quality assurance methodologies

• Increased availability via self-* capabilities
• Safety & security

• Techniques & methods to be applied during
design/development and runtime! (and how to bring them
together like in runtime verification)

Combining AI and SE for
building safer and more
reliable systems

Questions?

