DFT4FTT: Dynamic FT for increasing the adaptivity of highly-reliable distributed embedded systems based on Flexible Time-Triggered Ethernet

Julián Proenza Systems, Robotics and Vision Group. UIB. **SPAIN**

DFT4FTT Project Data

• DFT4FTT

Funded by the Spanish Gov. under grant TEC2015-70313-R

- Part Spanish funding
- Part FEDER funding

DFT4FTT Project Data

• DFT4FTT

Funded by the Spanish Gov. under grant TEC2015-70313-R

- Part Spanish funding
- Part FEDER funding
- 3-year project. Started in Jan 2016 and ends in Dec 2018
 - We can apply for an extension without extra funding.
- Total money amount: 122.800,00 €
 - Funding for a technician (3 years) 80.300 €
 - Equipment 20.000 €
 - Travelling 20.000 €
 - Others (e.g. journal publication costs)
- Research team (doctors teaching at the UIB)
- Work team (foreign doctors and other personnel)

- Manuel Barranco
- Ignasi Furió
- Pere Palmer
- David Gessner
- Sinisa Djerasevic
- Alberto Ballesteros (PhD thesis)
- Inés Álvarez (PhD thesis)
- Daniel Bujosa (part-time technician)
- Sergi Arguimbau (part-time technician)
- Julián Proenza

- MDH
 - Guillermo Rodríguez-Navas
- UPorto
 - Luís Almeida
- UAveiro
 - Paulo Pedreiras
- Teesside Univ. (UK)
 - Michael Short

- Manuel Barranco
- Ignasi Furió
- Pere Palmer
- David Gessner
- Sinisa Djerasevic
- Alberto Ballesteros (PhD thesis)
- Inés Álvarez (PhD thesis)
- Daniel Bujosa (part-time technician)
- Sergi Arguimbau (part-time technician)
- Julián Proenza

- MDH
 - Guillermo Rodríguez-Navas
- UPorto
 - Luís Almeida
- UAveiro
 - Paulo Pedreiras
- Teesside Univ. (UK)
 - Michael Short

- Manuel Barranco
- Ignasi Furió
- Pere Palmer
- David Gessner
- Sinisa Djerasevic
- Alberto Ballesteros (PhD thesis)
- Inés Álvarez (PhD thesis)
- Daniel Bujosa (part-time technician)
- Sergi Arguimbau (part-time technician)
- Julián Proenza

- MDH
 - Guillermo Rodríguez-Navas
- UPorto
 - Luís Almeida
- UAveiro
 - Paulo Pedreiras
- Teesside Univ. (UK)
 - Michael Short

- Manuel Barranco
- Ignasi Furió
- Pere Palmer
- David Gessner
- Sinisa Djerasevic
- Alberto Ballesteros (PhD thesis)
- Inés Álvarez (PhD thesis)
- Daniel Bujosa (part-time technician)
- Sergi Arguimbau (part-time technician)
- Julián Proenza

- MDH
 - Guillermo Rodríguez-Navas
- UPorto
 - Luís Almeida
- UAveiro
 - Paulo Pedreiras
- Teesside Univ. (UK)
 - Michael Short

- Manuel Barranco
- Ignasi Furió
- Pere Palmer
- David Gessner
- Sinisa Djerasevic
- Alberto Ballesteros (PhD thesis)
- Inés Álvarez (PhD thesis)
- Daniel Bujosa (part-time technician)
- Sergi Arguimbau (part-time technician)
- Julián Proenza

- MDH
 - Guillermo Rodríguez-Navas
- UPorto
 - Luís Almeida
- UAveiro
 - Paulo Pedreiras
- Teesside Univ. (UK)
 - Michael Short

- Manuel Barranco
- Ignasi Furió
- Pere Palmer
- David Gessner
- Sinisa Djerasevic
- Alberto Ballesteros (PhD thesis)
- Inés Álvarez (PhD thesis)
- Daniel Bujosa (part-time technician)
- Sergi Arguimbau (part-time technician)
- Julián Proenza

- MDH
 - Guillermo Rodríguez-Navas
- UPorto
 - Luís Almeida
- UAveiro
 - Paulo Pedreiras
- Teesside Univ. (UK)
 - Michael Short

- Manuel Barranco
- Ignasi Furió
- Pere Palmer
- David Gessner
- Sinisa Djerasevic
- Alberto Ballesteros (PhD thesis)
- Inés Álvarez (PhD thesis)
- Daniel Bujosa (part-time technician)
- Sergi Arguimbau (part-time technician)
- Julián Proenza

- MDH
 - Guillermo Rodríguez-Navas
- UPorto
 - Luís Almeida
- UAveiro
 - Paulo Pedreiras
- Teesside Univ. (UK)
 - Michael Short

- Manuel Barranco
- Ignasi Furió
- Pere Palmer
- David Gessner
- Sinisa Djerasevic
- Alberto Ballesteros (PhD thesis)
- Inés Álvarez (PhD thesis)
- Daniel Bujosa (part-time technician)
- Sergi Arguimbau (part-time technician)
- Julián Proenza

- MDH
 - Guillermo Rodríguez-Navas
- UPorto
 - Luís Almeida
- UAveiro
 - Paulo Pedreiras
- Teesside Univ. (UK)
 - Michael Short

- Manuel Barranco
- Ignasi Furió
- Pere Palmer
- David Gessner
- Sinisa Djerasevic
- Alberto Ballesteros (PhD thesis)
- Inés Álvarez (PhD thesis)
- **Daniel Bujosa** (part-time technician)
- Sergi Arguimbau (part-time technician)
- Julián Proenza
- 2

- MDH
 - Guillermo Rodríguez-Navas
- UPorto
 - Luís Almeida
- UAveiro
 - Paulo Pedreiras
- Teesside Univ. (UK)
 - Michael Short

- Manuel Barranco
- Ignasi Furió
- Pere Palmer
- David Gessner
- Sinisa Djerasevic
- Alberto Ballesteros (PhD thesis)
- Inés Álvarez (PhD thesis)
- Daniel Bujosa (part-time technician)
- Sergi Arguimbau (part-time technician)
- Julián Proenza

- MDH
 - Guillermo Rodríguez-Navas
- UPorto
 - Luís Almeida
- UAveiro
 - Paulo Pedreiras
- Teesside Univ. (UK)
 - Michael Short

- Manuel Barranco
- Ignasi Furió
- Pere Palmer
- David Gessner
- Sinisa Djerasevic
- Alberto Ballesteros (PhD thesis)
- Inés Álvarez (PhD thesis)
- Daniel Bujosa (part-time technician)
- Sergi Arguimbau (part-time technician)
- Julián Proenza

- MDH
 - Guillermo Rodríguez-Navas
- UPorto
 - Luís Almeida
- UAveiro
 - Paulo Pedreiras
- Teesside Univ. (UK)
 - Michael Short

- Manuel Barranco
- Ignasi Furió
- Pere Palmer
- David Gessner
- Sinisa Djerasevic
- Alberto Ballesteros (PhD thesis)
- Inés Álvarez (PhD thesis)
- Daniel Bujosa (part-time technician)
- Sergi Arguimbau (part-time technician)
- Julián Proenza

- MDH
 - Guillermo Rodríguez-Navas
- UPorto
 - Luís Almeida
- UAveiro
 - Paulo Pedreiras
- Teesside Univ. (UK)
 - Michael Short

- Manuel Barranco
- Ignasi Furió
- Pere Palmer
- David Gessner
- Sinisa Djerasevic
- Alberto Ballesteros (PhD thesis)
- Inés Álvarez (PhD thesis)
- Daniel Bujosa (part-time technician)
- Sergi Arguimbau (part-time technician)
- Julián Proenza

- MDH
 - Guillermo Rodríguez-Navas
- UPorto
 - Luís Almeida
- UAveiro
 - Paulo Pedreiras
- Teesside Univ. (UK)
 - Michael Short

- Manuel Barranco
- Ignasi Furió
- Pere Palmer
- David Gessner
- Sinisa Djerasevic
- Alberto Ballesteros (PhD thesis)
- Inés Álvarez (PhD thesis)
- Daniel Bujosa (part-time technician)
- Sergi Arguimbau (part-time technician)
- Julián Proenza

- MDH
 - Guillermo Rodríguez-Navas
- UPorto
 - Luís Almeida
- UAveiro
 - Paulo Pedreiras
- Teesside Univ. (UK)
 - Michael Short

- Manuel Barranco
- Ignasi Furió
- Pere Palmer
- David Gessner
- Sinisa Djerasevic
- Alberto Ballesteros (PhD thesis)
- Inés Álvarez (PhD thesis)
- Daniel Bujosa (part-time technician)
- Sergi Arguimbau (part-time technician)
- Julián Proenza

- MDH
 - Guillermo Rodríguez-Navas
- UPorto
 - Luís Almeida
- UAveiro
 - Paulo Pedreiras
- Teesside Univ. (UK)
 - Michael Short

- UIB
 - Yolanda González
 - Patricia Arguimbau

 University of Banja Luka (Bosnia and Herzegovina)

- Drago Cavka

- UIB
 - Yolanda González
 - Patricia Arguimbau

 University of Banja Luka (Bosnia and Herzegovina)

- Drago Cavka

- UIB
 - Yolanda González
 - Patricia Arguimbau

- University of Banja Luka (Bosnia and Herzegovina)
 - Drago Cavka

- UIB
 - Yolanda González
 - Patricia Arguimbau

- University of Banja Luka (Bosnia and Herzegovina)
 - Drago Cavka

Context of the project

- Many embedded systems have strict requirements on real-time performance and dependability.
- The current tendency is to apply embedded systems also in dynamic environments
 - operating conditions may change frequently and in an unpredictable manner.
- Such systems are called adaptive embedded systems, and require services supporting...
 - flexibility, real-time and dependability at different levels of the system architecture, such as the OS and the network.

Context of the project Flexibility in FTT

- FTT is a very adequate networking paradigm for developing adaptive distributed embedded systems,
 - developed in U. Aveiro (Portugal)
 - it already provides certain communication services that are very well suited for adaptivity, i.e. flexibility in the real-time response

Context of the project Flexibility in FTT

Julián Proenza, UIB, Feb 2018

 First, FTT is able to convey different types of traffic: time is divided in Elementary Cycles (ECs) and each EC in a synchronous and an asynchronous window

Context of the project Flexibility in FTT

 Second, FTT is able to dynamically change its realtime response: nodes can request changes in the messages to be sent in real-time and a master decides if each request is schedulable.

- **FTT-Ethernet** is the result of using FTT over the appealing Ethernet with RT response,
 - A higher potential thanks to the increase in bandwidth
 - An FTT Switch (HaRTES) allows using legacy nodes

Julián Proenza. UIB. Feb 2018

- FTT-Ethernet is the result of using FTT over the appealing Ethernet with RT response,
 - A higher potential thanks to the increase in bandwidth
 - An FTT Switch (HaRTES) allows using legacy nodes

- FTT-Ethernet is the result of using FTT over the appealing Ethernet with RT response,
 - A higher potential thanks to the increase in bandwidth
 - An FTT Switch (HaRTES) allows using legacy nodes

- FTT-Ethernet is the result of using FTT over the appealing Ethernet with RT response,
 - A higher potential thanks to the increase in bandwidth
 - An FTT Switch (HaRTES) allows using legacy nodes

Motivation of the Julián Proenza. UIB. Feb 2018 (previous) FT4FTT project

 Solving this limitation of FTT-Ethernet would represent a significant step forward in the development of the future adaptive distributed embedded systems.

Goal of the FT4FTT project

• The design, implementation and validation of a highly-dependable communication infrastructure based on FTT-Ethernet.

Goal of the FT4FTT project

• The design, implementation and validation of a highly-dependable communication infrastructure based on FTT-Ethernet.

– ... by adding Fault Tolerance Mechanisms

Our starting point

- An FTT-Ethernet network
 - actually HaRTES was in the initial proposal

Our approach

- To design a complete FT system
 - since dependability is a property that has to be guaranteed in the system as a whole

Fault model (1)

- Permanent and temporary faults in the HW modules
 - Slaves
 - Masters
 - Switches

Fault model (2)

• Permanent and temporary faults in the links

Our strategy (1)

- Follow as much as possible the current FTT strategy of concentrating most of the additions in the switches
 - to be able to work with COTS nodes and even legacy nodes
 - to have a direct link between master and port guardians

Our strategy (2)

 It is not just to add FT to FTT but also to make the most of the FTT features in order to simplify/improve the FT mechanisms that need to be added

Building the Fault-Tolerant System

- Our choice was to **take HaRTES as corner-stone**
 - It is a custom Ethernet switch with FTT built-in

- Tolerating node faults is mandatory for high reliability
 - We use **active replication** for the slaves

- active replication for the slaves
 - using **N-Version Programming** terminology

- active replication for the slaves
 - using **N-Version Programming** terminology

- active replication for the slaves. Main Issues:
 - **Synchronization** among replicated tasks ("CAMBADA-style")
 - Independence of failures has to be ensured among replicas
 - Voting has to be **consistent** (the replica determinism problem)

- active replication for the slaves. Main Issues:
 - Synchronization among replicated tasks ("CAMBADA-style")
 - Independence of failures has to be ensured among replicas
 - Voting has to be **consistent** (the replica determinism problem)

Independence of Failures

Two aspects:

- Replicas in different nodes, thus initially they are independent
- However, a faulty replica or link can propagate errors

Independence of Failures

Two aspects:

- Replicas in different nodes, thus initially they are independent
- However, a faulty replica or link can propagate errors

Independence of Failures

• Two aspects:

- Replicas in different nodes, thus initially they are independent
- However, a faulty replica or link can propagate errors. **Prevent it!!**

• Receiving the same cc-vectors helps!

- 2nd choice: Use proactive retransmissions & topology
 - Send each cc-vector enough times to tolerate transient faults in links
 - If Replica 1 is faulty (trans. or perm.) it reaches or not HaRTES
 - If it reaches HaRTES, this one sends enough times to R2 and R3

- 2nd choice: Use proactive retransmissions & topology
 - Send each cc-vector enough times to tolerate transient faults in links
 - If Replica 1 is faulty (trans. or perm.) it reaches or not HaRTES
 - If it reaches HaRTES, this one sends enough times to R2 and R3

- 2nd choice: Use proactive retransmissions & topology
 - Send each cc-vector enough times to tolerate transient faults in links
 - If Replica 1 is faulty (trans. or perm.) it reaches or not HaRTES
 - If it reaches HaRTES, this one sends enough times to R2 and R3

- Using active replication for the slaves...
 - When a replica is permanently faulty, we lose fault tolerance
 - We do not want the same when the fault is not permanent

- When node counters reach a threshold node should auto-reset
- When HaRTES counters reach a threshold a reset cmd. is sent
- A watchdog timer is attached to each node and resets if no TM

- When node counters reach a threshold node should auto-reset
- When HaRTES counters reach a threshold a reset cmd. is sent
- A watchdog timer is attached to each node and resets if no TM

- When node counters reach a threshold node should auto-reset
- When HaRTES counters reach a threshold a reset cmd. is sent
- A watchdog timer is attached to each node and resets if no TM

- When node counters reach a threshold node should auto-reset
- When HaRTES counters reach a threshold a reset cmd. is sent
- A watchdog timer is attached to each node and resets if no TM

• 2nd: The node gets the reintegration information

- We only consider simple control tasks such as a PID
- All (small) info on the state of the task is exchanged in each cc-vec
- The reset node receives the info from the others, votes & uses it

Channel Replication

• Otherwise, master and switch are single points of failure

- Otherwise, master and switch are single points of failure
 - Therefore we replicate as shown below

- Otherwise, master and switch are single points of failure
 - Therefore we replicate as shown below

69

BUT it is a waste

Channel (Spatial) Replication

- Otherwise, master and switch are single points of failure
 - Therefore we replicate as shown below

- Therefore we will use **temporal redundancy for msgs**
 - We chose proactive retransmissions for its easier schedulability

- Therefore we will use **temporal redundancy for msgs**
 - We chose proactive retransmissions for its easier schedulability
 - Predictable and deterministic

More specifically for slaves' regular messages
Addition of message redundancy level in the spec

$$SRT = \{m_i \mid m_i = (C_i, D_i, T_i, O_i, P_i), i \in [1, N_S]\}$$
$$ART = \{m_i \mid m_i = (C_i, D_i, I_i, P_i), i \in [1, N_A]\}.$$

 $SRT = \{ m_i \mid m_i = (C_i, D_i, T_i, O_i, P_i, k_i), i \in [1, N_S] \}$ $ART = \{ m_i \mid m_i = (C_i, D_i, I_i, P_i, k_i), i \in [1, N_A] \}.$

- More specifically for masters' trigger message
 - Multiple TMs per Trigger Message Window

Elementary Cycle

- Therefore this changes the **EC synchronization w. slaves**:
 - Isochronous TM transmission; receiving any replica there is sych

time

- Back to spatial replication it is necessary to note that by replicating the switch we also replicated the links
 - On the one hand, we have tolerance to faults in links
 - On the other hand, there are more chances for error propagation

- Restriction of <u>switch</u> failure semantics: internal duplication & comparison
 - Not implemented

Restriction of <u>slave</u> failure semantics: port guardians

Restriction of <u>slave</u> f-semantics: elimination of 2-faced

- A faulty node (transient of permanent) could send different replicas of a msg to each HaRTES.
- Undetectable with FTT rules!

• Restriction of <u>slave</u> f-semantics: elimination of 2-faced

Restriction of <u>slave</u> f-semantics: elimination of 2-faced

- Additionally, spatial replication calls for managing the replication of the different components
 - Issues related to **replica determinate the master replicas**

- Master replica determinism (time domain):
 - Leader-follower approach with a rendez-vous based on PTP

- Master replica determinism (time domain):
 - Lock-step transmission of TMs

- Master replica determinism (value domain):
 - Initial conditions

Start with consistent SRDBs + no internal non-determinism

If t = 0, then

SRDB of master 1 = SRDB of master 2

- Master replica determinism (value domain):
 - Ensure consistent updates of SRDBs (in the masters)

If t > 0 and both masters not faulty, then

SRDB of master 1 updated iffSRDB of master 2 is also updated.(Reliably exchange min pending update request on interlinks)

- Master replica determinism (value domain):
 - Synchronized and consistent **NRDB** updates (in the slaves)

Piggyback admission control results and NRDB update commands on reliable and synchronized TMs

Prototype

•Master + Switch

- Intel Core i7 \rightarrow parallelize as much as possible
- 8 GB RAM
- Up to 18 NICs
 - 2 NICs Motherboard
 - Up to 16 NICs 4 x Intel I350 T4
- Ubuntu 12.04

Main concerns

- OS determinism
 - Xenomai

•Slave

- Intel Atom D525
- 2 GB RAM
- 4 NICs
- Ubuntu 12.04

- Network jitter
 - PF_RING → bypass network stack
 - Netw. teaming \rightarrow Link repl. in kernel

Demos

- <u>https://www.youtube.com/watch?v=3THdUHuGMLI</u>
- <u>http://srv.uib.es/ft4ftt-final-prototype-demo/</u>

Motivation of the Julián Proenza. UIB. Feb 2018 (current) DFT4FTT project

- There is always a tradeoff between flexibility and reliability
- However the FT mechanisms developed in FT4FTT are static, so flexibility can be improved by introducing dynamic FT
- Additionally some parts of FTT (the a-window) were out of the scope of FT4FTT!

Goal of the **DFT4FTT** project

• The design, implementation and validation of a highlydependable communication infrastructure based on FTT-Ethernet with a higher flexibility than FT4FTT.

- ... by adding **Dynamic** Fault Tolerance Mechanisms

- Spatial replication of the nodes (tasks)
- Temporal replication of the messages

- Spatial replication of the nodes
- Temporal replication of the messages

- Spatial replication of the nodes
- Temporal replication of the messages

- Spatial replication of the nodes
- Temporal replication of the messages

- Spatial replication of the nodes
- Temporal replication of the messages

- Spatial replication of the nodes
- Temporal replication of the messages

- Spatial replication of the nodes
- Temporal replication of the messages

- Spatial replication of the nodes
- Temporal replication of the messages

- Spatial replication of the nodes
- Temporal replication of the messages

- Spatial replication of the nodes
- Temporal replication of the messages

- Spatial replication of the nodes
- Temporal replication of the messages

- Spatial replication of the nodes
- Temporal replication of the messages

- Spatial replication of the nodes
- Temporal replication of the messages

- Spatial replication of the nodes
- Temporal replication of the messages

- Spatial replication of the nodes
- Temporal replication of the messages

- Spatial replication of the nodes
- Temporal replication of the messages

- Spatial replication of the nodes
- Temporal replication of the messages

- Time Sensitive Networking (TSN) is set of standards (around 60 now!) with potential for adaptive systems
- Aims at providing standard Ethernet with additional services:
 - Hard Real-Time
 - Reliability
 - Flexibility
 - Configurability
- Internet of Things and Cyber-Physical Systems
 - Automotive
 - Smart grid
 - Smart homes

- Our upcoming next project application is to be about TSN
- This is one of the aspects to be discussed in this meeting due to its potential for continuing our collaboration.

- Time Sensitive Networking (TSN) is a set of standards with potential for adaptive systems
 - We are now proposing a solution to the tolerance to transient faults in the comms without having to rely on spatial redundancy

- Time Sensitive Networking (TSN) is a set of standards with potential for adaptive systems
 - We are now proposing a solution to the tolerance to transient faults in the comms without having to rely on spatial redundancy

- Time Sensitive Networking (TSN) is a set of standards with potential for adaptive systems
 - We are now proposing a solution to the tolerance to transient faults in the comms without having to rely on spatial redundancy

- Time Sensitive Networking (TSN) is a set of standards with potential for adaptive systems
 - We are now proposing a solution to the tolerance to transient faults in the comms without having to rely on spatial redundancy

Better to use time redundancy

- Time Sensitive Networking (TSN) is a set of standards with potential for adaptive systems
 - We are now proposing a solution to the tolerance to transient faults in the comms without having to rely on spatial redundancy

We have compared 2 approaches:

(1) Node 1 sends k replicas and each bridge forwards them all
Extending our results to other techs

- Time Sensitive Networking (TSN) is a set of standards with potential for adaptive systems
 - We are now proposing a solution to the tolerance to transient faults in the comms without having to rely on spatial redundancy

We have compared 2 approaches:

 (1) Node 1 sends k replicas and each bridge forwards them all
(2) Node 1 sends k' replicas and each bridge sends k' replicas of the first one it receives

Extending our results to other techs

- Time Sensitive Networking (TSN) is a set of standards with potential for adaptive systems
 - We are now proposing a solution to the tolerance to transient faults in the comms without having to rely on spatial redundancy

Fig. 2: k vs. k' for different number of links.

121

Summary

- In the previous project FT4FTT we introduced static FT mechanism to increase the reliability of FTT-based (Ethernet) systems
- Taking FT4FTT as starting point we are introducing dynamic FT in order to obtain a more adaptable system
- We are investigating in the addition of dynamism to node replication and message replication
- We are also considering to **extend our results to TSN** and to develop FT mechanisms specially tailored to the TSN characteristics (e.g. multi-hop topologies).

DFT4FTT: Dynamic FT for increasing the adaptivity of highly-reliable distributed embedded systems based on Flexible Time-Triggered Ethernet

Julián Proenza Systems, Robotics and Vision Group. UIB. **SPAIN**

