Designing fault-diagnosis and reintegration to prevent node redundancy attrition in highly reliable control systems based on FTT-Ethernet

Sinisa Derasevic, Manuel Barranco, Julián Proenza

Mathematics and Computer Science Department, University of the Balearic Islands (UIB), Spain

Fondo Europeo de Desarrollo Regional

diagnosis and reintegration of faulty nodes in highly reliable Distributed Control Systems based on FTT-Ethernet

diagnosis and reintegration of faulty nodes in highly reliable Distributed Control Systems based on FTT-Ethernet

relevant piece of FT4FTT

- high reliability by tolerating faults at
 - switch → duplicate
 - links → duplicate
 - o nodes

- high reliability by tolerating faults at
 - switch → duplicate
 - links → duplicate
 - nodes → actively replicate critical nodes & vote

in principle all these nodes can be considered as critical

replicate sensor and actuation nodes is trivial

replicate a **controller** node is **complex**: replicas must **coordinate** among them

how do replicas coordinate?

- synchronize at communication & app. levels
 - using the Trigger Message (TM)
- vote on intermediate results

how do replicas coordinate?

- synchronize at communication & app. levels
 - using the Trigger Message (TM)
- vote on intermediate results ←

app: control cycle

sense control actuate

app: control cycle

sense

control

actuate

A replica 1 A replica 2

replica 3

B

aquire sensors

benefits of active node replication with voting?

compensate errors

replicas may recover from errors

replica 3 recovers and keeps participating

however...

temporary fault affects replica 3 internals or communication capabilities

temporary fault affects replica 3 internals or communication capabilities

replica 3 may
desynchronize at the
level
of application and/or
communication

node redundancy attrition

temporary faults are more probable than permanent ones

if we do not prevent redundancy attrition caused by temporary faults

then we do not take full advantage of the redundancy investment

objective

prevent node redundancy attrition

objective

identify and implement
mechanisms to diagnose and
reintegrate temporary-faulty nodes
that are lost

steps

- classify faults
- exhaustively analyze how they can affect a replica
- design needed mechanisms
- implement and test them

steps

- classify faults
- exhaustively analyze how they can affect a replica
- design needed mechanisms
- implement and test them ← pending

we plan to quantify the reliability improvement

Designing@ault-diagnosis@and@eintegration@oldoprevent@node@edundancy@attrition@nl@highly@eliable@control@ystems@based@on@FTT-Ethernet@

Sinisa Derasevic, Manuel Barranco, Julián Proenza DMI, Universitat de les Illes Balears, Spain sinishadj@gmail.com, manuel.barranco@uib.es, julian.proenza@uib.es

Abstract[®]

Acknowledgements²

Supported®by®DPI2011-22992®and®TEC2015-70313-R®(SpanishI Ministerio®e®conom'ia®y®competividad),®by®EEDER®unding®andb by®the®EUROWEB®Project®funded®by®the®Erasmus®MundusI Action®i®programme®b®BieEEuropean®Commission.®

thank you for your attention!!