

Verification of the Schedule Consistent Update Mechanisms of FTTRS
with UPPAAL

Abstract

Critical Adaptive Distributed Embedded Systems (ADESs) are nowadays the
focus of many researchers. ADESs are envisioned to dynamically modify their
behavior to support changes of their real-time and dependability requirements at
runtime as the conditions of the environment in which they operate vary. To provide
ADESs with an adequate communication infrastructure, our research group
proposed the Flexible Time-Triggered-Replicated Star (FTTRS). FTTRS provides
highly reliable communication services on top of Ethernet, while keeping the
adaptivity benefits that the Flexible Time-Triggered (FTT) communication
paradigm offers from a real-time perspective. This work formally verifies, by means
of model checking, the correctness of the mechanisms FTTRS includes to enforce
consistent changes of the communication scheduling at runtime.

Daniel Bujosa, Sergi Arguimbau, Patricia Arguimbau,
Julián Proenza and Manuel Barranco

[daniel.bujosa, sergi.arguimbau, patricia.arguimbau,
julian.proenza, manuel.barranco]@uib.es

Dept. de Matemàtiques i Informàtica, Universitat de les Illes
Balears, Palma de Mallorca, Spain

This work is supported in part by the Spanish Agencia
Estatal de Investigación (AEI) and in part by FEDER

funding through grant TEC2015-70313-R (AEI/FEDER,
UE). And also by SOIB, under the JP-SP 49/17 project

(ESF, Youth Guarantee)

FTTRS basically consists of a duplicated full-duplex
Ethernet star in which each switch embeds an FTT
master.

The schedule is stored in the database of each master
(SRDB) and of each slave (NRDB). Masters
isochronously transmit a Trigger Message (TM) to
divide the communication in rounds (Ecs).

The TM is indeed replicated (proactively
retransmitted several times) to provide high
reliability.

Each EC includes a window for the TM replicas
(TMW), a window for periodic traffic (SW), and a
window for aperiodic one (AW).

The TM specifies which periodic messages slaves
have to transmit, according to the current schedule.

Slaves can ask for changes in the schedule, by
sending an Update Request. Masters execute a
Schedule Consistent Update Mechanism to
consistently subject the Update Requests to
admission control and to update all databases with
the appropriate changes.

1. Introduction 3. Timeline of the Schedule Consistent Update Mechanism of FTTRS

4.Model of the Schedule Consistent Update Mechanism

5. Model Verification

6. Conclusion

First, we verified the following safety property to
check that the mechanisms do never lead to a
deadlock: A[] not deadlock.

Second, we checked that both SRDBs are always
consistent. For this, we verified that the following
safety property holds: A[] MA.SRDB ==
MB.SRDB, where MA and MB respectively
represent the switch/master A and B.

Finally, to further check that the just mentioned
property is not only fulfilled in trivial cases, i.e. not
only when the SRDBs are not updated but also when
they are, we used the following reachability
property: E <> MA.SRDB != 0.

16th International Workshop on Real-Time Networks (RTN 2018)

The Flexible-Time-Triggered-Replicated Star represents a step towards developing networks that appropriately
support future critical Adaptive Distributed Embedded Systems.

Thanks to FTTRS, the FTT communication paradigm based on top of Ethernet. Now it is not only possible to take
advantage of the real-time and operational flexibility of FTT, but also of the high reliability FTTRS provides.

In this work we have formally verified the correctness of the most complex FTTRS’s consistency mechanism, i.e. the
one that guarantees that the traffic schedule is consistently updated at runtime.

Three nodes (N1, N2, N3) is the minimum that originates all kind of
scenarios in the queues of the replicated masters (M1, M2). Although is
possible to create inconsistencies in the queues with simply one or two
nodes, the presence of three nodes allows to have different and common
update requests simultaneously in both masters. On the other hand, four
or more nodes would create the same kind of scenarios that we obtain
with three nodes.

*Legend:
 U_NRDB (Updates to be committed to NRDBs)
 U_SRDB (Update to be committed to SRDBs)
 U_NRDB is piggyback in the replicated TM of the next EC

2. Objective

To model and formally verify the Schedule
Consistent Update Mechanism of FTTRS by
means of a model checker called UPPAAL, which is
specially suited for real-time systems

DFT4FTT project

	Diapositiva 1

