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∗ Universitat de les Illes Balears, Spain, † Mälardalen University (MDU), Sweden

mateu.jover@gmail.com, manuel.barranco@uib.es, ines.alvarez.vadillo@mdu.se, julian.proenza@uib.es

Abstract—Distributed Control Systems (DCSs) for emerging
industrial control applications impose new communication re-
quirements that cannot be satisfied by current Industrial Ether-
net protocols. As a result, industry is pushing the Time-Sensitive
Networking (TSN) standards as the de-facto Ethernet-based link-
layer to fulfill these requirements. Adequate roadmaps are needed
to support a smooth transition from Industrial-Ethernet-based
legacy systems to TSN-based ones. In this context some works
propose mechanisms to migrate, i.e. map, route and schedule,
legacy traffic to TSN. However none of them considers traffic
including streams with spatial redundancy requirements and,
thus, they cannot be used to migrate legacy highly-reliable
DCSs. The present work extends a previous toolchain to migrate,
for the first time, legacy critical traffic that includes spatially
redundant streams. Particularly, since redundancy is costly, this
work proposes and compares two routing methods that consider
one redundant stream per traffic.

Index Terms—Ethernet, TSN, Spatial Redundancy, Migration

I. INTRODUCTION

Novel industrial control applications are emerging in con-
texts like the Industry 4.0, smart cities or space transportation.
Due to their nature, many of them rely on Distributed Control
Systems (DCSs), whose network is fundamental to guarantee
their proper operation. Besides the classical requirements
imposed on these networks, e.g. hard real-time and depend-
able communication, new DCSs raise a series of additional
communication needs like real-time flexibility, manageability,
ease of reconfiguration, TCP/IP support, network convergence,
adaptivity and advanced yet cost-effective fault-tolerance.

Ethernet has largely been used for data communications due
to its large bandwidth, low cost, widespread know-how and
TCP/IP seamless integration. Thus, a myriad of Industrial Eth-
ernet protocols have been proposed to take advantage of these
properties in control applications. However, each one of these
protocols is tailored for specific domains and, thus, provides
just a partial solution. Therefore, both industry and academia
are intensively pushing the Time-Sensitive Networking (TSN)
standards [1] to fulfill the mentioned requirements.

Although TSN is expected to be the de-facto link-layer
standards of the whole industry, it is fundamental to ease
the transition and thus interoperability between legacy systems
that rely on Industrial Ethernet protocols and new TSN-based
systems. A clear example are brownfield grid installations,
which demand adequate transition roadmaps towards TSN [2].

This smooth transition asks for tools to migrate the traffic
of legacy DCSs, i.e. legacy traffic, to TSN. Some works have
been already proposed in this regard. The most advanced
one so far is the toolchain proposed in [3], which allows
migrating to TSN (i.e., mapping to TSN traffic classes, routing

and scheduling) any type of Industrial-Ethernet-based legacy
traffic. Nevertheless all the existing works focus on the real-
time aspects of the traffic to be migrated, neglecting the traffic
reliability requirements.

Reliability stands for the probability of providing uninter-
rupted service throughout a given mission time, and it is of
utmost importance in many emerging control applications, e.g.
autonomous driving, re-usable space shuttles, or intelligent
energy distribution. To provide highly reliable communication,
and thus support highly reliable DCSs, TSN proposes using
spatial redundancy, which consists in replicating each critical
stream (communication flow) and, then, route each replica in
parallel through a different physical path.

The present work extends the toolchain proposed in [3], to
provide a new toolchain called Redundancy aware TSN mi-
gration toolchain (RaTSN) that is able to migrate for, the first
time, critical traffic of legacy highly-reliable DCSs to TSN.
This extension consists in two methods, named Redundant
Only Routing Method (RORM) and Genetic Algorithm Routing
Method (GARM), to route this traffic. Since redundancy is
costly, both methods duplicate only one of the traffic streams
and, then, we compare them to assess their suitability.

Section II outlines basic TSN aspects relevant to this
work. Section III discusses the mentioned related work and
the toolchain of [3]. Section IV explains RaTSN’s rationale,
whereas Sections V and VI provide more details on RORM
and GARM respectively. Then Sections VII and VIII discuss a
series of experiments to compare RORM and GARM. Finally,
Section IX concludes the paper.

II. RELEVANT TSN STANDARDS

The TSN TG [1] has proposed a series of technical stan-
dards to provide Ethernet with real-time guarantees, network
management capabilities and fault-tolerance mechanisms. Fur-
thermore, TSN allows integrating traffic with different char-
acteristics over a single network. In particular, TSN defines
three traffic classes: Scheduled traffic (ST traffic), Audio-
Video Bridging traffic (AVB traffic) and Best Effort traffic (BE
traffic) [4]. ST traffic is usually time-triggered traffic with hard
RT requirements, i.e. traffic transmitted periodically that must
be delivered within a bounded time (prior to a deadline) to
guarantee the correct operation of the system. AVB traffic is
usually event-triggered traffic with soft RT requirements, i.e.
traffic transmitted aperiodically that should be delivered within
a bounded time to prevent the degradation of the system.
Finally, BE traffic is traffic with no RT requirements.
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Fig. 1: Example of the structure of a TSN hyperperiod.

In order to provide real-time guarantees to ST and AVB
traffic, TSN divides the communication time into cycles called
hyperperiods. Fig. 1 shows an example of hyperperiod which
is divided in four different intervals: a guard band, a ST pro-
tected window, a non-protected window and a control interval.
The guard band prevents frames from different hyperperiods
to overlap causing interference on the transmission of the ST
streams. The ST protected window is a reserved interval where
frames of ST streams are forwarded according to a Time-
Division Multiple Access (TDMA) schedule that guarantees
the timing requirements of the streams. The non-protected
window is used to forward AVB and BE streams. As depicted
in the example hyperperiod in Fig. 1, AVB and BE could
interleave as they are event-triggered, so the transmission
of frames depends on the instants the bridges receive them.
Finally, the control interval completes the hyperperiod to send
TSN control frames among the network devices, e.g. control
frames for clock synchronization.

III. RELATED AND PREVIOUS WORK

Some recent works propose mechanisms that can be used to
migrate legacy traffic to TSN. The first one, proposed in [5], is
not aimed at migrating traffic to TSN, but it provides a method
to monitor and extract the traffic properties of a legacy network
that, then, can be used to migrate such traffic to TSN. A second
work that does propose a method for migrating legacy traffic
to TSN is [6]. However, the number of legacy traffic classes
it considers is very limited. A third interesting one is [7],
which proposes a new functionality for bridges to map legacy
traffic from PROFINET [8] to TSN. However, again, it does
not consider the broad range of traffic classes used in legacy
systems that rely on existing Industrial Ethernet protocols.

Unlike the aforementioned works, the toolchain [3] allows
migrating any type of Ethernet-based legacy traffic to TSN.
Unfortunately, as the works mentioned above, it does not
consider redundant streams and, thus, it cannot be used to
migrate the traffic of legacy highly-reliable DCS, which do
include this kind of streams, e.g. substation automation control
systems. In any case, as said in Section I, [3] is so far the most
advanced proposal to migrate legacy traffic to TSN; hence, it
is the starting point from which the present work builds on.
We will refer to the toolchain of [3] as the original toolchain
from hereon.

Fig. 2 depicts the basic workflow of both the original
toolchain and the new migrating toolchain proposed in the
present work, i.e. RaTSN. The yellow boxes represent the
elements of RaTSN that were not present in the original
toolchain; thus, at this point, let us focus only on the white
ones to understand how this original toolchain works.

The first tool of the original toolchain is called LETRA [3],
which is a mapping tool that takes the legacy traffic as input
and, then, classifies (maps) it into the different TSN traffic
classes (ST, AVB and BE). The legacy traffic is characterized
according to a given traffic model, i.e. according to a set of
key parameters like periods, offsets, deadlines, etc. The traffic
mapped by LETRA constitutes the input of two scheduling
tools. First, the ST Scheduler [9] takes the traffic mapped as
ST, which, as already explained in Section II, is the time-
triggered hard real-time traffic. The ST Scheduler tries to
produce a feasible routing and TDMA scheduling for that
traffic, i.e. a routing and a TDMA scheduling that fulfill that
traffic hard real-time requirements. Second, as regards the
AVB Analyzer [10], it has two inputs, namely: (1) the routing
and TDMA schedule produced by the ST scheduler, and (2)
the traffic mapped as AVB or BE by LETRA. As AVB traffic
has soft real-time requirements and the BE traffic has not any,
the AVB Analyzer just checks if the AVB and BE traffic can
be allocated using the bandwidth left by the ST traffic.

IV. RATSN DESIGN RATIONALE

We designed the Redundancy aware TSN migration
toolchain (RaTSN) as an extension of the original toolchain
without changing any of its modules. We consider the modules
that constitute RaTSN as blackboxes. This allows replacing
any of them by modules proposed by other experts, as well as
to keep compatibility with their potential upgrade. Note that
the AVB analyzer is depicted in grey in Fig. 2 since it does
not form part of RaTSN. This is because AVB and BE traffics
are not critical and, thus, none of their streams are replicated.

The elements we introduce in RaTSN are highlighted as
colored boxes. The first one is the Redundant Traffic Model.
Note that legacy systems that have traffic with spatial redun-
dancy requirements rely on topologies with certain level of
redundancy, so that each one of the replicas of a redundant
stream can be transmitted through different routes in parallel.
The traffic model of the original toolchain includes parameters
to specify the topology, and allows it to be redundant; but it
does not include any parameter to specify the spatial redun-
dancy requirements of the traffic. Redundant Traffic Model is
an extension to the original traffic model that allows to do so.
Concretely, it allows specifying in the box Stream red. spec.
(besides the legacy traffic) which streams should be replicated
and how many replicas should each stream have.

The second element we introduce is a new module to
replicate the redundant streams and then route the traffic
including the stream replicas, called Replication and Routing
tool (ReRo). The ST traffic that LETRA outputs becomes the
input of ReRo together with the spatial redundancy require-
ments from Stream red. spec. ReRo takes the ST traffic and
generates the necessary stream replicas. Then, it routes the
original ST traffic together with the generated replicas through
the specified topology. Finally, ReRo asks the ST scheduler to
schedule the Routed ST Traffic with replicas. If the ST sched-
uler succeeds in scheduling the traffic through the indicated
routes, the traffic is successfully migrated. Otherwise, ReRo
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Fig. 2: Block diagram of RaTSN.

recalculates the routes and asks the ST scheduler to schedule
again; this step is repeated until a schedulable solution is found
or ReRo desists.

As said in Section I, we propose and compare two routing
methods within RaTSN, which focus on replicating one stream
once. Fig. 2 depicts the workflow of these two methods within
ReRo, as well as the input Routing Method (RM) to specify
which one to use. The first one, called Redundant Only Routing
Method (RORM), is depicted in red in the left side. RORM’s
motivation is to take advantage from the routing features of
the ST scheduler [9] so as to obtain a feasible routing for the
non-replicated ST traffic, i.e. for the ST traffic that still does
not include the stream replica to be generated. This routing
is a valuable partial solution since, although it still does not

include the stream replica, it is already known to be feasible.
As Fig. 2 shows, an instance of the ST scheduler is placed
as the first module of RORM; meaning that RORM firstly
invokes the ST scheduler to obtain that partial solution. If the
ST scheduler cannot find a feasible routing then RORM desists
(“STOP”). Otherwise RORM replicates the redundant stream
and, starting from the partial solution, proposes a complete
routing solution that includes the generated replica.

Starting from a partial but already feasible solution may
reduce the computation time required by RORM to find the
route for the replica. However this makes the performance
of the routing method dependent on the performance of the
routing features of the ST scheduler. Moreover, the partial
solution provided by the ST scheduler does not take into
account all the traffic, since it does not consider the stream
replica. Thus, the partial solution may lead to a sub-optimal
complete solution, e.g. a complete solution that uses more
bandwidth than would be actually needed. This may limit
ReRo’s ability to tackle more complex traffic, as it may
exhaust the bandwidth before other routing methods, e.g. when
the number of streams increases.

To overcome these potential limitations, the second routing
method we propose (depicted in blue in the right side of
Fig. 2) considers all the traffic from the very beginning. We
refer to it as the Genetic Algorithm Routing Method (GARM).
Note that considering all the traffic from the very beginning
increases the number of routing combinations that the routing
method should consider. Thus, we decided to base GARM on
a genetic algorithm, since genetic algorithms are known to suit
huge combinatorial problems, such as routing and scheduling
ones [11]–[13].

Although RORM and GARM follow a different strategy,
both of them try to maximize the reliability of the redundant
traffic by applying the following criteria.

1) The route of a given stream and the route of its replica
must share as few bridges as possible.

2) Each route must use as few bridges as possible.
3) Each stream should interfere with as few streams as

possible.
We consider criterion 1 as the most important of the three,

since it aims at maximizing the fault independence between
the original stream and its replica. The objective of criterion
2 is twofold. First, it aims at reducing the number of bridges
(and links) whose failure can make a route unusable. Second,
it is intended to ease the scheduling by reducing the number
of resources (bridges and links) to be allocated to the stream
(or replica) routed through that route. Finally, criterion 3 also
aims at easing the scheduling, but by reducing the amount of
resources shared among different streams.

In the following Sections we further explain the details of
RORM and GARM.

V. REDUNDANT ONLY ROUTING METHOD

As said before, RORM first invokes the ST scheduler
to route and schedule the ST streams without considering
any replica. Then, RORM generates the stream replica and



routes it. The pseudocode of Algorithm 1 shows how RORM
calculates the possible routes for the stream replica and selects
the route it consider as the most adequate.

Algorithm 1 Replica route selection in RORM

1: if First time then
2: ordered routes← Empty list
3: available← all routes[talker, listener]
4: available← available− {original}
5: max b← num bridges original stream
6: b← 0
7: while b ≤ max b do
8: routes← group by b(available, b, original)
9: Score routes according to criteria 2 and 3

10: Sort routes by score
11: Append routes to ordered routes
12: Increment b
13: end while
14: First time← False
15: end if
16: replica route ← best in ordered routes ▷ Pop route
17: return replica route

The first part (lines 2-4) obtains the set of all possible routes
for the stream replica in such a way that none of these routes
is the route already assigned by the scheduler to the original
stream. This set is stored in available.

The second part of the algorithm (lines 5-13) aims at storing
in ordered routes the routes of available sorted according to
criteria 1, 2 and 3. Variable max b represents the maximum
number of bridges that can be shared between the route of the
original stream and the route of its replica, and it is initialised
to the number of bridges of the original route. Variable b
represents the number of shared bridges allowed in the current
iteration of the loop. By iterating from the least overlapped
routes (b = 0) to the most overlapped ones (b = max b), the
algorithm orders the routes and stores them in ordered routes
according to criterion 1, i.e. the higher the position of a route
in ordered routes, the lower the number of bridges it shares
with the original stream’s route.

Each iteration takes the routes that share b bridges and
further sorts them according to criteria 2 and 3. Specifically,
line 8 picks up from available the subset of routes that share
b bridges with the route of the original stream. This subset is
stored in variable routes. Line 9 uses criteria 2 and 3 to score
each one of these routes, and line 10 sorts them within routes
according to their score. Finally, line 11 appends the ordered
content of routes to ordered routes.

Finally in lines 16-17 the algorithm pops the best route from
ordered routes, and passes it to the ST scheduler. If the ST
scheduler cannot schedule the traffic using this route for the
replica, the next invocation to the algorithm pops the following
best route. RORM is invoked until the traffic is schedulable
or ordered routes is empty.

Note that line 9 scores each route by using Eq. 1.

Cn,m = w
Sm − Sn,min

Sn,max − Sn,min
+ (1− w)

N∑
i=1
i ̸=n

|em ∩ ei|
|em ∪ ei|

(1)

Where,
• Cn,m is the cost of routing the replica of stream n through

route m. The lower the value of Cn,m the more desirable
is to route through that route m.

• Sm is the number of bridges of route m.
• Sn,min, Sn,max are the minimum and maximum number

of bridges of all the possible routes connecting the talker
and listener of stream n.

• em is the set of links of route m.
• ei is the set of links assigned to stream i.
• N is the number of streams in the ST traffic.
• w is a parameter that weights the two terms, w ∈ [0, 1].
In particular the second term of Eq. 1 represents criterion

3 and quantifies the overlapping between the route m of the
replica and the routes of the streams that are not the original
one, n. For this it uses the Jaccard index (intersection over
union) which here quantifies the overlapping as a similarity in
terms of links.

VI. GENETIC ALGORITHM ROUTING METHOD

As explained in Section IV, GARM is based on a Genetic
Algorithm (GA). GAs search over a population of possible
solutions, called individuals. More precisely, GAs generate
and choose, through several generations, the individuals that
better maximize a given fitness function so as to eventually
obtain a good solution. Each individual is represented by a
chromosome. In GARM each individual is a routing proposal
for the whole ST traffic, which includes the stream replica,
and the chromosome is a list of the routes of this proposal.

GAs initialize the population as random as possible to better
explore the search space. In GARM each individual is initial-
ized as a list of routes, one per stream (and stream replica),
such that each route is randomly selected from among all the
possible routes for that stream (or replica). In each generation
GAs select a subset of individuals that will be used as the
parents to generate the offspring. GARM implements parents
selection with a method called tournament selection [14]. After
selecting the parents, GARM generates a set of descendants.
The chromosome of each descendant is generated from two
parents, so that the route of each stream (and the replica) of
a descendant is inherited with equal probability from one of
its two parents. To avoid local minimums GARM sometimes
randomly mutates (changes) some routs of each descendant
and, additionally, introduces some random individuals. Once
the offspring is generated, GARM uses the fitness function to
filter the descendants and select the individuals for the next
generation. For simplicity GARM selects as many descendants
as the initial population, and substitutes the whole generation
for the offspring. GARM finishes the search when it reaches
a certain number of generations.
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(b) Ring topology with five bridges.
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(c) Mesh topology with four bridges.

Fig. 3: Topologies used for the experimental evaluation of RORM and GARM.

The fitness function quantifies the desired characteristics of
each individual by means of a series of constraints. In GARM
the constraints are computed as routing costs that reflect the
criteria specified in Section IV as follows.

Eq. 2 computes a constraint that reflects criterion 1 as a cost
based on the number of shared bridges between the original
stream and its replica.

F1(ind) = |Sorig ∩ Srep|1.5 (2)

Where,
• F1 is the cost of a given individual (ind) according to

criterion 1.
• Sorig is the set of bridges of the route assigned to the

original stream.
• Srep is the set of bridges of the route assigned to the

stream replica.
• We use the 1.5 exponent for the number of elements in the

intersection to increase the cost of overlapped routes in
a parabolic manner that helps the algorithm to converge.

Eq. 3 computes a constraint to reflect criteria 2 and 3.

F2,3(ind) =

N∑
i=1

Ci,m (3)

Where,
• F2,3 is the cost of a given individual (ind) according to

criteria 2 and 3.
• N is the number of ST streams including the replica.
• Ci,m is the cost of routing i through m using Eq. 1.
Recall that Eq. 1 computes the cost of a given route of

the stream replica. However Eq. 3 uses Eq. 1 to compute the
route cost not only of the replica but also of each one of the
streams and, then, adds them all together. Thus it is necessary
to reinterpret N and Cn,m of Eq. 1. Now N is the total number
of ST streams including the replica; whereas Cn,m is the cost
of routing stream n through route m.

Finally the fitness function is computed, according to Eq. 4,
as a weighted addition of the two costs just specified above.
The weights, i.e. w1 and w2,3, allow to favor one cost over
the other, which allows to adjust the fitness function.

Cost(ind) = w1 · F1(ind) + w2,3 · F2,3(ind) (4)

Note that since in our case the fitness function, i.e.
Cost(ind), is calculated as a cost, maximizing the fitness
function actually means to minimize this cost.

VII. EXPERIMENTAL SETUP

As already said, in this work we compare the two routing
methods of RaTSN. To that, we execute RORM and GARM
to route the traffic of a set of networks. To generate these
networks we used the tool from [3] called network generator.
Specifically, we generate a variety of networks that differ in
terms of the network topology and the traffic complexity. The
traffic complexity is characterized by the number of ST streams
and the size of the ST protected window.

We consider these to be relevant aspects to evaluate because
of several reasons. On the one hand, the network topology
determines the routes connecting each pair of end-stations
and, thus, the routes that the routing methods can assign to
the different streams and the replica. On the other hand, we
expect that the number of ST streams and the size of the ST
protected window have a significant impact on the routing
and the schedulability. A higher number of ST streams does
not only make it more difficult to route them, but increases
the complexity of the scheduling since the higher the number
of streams the lower the resources available for each one of
them. Moreover, the size of the ST protected window limits
the amount of bandwidth available for the ST streams.

We considered three full-duplex topologies inspired by
topologies commonly used in legacy systems. Fig. 3 illustrates
the three topologies. We must note that a higher number
of links implies more resources available for routing (and
scheduling). Thus, to properly study the impact of the topology
on our results, we designed those three topologies so that each
one of them includes approximately the same number of links.

Fig. 3a depicts the first topology, which is a replicated star
with three central bridges and three end-stations. Each end-
station is attached to each bridge, resulting in three routes that
do not share bridges between any pair of end-stations. We
should also note that in this topology every route has the same
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Fig. 4: Distribution of test cases by ST streams.

amount of bridges. Fig. 3b depicts the second topology, which
is a ring with five bridges and five end-stations. Each bridge
is connected to two other bridges, and it is directly connected
to just one end-station. Note that in this topology there are
only two possible routes to connect each pair of end-stations,
and that these routes share at least two bridges. This topology
resembles ring topologies that are used in legacy systems based
on Industrial Ethernet protocols such as AeroRing[15]. Finally,
Fig. 3c illustrates the third topology, which is a mesh with
four bridges and four end-stations. This mesh topology offers
several routes for connecting each pair of end-stations, and
some of these routes share one or more bridges.

As regards the traffic complexity, the total number of
streams ranges from 4 to 75; the number of ST streams
ranges from 1 to 48; and the size of the ST protected window
ranges from 10 to 90. These ranges can be considered as
representative of many legacy industrial networks, according
to [3]. Taking into account these ranges, we have generated
510 sets of traffic for each topology, resulting in a total of
1530 networks or test cases. Note that the network generator
[3] randomly generates each one of the 510 traffic instances
considered per topology. Specifically, for each size of the
ST protected window it generates the same number of traffic
instances, so that this size is uniformly distributed along the
510 instances. This allows not to prioritize any ST protected
window size over others in the comparison.

Concerning the number of ST streams the network generator
produces in each test case, note that to schedule a higher
number of ST streams it is necessary to have a sufficiently
large ST protected window. Thus, the network generator intrin-
sically establishes a relationship between the ranges of these
two magnitudes. Specifically, the network generator produces
test cases that, on average, keep a proportional relationship
between the number of ST streams and the size of the window.
In any case, the number of streams and ST streams per instance
are randomly generated following a normal distribution. Fig. 4
shows the frequency with which a given number of ST streams
appear in the test cases. This frequency, expressed as the
number of test cases that use a given number of ST streams,
follows the shape of a gaussian bell, which corroborates the
non-biased character of the traffic in terms of the number of
ST streams.

Scheduled solutions Valid solutions
Overlapping degree 0 1 2 >2 0 1 2 >2

Star 354 0 0 0 354 0 0 0
RORM Ring 0 0 210 0 0 0 210 0

Mesh 5 184 74 30 5 184 74 30
Star 382 0 0 0 382 0 0 0

GARM Ring 0 0 257 0 0 0 106 0
Mesh 117 118 47 30 117 17 0 0

TABLE I: Scheduled & valid solutions and overlapping degree
!

VIII. EXPERIMENTAL RESULTS

In this Section we compare the two routing methods from
different points of view. First we compare their routing capa-
bility depending on the topology. We consider that the routing
capability includes two aspects, namely the number of test
cases (networks) for which the routing method is able to find
a valid solution; and the overlapping degree of each one of
the solutions. On the one hand, we consider that a solution
is valid if it fulfills the two following requirements: it is
schedulable and the route of the original stream and of its
replica are not exactly the same. Note that a replica adds no
spatial redundancy, and thus no fault tolerance, if its route is
the same as the route of its original stream. Thus the route of
a given stream and of its replica must differ from each other
by at least one bridge or link. On the other hand, note that
the higher the difference between two routes, the more fault-
independent they are. We assess the fault-independence of the
routes each solution proposes for the original stream and its
replica by means of the overlapping degree, which counts the
number of bridges they share.

Second, we compare the percentage of valid solutions
RORM and GARM provide depending on the traffic complex-
ity, i.e. on the number of ST streams and the size of the ST
protected window, which as already said affects the difficulty
for routing and scheduling. Then, we compare both methods
in terms of the bandwidth overhead of their valid solutions.
Finally, we analyze the execution time of RaTSN depending
on which one of the two routing methods it uses.

Note that in some analyses we compare RORM and GARM
with a routing method called Base. This method simply
represents the case in which no stream is replicated, i.e. the
case of the original toolchain in which the traffic mapped by
LETRA as ST is scheduled and routed by the ST scheduler.

A. Routing capability vs topology

We compare the routing capabilities of RORM and GARM
for each topology. Table I shows the number of networks they
were able to schedule and the number of those for which they
were able to find a valid solution. Results are grouped in rows
by topology, as well as in columns by the overlapping degree
between the route of the stream and of its replica.

As regards the replicated star, all the solutions provided
by RORM and GARM have an overlapping degree equal to
0. Also, all the networks that are scheduled are valid. These
results indicate that both methods are able to fully exploit
the fact that this topology provides three independent stars,
so as to route the stream and its replica through completely
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Fig. 5: Percentage of valid solutions vs number of ST streams.

independent routes. Table I also shows that, for the replicated
star, GARM provides more valid solutions (382 out of 510)
than RORM (354 out of 510). This indicates that when we
have independent routes, as it happens in this star, GARM is
superior because it provides more routing solutions that are
schedulable. This superiority can be explained by the fact that
RORM is burdened by the partial routing solution initially
provided by the ST scheduler. This partial solution does not
include the stream replica and, thus, leans RORM towards
providing sub-optimal solutions in terms of schedulability.
This result suggests that it is interesting to investigate how
to provide schedulers that can schedule and route considering
the stream replica from the very beginning. This interest has
also been identified in other works, e.g. [16].

Concerning the ring, Table I shows that the overlapping
degree of all solutions is two. It is not possible to provide a
lower overlapping degree because, as explained in Section VII,
the only two routes that the ring provides for connecting each
pair of nodes share at least two bridges. In any case, the results
show that the overlapping degree is never greater than two.

As regard the number of solutions, note that Table I indi-
cates that GARM provides more schedulable routings than
RORM (257 vs 210) also in the ring. This corroborates
the superiority of GARM in terms of schedulability, which
was explained above for the replicated star. However, the
number of valid solutions of GARM is reduced down to
106. This difference between the number of scheduled and
valid solutions for GARM indicates that its fitness function
is not fully adequate for routing in the ring topology. More
specifically, note in Eq. 4 that the first term of the function
rewards lower overlapping degrees between a stream and its
replica, whereas one of the aspects the second term rewards
are shorter routes. Thus, in cases in which the two routes
connecting two end-stations are such that one of them is much
larger than the other, the fitness function may incorrectly lead
GARM to select the same route for the stream and its replica.
Note that the costs and the fitness functions were defined for
any topology, and their parameters were set by trial and error
for good results in general. Thus, for certain topologies it is
needed to adjust the fitness function or define an ad-hoc one

Conversely to the ring, the mesh (Figure 9) does not limit

the minimum overlapping degree; but the mesh does not
guarantee non-overlapping routes as the replicated star does.
For the mesh, RORM provides a slightly higher number (293)
of scheduled networks than GARM (285), and, as happens
in the ring, RORM ends up providing more valid solutions
than GARM, i.e 293 vs 134. In any case, for the mesh,
GARM tends to provide solutions with less overlapping degree
than RORM and, thus, solutions that a priori attain a higher
reliability. In particular, the average number of shared bridges
between the routes of a stream and its replica in the valid
solutions for the mesh is 1.44 and 0.12 for RORM and GARM.

B. Percentage of valid solutions vs traffic complexity

The percentage of valid solutions obtained by RORM and
GARM depending on the traffic complexity are similar for all
topologies. Thus, for the sake of succinctness, Fig. 5 shows the
comparison for the case of the mesh topology only. We must
recall that the network generator produces test cases that on
average keep a proportional relationship between the number
of ST streams and the size of the ST window. For clarity, the
x-axis of Fig. 5 represents the traffic complexity in terms of
the number of ST streams.

Fig. 5 confirms that the traffic complexity negatively im-
pacts the percentage of valid solutions of RORM and GARM
(and of the Base case). It also shows that although the
percentage of valid solutions is greater in RORM, it decreases
at a higher rate than in GARM. This suggests that the traffic
complexity is more of a limiting factor for RORM than for
GARM; thereby reinforcing the interest of adjusting the fitness
function (or other aspects like the chromosome), so as to
exploit the potential benefits that GARM, may provide when
addressing more complex problems.

C. Bandwidth overhead

We consider the bandwidth of a solution as the average
bandwidth the ST scheduler allocates to the ST traffic at the
links of the selected routes. Then, we define the bandwidth
overhead of a valid solution i, given by RORM or GARM, as
an increment ∆BWi = BWi − BWbase; where BWi is the
bandwidth of the valid solution; and BWbase is the bandwidth
of the solution given by the Base method, which does not
consider redundant streams. In other words, the bandwidth
overhead is the average bandwidth increment with respect to
the case in which no stream is replicated.

Fig. 6 depicts the bandwidth overhead distribution of RORM
and GARM. All RORM valid solutions have a ∆BWi > 0,
i.e. they always increase the bandwidth consumption. This
was expected, as RORM keeps the routes proposed by the
ST scheduler and then adds the route of the stream replica.
Conversely, around half of valid solutions of GARM have a
∆BWi < 0. This means that GARM allows finding routes
that consume less bandwidth than those proposed by the ST
scheduler, even though the ST scheduler does not consider
the stream replica, i.e. GARM allows reducing the average
bandwidth consumption of the ST traffic with respect to the
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Fig. 6: Bandwidth overhead distribution.
original toolchain (and RORM). This is because GARM con-
siders more routing combinations than the ST scheduler and,
thus, GARM explores a larger search space than the original
toolchain (and consequently than RORM). The downside of
GARM is that it can yield a greater maximum overhead than
RORM, i.e. around 29% vs 4%. In any case, the number of
GARM’s solutions that are worse than RORM’s ones is low.

D. Execution time of RaTSN

Finally we measured the execution time of RaTSN for
migrating each one of the 1530 test cases when using RORM
and GARM. The execution time of each test case includes
the execution of LETRA, the actions carried out by RORM
(or GARM depending on the used method) within the ReRo
tool, as well as each call to the ST scheduler that RORM (or
GARM) carry out outside the ReRo tool (Fig. 2) until they
find an schedulable solution or they desist.

Results are similar for all topologies. Although GARM is
slightly better than RORM in terms of the maximum execution
time, i.e. 38103 and 45064 s, and standard deviation, i.e. 5883
vs 6767 s; the average execution time of GARM doubles the
one of RORM, i.e. 17808 vs 8120 s. This supports RORM as
a method that can take advantage from a tool, already refined
by the community, to carry out part of the process.

IX. CONCLUSIONS

Industry and academia are pushing TSN as the de-facto
Ethernet-based link-layer to comprehensively fulfill the re-
quirements of novel control applications in emerging areas
such as Industry 4.0 or smart cities. In this context it becomes
fundamental to ease the transition between legacy and TSN-
based systems. In this regard some works have been proposed
to partially migrate traffic from proprietary protocols to TSN.
In particular, they focus on the real-time aspects of the traffic,
while neglecting existing reliability requirements.

In this work we extend the toolchain of [3] to migrate, i.e.
map, route and schedule, for the first time, critical hard-real
time traffic of legacy highly-reliable DCSs to TSN. This ex-
tension basically consists in two methods, RORM and GARM,
to route critical traffic that includes a redundant stream that is
spatially duplicated. RORM focuses on taking advantage of the
routing capabilities of a scheduler, proposed by the community

and used in [3], to start from a partial routing solution that,
although not including the stream replica, is known to be
feasible. GARM is based on a genetic algorithm to route
all the traffic, including the stream replica, from scratch.
We compare these methods for three topologies. Generally
speaking, RORM obtains a higher number of valid solutions
than GARM and, in average, its execution time is noticeably
lower. However, GARM tends to provide solutions with lower
overlapping between the route of the stream replica and of
its original stream, which in principle benefits reliability; and
introduces less bandwidth overhead. Particularly, we observed
that it may be necessary to use an ad-hoc fitness function to
benefit from GARM’s lower overlapping in some topologies.
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