
©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Towards a node active replication schema for highly
reliable distributed control systems based on TSN

Joan Evangelisti, Manuel Barranco, Julián Proenza, Alberto Ballesteros, Mateu Jover
Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Spain

joanevan24@gmail.com, manuel.barranco@uib.es, julian.proenza@uib.es, a.ballesteros@uib.es, mateu.jover@uib.es

Abstract—Given their nature, many control applications that
arise from the integration of Operation Technologies (OT) and
Information Technologies (IT) are built on top of highly reliable
real-time (RT) Distributed Control Systems (DCSs). Since a
DCS is made up of several computing nodes that exchange
information through a communication subsystem, to achieve high
reliability it is necessary that both this subsystem and the service
from the nodes are very reliable. To provide RT highly reliable
communications while benefiting from Ethernet’s advantages, In-
dustry and Academia are pushing the Time-Sensitive Networking
Ethernet standards (TSN). On the other hand, one of the most
used strategies to ensure a highly reliable service from the nodes
is to use fault tolerance in the form of active replication. Our
general goal is to develop a complete fault-tolerant architecture
(addressing faults both in the communication subsystem and in
the nodes) for highly reliable real-time DCSs based on TSN.
In this paper we show our ongoing work towards an active
replication schema for the nodes of this architecture.

Index Terms—reliability, fault tolerance, TSN, distributed
control system, node replication

I. INTRODUCTION

Nowadays new industrial control and automation applica-
tions are emerging from the integration of Operation Tech-
nologies (OT) and Information Technologies (IT). Given their
nature, many OT-IT applications rely on real-time (RT) highly
reliable Distributed Control Systems (DCSs). Examples of
these DCSs can be found in contexts such as smart energy
production and distribution networks (Smart grids), smart
cities, or smart autonomous transportation.

An RT DCS must provide its services, e.g., execute a control
algorithm to calculate actuation values, within deadlines. On
the other hand, a highly reliable DCS must continuously
provide a correct service with a high probability during a given
time interval, e.g., a DCS that automates certain functions of
a commercial aircraft must operate correctly throughout the
entire flight.

A DCS is made up of several computing nodes that coor-
dinate with each other by exchanging information through a
communication subsystem. Therefore, to achieve very high re-
liability it is necessary that both the communication subsystem
and the nodes provide their service in a very reliable manner.

When it comes to communications, the de facto link layer
protocol for IT systems is Ethernet, given its high bandwidth,
low cost, and its native integration with TCP/IP. So, over
the past decades, a myriad of Industrial Ethernet protocols
have been proposed to benefit from these advantages while
enforcing high reliability and real-time guarantees for OT and
OT-IT applications. However, these protocols provide partial

solutions and/or present integration limitations between them.
In order to overcome these limitations, both Industry and
Academia are intensively promoting what are known as Time-
Sensitive Networking Ethernet standards (TSN). In particular,
TSN specify mechanisms to provide high reliability and real-
time guarantees.

Regarding the nodes, one of the most used strategies to
achieve high reliability is to use fault tolerance (FT) in the
form of active replication [1]. This consists in providing
the system with several independent replicas of each critical
node. All replicas of a given critical node operate in parallel
to produce each relevant result, e.g., the value of a sensor,
an actuation value etc.; exchange it over the communication
subsystem; and locally vote on it to obtain a consensus result
to continue operating to produce the next result.

In order to reach a very high reliability it is fundamental
to design fault-tolerant architectures which are complete, i.e.,
that include mechanisms for tolerating faults both in the
nodes and in the communication subsystem. Currently, our
research focuses on proposing such a complete fault-tolerant
architecture for highly reliable RT DCSs based on TSN. In
this sense, our main objective is twofold: (1) to propose a
node active replication schema specially tailored to TSN;
(2) to investigate how to use and configure different TSN,
as well as developing TSN-compatible FT mechanisms, to
provide a highly reliable TSN network. This paper describes
our ongoing work towards the 1st one of these objectives.
To our best knowledge this is the first work addressing node
replication over TSN.

First, we briefly explain what are the main aspects to
consider for providing an adequate node active replication
schema for DCSs in general, as well as what decisions we
took so far for providing that schema on top of TSN. Then
we sketch the node replication schema we propose, and show
some preliminary tests on an ongoing prototype. Finally we
conclude the paper and point out future work.

II. DESIGN RATIONALE

As just explained, a node active replication schema consists
in having several independent node replicas (replicas for short)
that execute the same functionality (application) in parallel.
The program that implements this functionality can be exactly
the same on each replica; but it can also be different on each
one, to provide program design diversity and thus higher fault
independence between replicas. The program can be divided
into phases which are executed in a cyclic manner. At the end



of some phases, each replica exchanges with the others the
relevant values (results) it obtained in that phase. Then, each
replica locally votes on the exchanged values to agree with
the others on a set of consensus values it uses to compute the
next phase [6].

The way in which replicas coordinate to execute each phase
in a synchronized manner depends on whether the application
follows a time-triggered or an event-triggered approach. Since
events may not happen simultaneously in each replica, and the
execution time of any given phase can be different on each
one, an event-triggered application makes it more complex to
coordinate replicas so that they carry out phases in parallel.
Thus we chose to follow a time-triggered application approach
like in [3], in which all replicas start the execution of each
phase at approximately the same time instant. Therefore, it
is necessary to provide replicas with some kind of synchro-
nization mechanism so that they execute the phases following
the same time basis. Moreover, for the sake of robustness, that
mechanisms should not depend on an external connection, e.g.,
GPS connection. Instead, the preferred solution is to rely on a
mechanism provided by the communication subsystem itself.
Fortunately TSN provides a clock synchronization mechanism
called gPTP, standardized as 802.1AS, which allows nodes
(and bridges) to synchronize with a so-called global clock
(which is local to the network) with very high precision.
This clock synchronization makes it possible to trigger the
execution of any phase in all replicas quasi-simultaneously.

Clock synchronization also allows both that replicas trans-
mit their values at the right times, and that traffic shapers
(usually located at bridges) adequately forward those trans-
missions. In this sense note that TSN shapers represent an
interesting advantage, as in principle any kind of TSN shaper
can be used to ensure that the frames that carry the values
proposed by the replicas are timely exchanged for voting in
the corresponding phase.

The number of replicas, how they exchange their values, and
how they vote basically depends on the fault model (types of
faults), the failure model (how failures of components man-
ifest) and the connectivity (which replicas can communicate
with each other) [2]. Our fault model considers temporary
and permanent unintentional faults (both internal like short-
circuits and external like EMIs) affecting the hardware of
nodes, bridges and links. For the failure model we assume
that nodes and bridges can show byzantine failures, i.e. they
can fail in any manner, and that links exhibit omission failures
(frames corrupted at links are dropped by nodes and bridges).

As concerns the connectivity, to cover a broad range of
control applications we consider that, in absence of faults, all
replicas can communicate with each other. In this sense we
define a non-faulty replica as a node replica that not only
operates correctly, but that in addition can communicate with
all other non-faulty replicas.

In order to both keep a cost-reasonable amount of node
replicas and to reduce the complexity of the procedures they
use to exchange and vote on messages, it is necessary to
provide the system with mechanisms that restrict the failure

model of nodes and bridges, i.e. mechanisms that force them,
when faulty, to exhibit failures in modes that are more benign
than byzantine ones.

For the nodes we propose to force them, when faulty, to
exhibit incorrect computation failures, so that from the point
of view of the application executing at each non-faulty replica,
a faulty replica manifests in the worst case by either proposing
incorrect application-level values for voting or proposing them
at the wrong time. This would simplify the way in which faulty
replicas are tolerated, i.e. non-faulty ones would just need to
carry out a majority voting on its own values and the values
received from the other replicas, as in [3].

Restricting node failures in such a way, when using a non-
standardized communication subsystem, can be done by means
of interconnection adhoc devices. For instance, the bridges
of [3] include at its incoming ports adhoc (non-standard) error-
containment mechanisms to drop any frame that is incorrect
at the data link layer; so that an incorrect frame received
at a replica can only be incorrect because either it includes
erroneous application data or arrives at a wrong instant.
Moreover, in those systems the adhoc interconnection devices
can be designed to be fail-silent, as proposed for bridges in [3].
Relying on those bridges would be ideal, as their failure cannot
compromise the majority voting (as long as a majority of non-
faulty replicas can communicate), since a fail-silent bridge can
only lead replicas observe that that bridge omits messages.

However, in the present work we impose the requirement
of using off-the-shelf TSN devices for nodes and bridges, and
keep full compatibility with TSN standards. This requirement
makes more complex to restrict the failures of node replicas,
and hardly possible to provide fail-silent bridges.

Thus, to restrict the failure modes of nodes and bridges
as much as possible, while keeping full compatibility with
TSN standards and off-the-shelf nodes and bridges, we are
conducting a parallel research work as part of our 2nd general
objective outlined in Section I. In that parallel work we aim
to realistically characterize the way in which off-the-shelf
TSN nodes and bridges fail, and then, combine and configure
several TSN mechanisms to maximize error containment. This
will minimize the severity with which failures manifest from
the point of view of non-faulty replicas, and thus will allow
simplifying the node replication schema. The preliminary
results of that work show that although TSN mechanisms can
be combined to treat most severe failures, we would need to
include further mechanisms at a higher-level of the architecture
(to avoid compromising TSN compatibility), e.g., provide
nodes with a library between the application and data link
layer that includes mechanisms to authenticate transmitting
nodes, so as to prevent impersonations.

Once these additional mechanisms are added to the architec-
ture, faults in nodes will be perceived by the rest of the nodes
as incorrect computation failures. Thus, in the present work we
can propose a cost-reasonable node active replication schema
based on majority voting that just needs to include N = 2k+1
replicas to tolerate the failure of k of them.

At this point note that to tolerate faults it is mandatory



that non-faulty replicas are replica deterministic [4], i.e. all
non-faulty replicas must have the same internal state (SA)
and, when they receive the same inputs, they must produce
the same internal state change (SA → SB) and the same
outputs. Replica determinism can be enforced by means of
internal and external replica control techniques [4]. We will
ensure that replicas are internally deterministic by not using
non-deterministic program constructs in their software.

For replicas to be externally deterministic, we need to
ensure that they consistently and timely vote on the same
inputs. Thus, first the TSN communication subsystem must
satisfy the property of reliable broadcast [5]; which in our
case means that whenever a non-faulty replica sends a frame,
all non-faulty replicas will eventually receive it. Second, the
TSN communication subsystem must satisfy the real-time (RT)
requirements of these frames, so that all non-faulty replicas
receive them timely for voting.

Enforcing reliable broadcast, while fulfilling the RT re-
quirements, in TSN is also part of our 2nd general objective
outlined in Section I and, thus, we are addressing it in a
parallel work. In that work, to tolerate permanent faults in the
communications we propose to connect each replica to two
bridges of a redundant network topology (TSN allows using
any topology). Specifically, we will use the IEEE 802.1CB
Frame Replication and Elimination (FRER) TSN standard to
provide redundant physical paths (space redundancy) between
each pair of replicas over that topology. To tolerate transient
faults in the communications we plan to combine FRER with
a time redundancy strategy in which frames are pro-actively
retransmitted. For enforcing the RT requirements we will use
traffic shapers.

Finally, it is important to provide nodes with mechanisms
that prevent unnecessary redundancy attrition (loss of node
replicas) caused by faults that are not actually permanent. One
of such mechanisms is a Forward Error Recovery mechanism
intrinsic to the majority voting, i.e. a replica that produces
erroneous values due to a transient fault can overwrite those
values with the consensus values it obtains after voting and,
then, continue operating correctly. However, more complex
non-permanent faults require more advanced recovery mecha-
nisms, like the ones proposed in [3]; thus we will research how
to make the most of TSN to propose such kind of mechanisms.

TSN
bridge

replica 1 replica 2

replica 3

ho
st

TS
N

 N
IC host

TSN
 N

IC

host

TSN NIC

Fig. 1. Prototype’s simplified topology

III. ONGOING PROTOTYPE AND PRELIMINARY TESTS

We are currently implementing a first prototype of our
node active replication schema for TSN-based DCSs. Since
our schema is independent from the topology, this prototype
relies on the simple TSN network depicted in Figure 1. It
is composed of 1 TSN bridge and 3 node replicas. Each
replica is equipped with an Intel Core i7-4770 3.4GHz CPU
(8 cores), running Ubuntu 20.04; 8 GB of RAM; and a I350
Gigabit TSN Ethernet Network Interface Card (NIC). The
TSN bridge (switch) is the SoC-e MTSN kit. This bridge and
the TSN NICs include several TSN standards, e.g., 802.1AS
(gPTP), 802.1CB (FRER) and 802.1Qbv (TAS). Additionally
the replicas are connected to a PC via a regular Ethernet switch
not depicted in the figure. This allows sending test commands
and retrieve debug information to/from replicas via SSH.

Figure 2 sketches the internal structure of a replica. The
TSN NIC provides services for transmitting/receiving, as well
as for gPTP clock synchronization. All replicas’ NIC and the
bridge should have the same view of this clock, so that they
are tightly synchronized at the communication level.

The Data Link layer of the replica basically includes the
TSN lib, which is a library we implemented to access the
different transmission/reception services of the TSN NIC.
This library basically provides a primitive to request for the
transmission (tx) of Eth TSN frames, as well as an interrupt
handler and a reading primitive for receiving such frames.

At the Application layer we basically implemented a library
called Clock lib and two threads, namely Control and Rx
demux. Clock lib basically includes a primitive called wait(t),
which allows the Control thread to actively wait until the gPTP
clock reaches a specific instant of time t, as explained next.

The Control thread basically executes cyclically the 3 ac-
tions - sense (S), calculate actuation values (C), and actuate
(A) - of a typical control application. The execution of this
control cycle is divided into N phases (Phi). For replicas
to execute these phases in a synchronized manner they must
be synchronized at the application level, i.e. they must agree
on what phase to execute and must trigger its execution
quasi-simultaneously. The Control thread of each replica is
configured with a set of trigger instants, which are common
to all replicas, and which it uses as the parameter to call
the wait(t) primitive of Clock lib. The first instant is tstart,
which is the time at which all replicas must synchronize before
executing the control cycle for the very first time. Each one of
the other trigger instants (ti) corresponds to the time at which
replicas must trigger a given phase (Phi). After executing a
control cycle, the Control thread of each replica updates the
ti(s) for the next cycle.

Note that some phases are used to carry out the above
basic control actions, i.e. S, C or A. However, some phases
are devoted for replicas to exchange the values they produce,
whereas other phases are used to vote on those values. To
exchange a set of values, the corresponding phase of Control
thread calls the tx primitive of TSN lib. Thanks to this
primitive, the phase can order the NIC to send the necessary



TSN NIC

TSN lib

Clock lib

gPTP_clk

Rx demux thread

Ph1

wait (t2)

...

wait (tn)wait (tStart) wait (t1) wait (t3)tx2

Control thread

txi

Ph2 Ph3 PhN

tx

wait (t)

rx3

...

rxj

... ...

rx

tx / rx

Application layer

Data Link layer

Fig. 2. Replica prototype internal schema

frames to the other replicas. The payload of these frames must
include both the values to be transmitted and the meaning
of those values. When a destination replica receives one of
these frames, its NIC generates a reception interrupt that is
processed by its TSN lib to activate the Rx demux thread.
This thread uses TSN lib to read the frame payload; analyzes
the meaning of the payload values; and stores them in a buffer
dedicated to that meaning, e.g. a buffer dedicated to storing
the value of the sensors. Eventually, the phase of Control
thread responsible for voting using those values will extract
them from that buffer. In this sense we say that Rx demux
demultiplexes the receptions towards the corresponding phases
of Control thread.

To check the feasibility of our node active replication
schema, the current prototype includes a preliminary version
of the phases. The control cycle is composed of 7 phases, each
of which takes no longer than 5 ms to complete. This results
in a cycle length of < 35 ms, which is an adequate value for
many tight control applications. There are phases that produce
data, phases that transmit frames, and phases that read them.
On the one hand, we checked that the Control thread of each
one of the 3 replicas adequately trigger each phase in a tightly
synchronized manner. We observed not only that the gPTP
clocks of the replicas are synchronized with the gPTP master
clock of the TSN bridge with a precision on the order of
hundreds of nanoseconds (which complies with the 802.1AS
specification); but also that the Control threads trigger each
phase quasi-simultaneously with a precision of ≤ 5us, which
represents a close synchronization given the duration of each
phase. On the other hand, we corroborated that the Control
threads successfully transmit the intended frames, and that the
Rx demux threads correctly demultiplex the reception of those
frames.

IV. CONCLUSIONS AND FUTURE WORK

Many emerging industrial applications are based on real-
time (RT) highly reliable Distributed Control Systems (DCSs).
These systems can achieve high reliability by relying on a
fault-tolerant (FT) complete architecture, which includes FT

mechanisms for both the nodes and the communication subsys-
tem. Since TSN is expected to be the de facto communication
technology of Ethernet-based industrial systems, we aim to
propose a complete FT architecture for highly reliable RT
DCSs based on TSN.

This paper describes our ongoing work on the FT mech-
anisms for the nodes of such architecture. Specifically we
propose a node active replication schema taking into account
the main particularities of TSN, and show the first feasibility
results of an ongoing prototype. Although active node repli-
cation has been classically used for node FT, to our best
knowledge this is the first work that proposes such kind of
replication on TSN.

We plan to further extend the node FT mechanisms proposed
here (e.g. to mitigate node redundancy attrition) and, then,
integrate into a complete FT architecture both our node
replication schema, and a fault-tolerant TSN communication
subsystem we are developing in a parallel research work. This
integration into a complete FT architecture will throw light
on how to adequately combine, configure (and extend) TSN
mechanisms so as to build complete highly reliable real-time
TSN-based DCSs.

ACKNOWLEDGMENT

Project PID2021-124348OB-I00 funded by MI-
CIU/AEI/10.13039/501100011033 and by FEDER, UE. Mateu Jover
was supported by the Consejerı́a de Educación y Universidades del Gobierno
de las Illes Balears under the contract FPU2023-007-C.

REFERENCES

[1] D. Powell (Ed), “Delta-4: A Generic Architecture for Dependable
Distributed Computing”, ESPRIT Research Reports. Springer Verlag,
Wien, New York, 1991.

[2] L. Lamport et al., “The byzantine generals problem”, ACM Transactions
on Programming Languages and Systems, 4(3):382–401, July 1982.

[3] M. Barranco et al., “An Architecture for Highly Reliable Fault-
Tolerant Adaptive Distributed Embedded Systems”, Computer, 53(3):38-
46, March 2020.

[4] S. Poledna, “Fault-Tolerant Real-Time Systems: The Problem of Replica
Determinism”, Kluwer Academic Publishers, MA, USA, 1996.

[5] Ö. Babaoglu et al., “Reliable broadcast and communication models:
Tradeoffs and lower bounds”, Distributed Computing,(2):177–189, 1988.

[6] A. Avizienis, “The N-Version approach to fault-tolerant software”, IEEE
Transactions on Software Engineering, 11(12):1491–1501, 1985.


