A deep learning solution for Posidonia oceanica seafloor habitat multiclass recognition

Authors Miguel Martín Abadal | Gabriel Oliver Codina | Yolanda González Cid | Iván Riutort Ozcariz
In IEEE Oceans, Marseilles, 2019.

Recent studies have shown evidence of a significant decline of the Posidonia oceanica meadows on a global scale. The monitoring and mapping of these meadows and its marine habitat are fundamental tools for measuring its status and growth opportunities. The presence of hard substrates benefits P. oceanica survival and development rates. We present an approach based on a deep neural network to automatically perform a high-precision semantic segmentation of Posidonia oceanica meadows and its seafloor habitat in sea-floor images, offering several improvements over the state of the art techniques. The presented network is able to accurately distinguish the most relevant classes: P. oceanica meadows, and rocky and sandy areas.


Uso de cookies

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.

Aviso de cookies