A Method for Parameter Calibration and Relevance Estimation in Evolutionary Algorithms

Authors Volker Nannen | A. E. Eiben
In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 183--190, 2006.
ISBN 1-59593-187-2


We present and evaluate a method for estimating the relevance and calibrating the values of parameters of an evolutionary algorithm. The method provides an information theoretic measure on how sensitive a parameter is to the choice of its value. This can be used to estimate the relevance of parameters, to choose between different possible sets of parameters, and to allocate resources to the calibration of relevant parameters. The method calibrates the evolutionary algorithm to reach a high performance, while retaining a maximum of robustness and generalizability. We demonstrate the method on an agent-based application from evolutionary economics and show how the method helps to design an evolutionary algorithm that allows the agents to achieve a high welfare with a minimum of algorithmic complexity.

Uso de cookies

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.

ACEPTAR
Aviso de cookies