A Trajectory-Based Approach to Multi-Session Underwater Visual SLAM Using Global Image Signatures

Authors Antoni Burguera Burguera | Francisco Bonin-Font
In Journal of Marine Science and Engineering, MDPI, vol. 7, no. 8, August, 2019.
ISBN 2077-1312

This paper presents a multi-session monocular Simultaneous Localization and Mapping (SLAM) approach focused on underwater environments. The system is composed of three main blocks: a visual odometer, a loop detector, and an optimizer. Single session loop closings are found by means of feature matching and Random Sample Consensus (RANSAC) within a search region. Multi-session loop closings are found by comparing hash-based global image signatures. The optimizer refines the trajectories and joins the different maps. Map joining preserves the trajectory structure by adding a single link between the joined sessions, making it possible to aggregate or disaggregate sessions whenever is necessary. All the optimization processes can be delayed until a certain number of loops has been found in order to reduce the computational cost. Experiments conducted in real subsea scenarios show the quality and robustness of this proposal.


Uso de cookies

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.

Aviso de cookies