Achieving Elementary Cycle Synchronization between Masters in the Flexible Time-Triggered Replicated Star for Ethernet

Authors Alberto Ballesteros | Julián Proenza Arenas | David Gessner | Guillermo Rodríguez-Navas González | Thilo Sauter
In Proceedings of the 19th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2014), Barcelona, Spain, 2014.


For a distributed embedded system (DES) to operate continuously in a dynamic environment, it must be flexible and highly reliable. This applies in particular to its communication subsystem. The Flexible Time-Triggered Replicated Star for Ethernet (FTTRS) aims at providing such a subsystem by means of a highly-reliable switched-Ethernet architecture based on the Flexible Time-Triggered paradigm (FTT), a master/slave communication paradigm where the master periodically polls the slaves using so-called trigger messages (TMs). In particular, FTTRS interconnects nodes by redundant communication paths provided by two switches, each embedding an FTT master that manages the communication. This allows FTTRS to tolerate the failure of one switch without interrupting the communication as long as the masters are replica determinate, i.e., provide identical service to the slaves. The master replica determinism entails the masters broadcasting their TMs in a lockstep fashion: when one master broadcasts a TM, the other should do the same quasi-simultaneously. In this paper we present a solution inspired by the Precision Time Protocol (PTP) for achieving this lockstep transmission and preliminary results showing the precision with which we can synchronize the masters on a software prototype.

RELATED PROJECTS

Uso de cookies

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.

ACEPTAR