Deep Semantic Segmentation in an AUV for Online Posidonia Oceanica Meadows Identification

Authors Miguel Martín Abadal | Eric Guerrero Font | Francisco Bonin-Font | Yolanda González Cid
In IEEE Access, 2018.
ISBN 2169-3536


Recent studies have shown evidence of a significant decline of the Posidonia oceanica (P.O.) meadows on a global scale. The monitoring and mapping of these meadows are fundamental tools for measuring their status. We present an approach based on a deep neural network to automatically perform a high precision semantic segmentation of the P.O. meadows in sea-floor images, offering several improvements over the state-of-the-art techniques. Our network demonstrates outstanding performance over diverse test sets, reaching a precision of 96.57% and an accuracy of 96.81%, surpassing the reliability of labeling the images manually. Moreover, the network is implemented in an autonomous underwater vehicle, performing an online P.O. segmentation, which will be used to generate real-time semantic coverage maps.

RELATED PROJECTS

Uso de cookies

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.

ACEPTAR
Aviso de cookies