SUPERION - Optical Systems for Enhanced Underwater Perception and Intervention


SUPERION focuses on two general objectives: enhance 3D reconstruction capabilities for underwater environments by means of optical sensors and improve target detection methods using multimodal sensor data.


SUPERION is the UIB subproject of MERBOTS project. The other subprojects are ARCHROV, leaded by the University of Girona and MERMANIP, conducted by the University Jaume I, the coordinator of the project. MERBOTS is the natural evolution of RAUVI and TRITON projects. Even though both projects have led to a significant progress regarding all their challenging objectives, a serious advancement is needed regarding the robustness and the reliability of the corresponding systems, to achieve the perception capabilities required by the new scenario. The project focuses on underwater archeology, although the same technologies could be applied to other scenarios. Two distinctive missions have been envisioned: the first one, cooperative survey, consists in an autonomous survey of a predefined search area by means of an AUV assisted by a surface vehicle that provides absolute localization and communication; the second mission, a cooperative intervention, entails a semi-autonomous intervention by means of an HROV assisted by an AUV providing out-of-body views of the intervention. The UIB, leading the SUPERION subproject, is responsible for work packages centered on collecting optical data and providing 3D models of the area under study and seeking and modeling potential targets within the sensor data to assist the HROV operator. Thus, SUPERION focuses on two general objectives: enhance 3D reconstruction capabilities for underwater environments by means of optical sensors and improve target detection methods using multimodal sensor data. More specific sub-objectives stemming from the abovementioned are: (1) develop new stereo-SLAM methods to improve the self-localization capabilities of underwater vehicles and, thus, accurately derive the camera poses; (2) enhance 3D reconstruction methods able to deal successfully with the difficulties of underwater scenarios for both full scenes and targets; (3) develop new laser-based 3D modeling algorithms capable of underwater operation for increasing the level of detail at certain places of the environment, particularly the target area; (4) deal with multiple sensor modalities for improved scene modeling; (5) approach target detection in multimodal maps; (6) develop new target tracking methods making use of both 3D and visual-appearance models.   Some videos from field trials:


A. Burguera, F. Bonin-Font. Towards Visual Loop Detection in Underwater Robotics using a Deep Neural Network. In Intenational Conference on Computer Vision Theory and Applications (VISAPP), Valetta (Malta), 2020.

A. Burguera. Segmentation through patch classification: A neural network approach to detect Posidonia oceanica in underwater images. In Ecological Informatics, Elsevier, Elsevier, vol. 56, pp. 101053, January, 2020 .

A. Burguera. Cluster-based Scan Matching for Robust Motion Estimation and Loop Closing. In IEEE International Conference on Systems, Man, and Cybernetics, Bari (Italy), 2019.

A. Burguera, F. Bonin-Font. A Trajectory-Based Approach to Multi-Session Underwater Visual SLAM Using Global Image Signatures. In Journal of Marine Science and Engineering, MDPI, vol. 7, no. 8, August, 2019.

A. Martorell. Design and control of an Autonomous Surface Vehicle to improve Link Communications. 2018.

A. Burguera. Underwater Localization using Probabilistic Sonar Registration and Pose Graph Optimization. In IEEE OES Autonomous Underwater Vehicle Symposium, Porto (Portugal), 2018.

M. Martín, E. Guerrero, F. Bonin-Font, Y. González. Deep Semantic Segmentation in an AUV for Online Posidonia Oceanica Meadows Identification. In IEEE Access, 2018.

A. Burguera, F. Bonin-Font. Towards Multi Session Visual SLAM in Underwater Environments Colonized with Posidonia Oceanica. In IEEE OES Autonomous Underwater Vehicle Symposium, Porto, 2018.

F. Bonin-Font, J. Lalucat, G. Oliver, M. Massot, E. Guerrero, P. L. Negre. Evaluating the Impact of Sewage Discharges on the Marine Environment with a Lightweight AUV. In Marine Pollution Bulletin, Elsevier, vol. 135, pp. 714-722, October, 2018.

E. García, A. Ortiz, M. Massot. Vision-Based Control for an AUV in a Multi-robot Undersea Intervention Task. In Iberian Robotics Conference (ROBOT), 2017.

N. Muntaner, F. Bonin-Font, J. J. Segura, A. Jimenez, P. L. Negre, M. Massot, F. X. Gonzalez, G. Oliver. Towards a Pre-diagnose of Surgical Wounds Through the Analysis of Visual 3D Reconstructions.. In International Conference on Computer Vision Theory and Applications (VISSAP), 2018.

F. Bonin-Font, A. Burguera, J. Luís. Visual Discrimination and Large Area Mapping of Posidonia Oceanica Using a Lightweight AUV. In IEEE Access, IEEE, vol. 5, no. 1, pp. 24479-24494, 2017.

M. Stiven, J. Antich, A. Ortiz. iND: A significant improvement of the Nearness Diagram method for reactive mobile robot navigation. In 20th International Conference of the Catalan Association for Artificial Intelligence, Deltebre, 2017.

J. Guerrero, J. J. Miñana, O. Valero, G. Oliver. Indistinguishability Operators Applied to Task Allocation Problems in Multi-Agent Systems. In Applied Sciences, MDPI, vol. 7, no. 10, pp. 1-16, September, 2017.

J. Guerrero. A proposal toward a possibilistic multi-robot task allocation. In Workshop Applied Topological Structures WATS'17, Valencia (Spain), 2017.

P. Fuster, J. Guerrero, J. Martín, O. Valero. New Results on Possibilistic Cooperative Multi-Robot Systems. In International Conference on Cooperative Design, Visualization and Engineering, Palma de Mallorca, 2017.

J. Guerrero, J. J. Miñana, O. Valero. A Comparative Analysis of Indistinguishability Operators Applied to Swarm Multi-Robot Task Allocation Problem. In Cooperative Design, Visualization, and Engineering 14th International Conference, CDVE 2017, Palma, 2017.

J. Guerrero, O. Valero, G. Oliver. Toward a Possibilistic Swarm Multi-robot Task Allocation: Theoretical and Experimental Results. In Neural Processing Letters, Springer, vol. 46, no. 3, pp. 881-897, December, 2017.

E. García, J. P. Company, A. Ortiz, M. Massot, G. Oliver. Multifunctional Cooperative Marine Robots for Intervention Domains: Target Detection, Tracking and Recognition Issues. In Jornadas Nacionales de Robótica (Spanish Robotics Workshop), Valencia, 2017.

E. García, A. Ortiz, M. Massot. Visual Control of an AUV for Multi-Robot Intervention Tasks. In Jornadas Automar (Marine Automation Workshop), Castelló, 2017.

A. Burguera. A Novel Approach to Register Sonar Data for Underwater Robot Localization. In IEEE IntelliSys, London, UK, 2017.

A. Burguera, F. Bonin-Font, E. García. Building Large-Scale Coverage Maps of Posidonia Oceanica using an Autonomous Underwater Vehicle. In MTS/IEEE Oceans, Aberdeen, Scotland, 2017.

J. Antich, A. Ortiz. Reactive Navigation in Extremely Dense and Highly Intricate Environments. In PLOS ONE, vol. 12, no. 12, pp. 1-51, December, 2017.

F. Bonin-Font, M. Massot, P. L. Negre, G. Oliver, E. Guerrero, E. García. Towards a new Methodology to Evaluate the Environmental Impact of a Marine Outfall Using a Lightweight AUV. In MTS/IEEE Oceans , Aberdeen, 2017.

E. Guerrero, F. Bonin-Font, P. L. Negre, M. Massot, G. Oliver. USBL Integration and Assessment in a Multisensor Navigation Approach for AUVs. In The 20th World Congress of the International Federation of Automatic Control (IFAC World Congress), Toulouse, 2017.

J. Guerrero, G. Oliver, O. Valero. Multi-Robot Coalitions Formation with Deadlines: Complexity Analysis and Solutions. In PLoS ONE, vol. 12, no. 1, pp. 1-26, January, 2017.

M. Massot, F. Bonin-Font, P. L. Negre, E. Guerrero, A. Martorell, G. Oliver. A 3D Mapping, Obstacle Avoidance and Acoustic Communication Payload for the AUV SPARUS II. In 7th International Workshop on Marine Technology (MARTECH), Barcelona, Spain, 2016.

M. Massot, G. Oliver, A. Bodenmann, B. Thornton. Submap Bathymetric SLAM using Structured Light in Underwater Environments. In IEEE/OES Autonomous Underwater Vehicles (AUV), Tokyo, Japan, 2016.

E. Guerrero, M. Massot, P. L. Negre, F. Bonin-Font, G. Oliver. An USBL-Aided Multisensor Navigation System for Field AUVs. In IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI ) , Baden-Baden, pp. 430-435, 2016.

A. Burguera, F. Bonin-Font, J. Luís, A. Belén. Towards Automatic Visual Sea Grass Detection in Underwater Areas of Ecological Interest. In IEEE International Conference on Emerging Technologies and Factory Automation, Berlin, 2016.

F. Bonin-Font, M. Massot, G. Oliver. Towards Visual Detection, Mapping and Quantification of Posidonia Oceanica using a Lightweight AUV. In IFAC International Conference on Control Applications in Marine Systems, Trondheim, pp. 500-505, 2016.

A. Burguera, G. Oliver. High-Resolution Underwater Mapping Using Side-Scan Sonar. In PLOS ONE, vol. 11, no. 1, pp. 1-41, January, 2016.

P. L. Negre, F. Bonin-Font, G. Oliver. Cluster-Based Loop Closing Detection for Underwater SLAM in Feature-Poor Regions. In IEEE International Conference on Robotics and Automation (ICRA), Stockholm (Sweeden), 2016.

A. Burguera, G. Oliver. Building High Resolution Maps of Large Subsea Areas Using Side-scan Sonar. In Actas de las XXXVI Jornadas de Automática, Bilbao, pp. 842 - 849, 2015.

, M. Massot, P. L. Negre, G. Oliver, P. J. Sanz. Integración de técnicas ópticas de reconstrucción 3D para mejorar la planificación de agarres en tareas de manipulación arqueológica subacuática. In Actas de las XXXVI Jornadas de Automática, Bilbao, pp. 823 - 829, 2015.

P. Ridao, M. Carreras, D. Ribas, P. J. Sanz, G. Oliver. Intervention AUVs: The Next Challenge. In Annual Reviews in Control, Elsevier, vol. 40, pp. 227-241, 2015.

Uso de cookies

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.

Aviso de cookies