Swarm-like Methodologies for Executing Tasks with Deadlines

Authors José Guerrero Sastre | Gabriel Oliver Codina
In Journal of Intelligent & Robotic Systems, Springer, vol. 68, no. 1, pp. 3-19, September, 2012.


Very few studies have been carried out to test multi-robot task allocation swarm algorithms in real time systems, where each task must be executed before a deadline. This paper presents a comparative study of several swarm-like algorithms and auction based methods for this kind of scenarios. Moreover, a new paradigm called pseudo-probabilistic swarm-like, is proposed, which merges characteristics of deterministic and probabilistic classical swarm approaches. Despite that this new paradigm can not be classified as swarming, it is closely related with swarm methods. Pseudo-probabilistic swarm-like algorithms can reduce the interference between robots and are particularly suitable for real time environments. This work presents two pseudo-probabilistic swarm-like algorithms: distance pseudo-probabilistic and robot pseudoprobabilistic. The experimental results show that the pseudo-probabilistic swarm-like methods significantly improve the number of finished tasks before a deadline, compared to classical swarm algorithms. Furthermore, a very simple but effective learning algorithm has been implemented to fit the parameters of these new methods. To verify the results a foraging task has been used under different configurations.

Uso de cookies

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.

ACEPTAR