Vision-based Corrosion Detection Assisted by a Micro-Aerial Vehicle in a Vessel Inspection Application

Authors Alberto Ortiz Rodriguez | Francisco Bonnín Pascual | Emilio García Fidalgo | Joan Pep Company Corcoles
In Sensors, Basel (Switzerland), MDPI, vol. 16(12), no. 2118, December, 2016.

Sensors | Free Full-Text | Vision-Based Corrosion Detection Assisted by a Micro-Aerial Vehicle in a Vessel Inspection Application

Vessel maintenance requires periodic visual inspection of the hull in order to detect typical defective situations of steel structures such as, among others, coating breakdown and corrosion. These inspections are typically performed by well-trained surveyors at great cost because of the need for providing access means (e.g., scaffolding and/or cherry pickers) that allow the inspector to be at arm’s reach from the structure under inspection. This paper describes a defect detection approach comprising a micro-aerial vehicle which is used to collect images from the surfaces under inspection, particularly focusing on remote areas where the surveyor has no visual access, and a coating breakdown/corrosion detector based on a three-layer feed-forward artificial neural network. As it is discussed in the paper, the success of the inspection process depends not only on the defect detection software but also on a number of assistance functions provided by the control architecture of the aerial platform, whose aim is to improve picture quality. Both aspects of the work are described along the different sections of the paper, as well as the classification performance attained.



Uso de cookies

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.

Aviso de cookies