Relevance Estimation and Value Calibration of Evolutionary Algorithm Parameters

Authors Volker Nannen | A. E. Eiben
In Proceedings of the Twentieth International Joint Conference on Artificial Intelligence, IJCAI'07, pp. 975--980, 2007.

The main objective of this paper is to present and evaluate a method that helps to calibrate the parameters of an evolutionary algorithm in a systematic and semi-automated manner. The method for Relevance Estimation and Value Calibration of EA parameters (REVAC) is empirically evaluated in two different ways. First, we use abstract test cases reflecting the typical properties of EA parameter spaces. Here we observe that REVAC is able to approximate the exact (hand-coded) relevance of parameters and it works robustly with measurement noise that is highly variable and not normally distributed. Second, we use REVAC for calibrating GAs for a number of common objective functions. Here we obtain a common sense validation, REVAC finds mutation rate pm much more sensitive
than crossover rate pc and it recommends intuitively sound values: pm between 0.01 and 0.1, and 0.6 ≤ pc ≤ 1.0.

Uso de cookies

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.